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Abstract

Bisection is an easily parallelizable method for �nding the eigenvalues of real sym-

metric tridiagonal matrices, or more generally symmetric acyclic matrices. It requires a

function Count(x) which counts the number of eigenvalues less than x. In exact arith-

metic Count(x) is an increasing function of x, but this is not necessarily the case with

roundo�. Our �rst result is that as long as the 
oating point arithmetic is monotonic,

the computed function Count(x) implemented appropriately will also be monotonic; this

extends an unpublished 1966 result of Kahan to the larger class of symmetric acyclic

matrices. Second, we analyze the impact of nonmonotonicity of Count(x) on the serial

and parallel implementations of bisection. We present simple and natural implemen-

tations which can fail because of nonmonotonicity; this includes the routine bisect in

EISPACK. We also show how to implement bisection correctly despite nonmonotonic-

ity; this is important because the fastest known parallel implementation of Count(x) is

nonmonotonic even if the 
oating point is not.
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1 Introduction

Let T by an n-by-n real symmetric tridiagonal matrix with diagonals a1; :::; an and o� di-

agonals b1; :::; bn�1; we let b0 � 0. Let �1 � � � � � �n be T 's eigenvalues. It is well known

[20] that the function Count(x) de�ned below returns the number of eigenvalues of T that

are less than x (for all but the �nite number of x resulting in a divide by zero) :

Algorithm 1: Count(x) returns the number of eigenvalues of a real symmetric

tridiagonal matrix T that are less than x.

Count = 0;

d = 1;

for i = 1 to n

d = ai � x� b
2
i�1=d

if d < 0 then Count = Count + 1

endfor

(If we wish to emphasize that T is the argument, we will write Count(x; T ) instead.)

It is easy to see that the number of eigenvalues in the half-open interval [�1; �2) is

Count(�2)� Count(�1). This observation may be used as the basis for a \bisection" algo-

rithm to �nd all the eigenvalues of T , or just those in an interval [�1; �2) or [�j; �k). Here

we interpret bisection very broadly, referring to any algorithm which involves dividing an

interval containing at least one eigenvalue into smaller subintervals of any size, and recom-

puting the numbers of eigenvalues in the subintervals. The algorithm terminates when the

intervals are narrow enough.

The logic of such a bisection algorithm would seem to depend on the simple fact

the Count(x) is a monotonic increasing step function of x. If its computer implementa-

tion, call it FloatingCount(x), were not also monotonic, so that one could �nd �1 < �2

with FloatingCount(�1) > FloatingCount(�2), then the computer implementation might

well report that the interval [�1; �2) contains a negative number of eigenvalues, namely

FloatingCount(�2)�FloatingCount(�1). This result is clearly incorrect. In section 4 below,

we will see that this can indeed occur using the the Eispack routine bisect (using IEEE


oating point standard arithmetic [2, 3], and without over/under
ows or other exceptions).

The goal of this paper is to explore the impact of nonmonotonicity on the bisection

algorithm. There are at least three reasons why FloatingCount(x) might not be monotonic:

1. the 
oating point arithmetic is too inaccurate,

2. over/under
ow occurs, or is avoided improperly, and

3. FloatingCount(x) is implemented using a fast parallel algorithm called parallel pre�x.

Our �rst result is to give examples showing monotonicity failures for all three reasons; see

sections 4 and 6.

Our second result is to show that as long as the 
oating point arithmetic is monotonic

(we de�ne this in section 2.1), and FloatingCount(x) is implemented in a reasonable (but

serial) way, then FloatingCount(x) is monotonic. A su�cient condition for 
oating point to

be monotonic is that it be correctly rounded or correctly chopped; thus IEEE 
oating point
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arithmetic is monotonic. This result was �rst proven but not published by Kahan in 1966 for

symmetric tridiagonal matrices [16]; in this paper we extend this result to symmetric acyclic

matrices, a larger class including tridiagonal matrices, arrow matrices, and exponentially

many others [8]; see section 6.

Our third result is to formalize the notion of a correct implementation of bisection, and

use this characterization to identify correct and incorrect serial and parallel implementa-

tions of bisection. We illustrate with several simple, natural but wrong implementations of

parallel bisection, and show how to implement it correctly in the absence of monotonicity;

See sections 4 and 7. Nonmonotonic implementations of FloatingCount(x) remain of inter-

est, even though nonmonotonic arithmetics are a dying breed, because the fastest known

parallel pre�x implementations of FloatingCount(x) appear unavoidably nonmonotonic.

We feel this paper is also of interest because it is an example of a rigorous correct-

ness proof of an algorithm using 
oating point arithmetic. We make clear exactly which

properties of 
oating point are necessary to prove correctness.

The rest of this paper is organized as follows. Section 2 gives the de�nitions and as-

sumptions. Section 3 gives tables to illustrate the results of this paper and the assumptions

needed to prove the results. Section 4 gives some examples of incorrect bisection algorithms,

and also gives some serial and parallel algorithms that are provably correct subject to some

assumptions about the computer arithmetic and FloatingCount(x). Section 5 reviews the

roundo� error analysis of FloatingCount(x), and how to account for over/under
ow; this

material may also be found in [16, 8]. Section 6 illustrates how monotonicity can fail, and

proves that a natural serial implementation of FloatingCount(x) must be monotonic if the

arithmetic is. Section 7 gives formal proofs for the correctness of the bisection algorithms

given in section 4. Section 8 discusses some practical implementation issues and Section 9

concludes the paper.

2 De�nitions and Assumptions

Section 2.1 de�nes the kinds of matrices whose eigenvalue problems we will be consider-

ing, what monotonic arithmetic is, and what \jump points" of the functions Count() and

FloatingCount() are. Section 2.2 presents our (mild) assumptions about 
oating point

arithmetic, the input matrices our algorithms will accept, the way the bisection point of an

interval may be chosen. Section 2.3 list the criteria a bisection algorithm must satisfy to be

correct.

2.1 Preliminary De�nitions

Algorithm 1 was recently extended to the larger class of symmetric acyclic matrices [8], i.e.

those matrices whose graphs are acyclic (trees). The undirected graph G(T ) of a symmetric

n-by-n matrix T is de�ned to have n nodes and an edge (i; j), i < j, if and only if Tij 6= 0.

A symmetric tridiagonal matrix is one example of a symmetric acyclic matrix; its graph is

a chain. An \arrow matrix" which is nonzero only on the diagonal, in the last row and in

the last column, is another example; its graph is a star. From now on, we will assume T is

a symmetric acyclic matrix unless we state explicitly otherwise. Also we will number the

rows and columns of T in preorder such that node 1 is the root of the tree and so accessed

3



�rst; node j is called a child of node i if Tij 6= 0 and node j has not yet been visited by

the algorithm(See Algorithm 6 in section 6 for details). We let C denote the maximum

number of children of any node in the acyclic graph G(T )(C is never larger than the degree

of G(T )).

To describe the monotonicity of FloatingCount(x), we need to de�ne monotonic arith-

metic: An implementation of 
oating point arithmetic is monotonic if, whenever a, b, c

and d are 
oating point numbers, 
 is any binary operation, and the 
oating point results

fl(a 
 b) and fl(c
 d) do not over
ow, then a 
 b � c 
 d implies fl(a 
 b) � fl(c
 d).

This is satis�ed by any arithmetic that rounds or truncates correctly. In Section 6, we will

prove that the FloatingCount function (Floating TreeCount) for a symmetric acyclic matrix

is monotonic if the 
oating point arithmetic is monotonic.

We now de�ne a jump-point of the function Count(x). �i is the i
th jump-point of the

function Count(x) if

lim
x!�

�

i

Count(x) � i < lim
x!�

+
i

Count(x)

Note that if �i = �j , then �i is simultaneously the ith and j
th jump point. Analogous

to the above de�nition, we de�ne an i
th jump-point of a possibly nonmonotonic function

FloatingCount(x) as a 
oating point number �00
i
such that

FloatingCount(nextbefore(�00i )) � i < FloatingCount(�00i )

where nextbefore(�00
i
) is the largest 
oating point number smaller than �

00
i
. For a nonmono-

tonic FloatingCount(x) function, there may be more than one such jump-point.

2.2 Assumptions

In order to prove correctness of our algorithms, we need to make some assumptions about the

computer arithmetic, the inputs, the bisection algorithm and the function FloatingCount().

The following is a list of all the assumptions we will make; not all our results require all the

assumptions, so we must be explicit about which assumptions we need.

The �rst set of assumptions, Assumption 1, concerns the 
oating point arithmetic. Not

all parts of Assumption 1 are necessary for all later results, so we will later refer to As-

sumptions 1A, 1B, etc. Assumption 2 is about the input matrix, and includes a mild

restriction on its size, and an easily enforceable assumption on its scaling. Assumption

3 is about the method used to chose the \bisection" point of an interval; it is also eas-

ily enforced. Assumption 4 consists of two statements about the implementation of the

function FloatingCount(), which can be proven for most current implementations provided

appropriate parts of Assumption 1, about the arithmetic, are true. We still call these two

statements an assumption, rather than a theorem, because they are the most convenient

building blocks for the ultimate correctness proofs.

Assumption 1

1A. Assumptions about Floating Point Arithmetic Models

Barring over
ow, the usual expression for roundo� is extended to include under
ow

as follows [7]:

fl(a
 b) = (a
 b)(1+ �) + � (2.1)
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where 
 is a binary arithmetic operation, j�j is bounded by machine precision ", j�j
is bounded by a tiny number �!, typically the under
ow threshold ! (the smallest

normalized number which can safely participate in, or be a result of, any 
oating

point operation)1, and at most one of � and � can be nonzero. In IEEE arithmetic,

gradual under
ow lets us further assert that �! = "!, and that if 
 is addition or

subtraction, then � must be zero. We denote the over
ow threshold of the computer

(the largest number which can safely participate in, or be a result of, any 
oating

point operation) by 
.

In this paper, we will consider the following three variations on this basic 
oating

point arithmetic model:

i. Model 1. fl(a
 b) = (a
 b)(1+ �) + � as above, and over
ows terminate.

ii. Model 2. IEEE arithmetic with 1 and NaN arithmetic, and with gradual

under
ow.

iii. Model 3. IEEE arithmetic with 1 and NaN arithmetic, but with under
ow


ushing to zero.

1B.
p
! � " � 1 � 1=" �

p

. This mild assumption is satis�ed by all commercial 
oating

point arithmetics.

1C. Floating point arithmetic is monotonic. This is true of IEEE arithmetic (Models 2

and 3) but may not be true of Model 1.

1D. When we talk of parallel implementations, we will assume that all the processors

have identical 
oating point arithmetic so that the result of the same 
oating point

operation is bitwise identical on all processors.

Assumption 2

2A. Assumption on the problem size n. n" � :1.

2B. Assumptions on the scaling of the input matrix. Let �B � mini6=j T
2
ij

and �M �
maxi;j jTijj.

i. �B � !.

ii. �M �
p

.

These assumptions may be achieved by explicitly scaling the input matrix (multiplying

it by an appropriate scalar), and by ignoring small o�-diagonal elements T 2
ij
< ! and

so splitting the matrix into unreduced blocks [4]; see section 5.8 for details. By Weyl's

Theorem [20], this may introduce a tiny error of amount no more than
p
! in the

computed eigenvalues.

2C. More assumptions on the scaling of the input matrix. These are used to get re�ned

error bounds in Section 5.

1These caveats about \safe participation in any 
oating point operation" take machines like the Cray

into account, since they have \partial over
ow".
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i. �M � !=".

ii. �M � 1=("
).

Assumption 3

All the algorithms we will consider try to bound an eigenvalue within an interval. A

fundamental operation in these algorithms is to compute a point which lies in an interval

(�; �) | we denote this point by inside(�; �). This point may be computed by simply

bisecting the interval (binary chop) or by applying Newton's or Laguerre's iteration. We

assume that fl(inside(�; �)) 2 (�; �), for all attainable values of � and �. For example, if

we use binary chop, inside(�; �) = �+�

2
and we will assume that fl(�+�

2
) 2 (�; �), for all

� < � such that � � � > 2max(�; �)� (i.e., there is at least one 
oating point number in

(�; �)), where � is the machine precision. This assumption always holds in IEEE arithmetic,

and for any model of arithmetic which rounds correctly, i.e., rounds a result to the nearest


oating point number. For a detailed treatment of how to compute �+�

2 correctly on various

machines, see [17].

An easy way to enforce this assumption given an arbitrary inside(�; �) is to replace it

by

min(max(inside(�; �); nextafter(�)); nextbefore(�)));

where nextafter(�) is the next 
oating point number greater than �, and nextbefore(�) is

the next 
oating point number less than �.

Assumption 4

4A. FloatingCount(x) does not abort.

4B. Let �
(1)00

i
; �

(2)00

i
; : : : ; �

(k)00

i
be the ith jump-points of FloatingCount(x). We assume that

FloatingCount(x) satis�es the error bound,

j�(j)00
i

� �ij � �i; 8j = 1; : : : ; k

for some �i � 0. We have assumed that FloatingCount(x) has a bounded region of

possible nonmonotonicity, and �i is the width of possible nonmonotonicity around

eigenvalue �i. Di�erent implementations of Count(x) result in di�erent values of �i
(see Section 5).

For some of the practical FloatingCount functions in use, we will prove Assumption 4 in

Section 5.

2.3 When is a Bisection Algorithm Correct?

We now describe the functional behaviour required of any correct implementation of bi-

section. Let �i be a user-supplied upper bound on the desired error in the i
th computed

eigenvalue; this means the user wants the computed eigenvalue �
0
i
to di�er from the true

eigenvalue �i by no more than �i. Note that not all values of �i are attainable, and the

attainable values of �i depend on the FloatingCount function, the underlying computer

arithmetic and the input matrix T . For example, when using Algorithm 1, �i can range
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from maxi j�ij down to O(")maxi j�ij, or perhaps smaller for special matrices [5]. Let U

be a non-empty set of indices that correspond to the eigenvalues that the user wants to

compute, e.g., U = f1; : : : ; ng if the user wants to compute all the eigenvalues of a matrix

of dimension n. The output of the algorithm should be a sorted list of the computed eigen-

values, i.e. a list (i; �0
i
) where each i 2 U occurs exactly once, and �

0
i
� �

0
j
, when i � j.

In a parallel implementation, this list may be distributed over the processors in any way

at the end of the computation. Thus, the algorithm must compute the eigenvalues and

also present the output in sorted order. Beyond neatness, the reason that we require the

eigenvalues to be returned in sorted order is that it facilitates subsequent uses that require

scanning through the eigenvalues in order, such as reorthogonalization of eigenvectors in

inverse iteration.

In summary, when we say that an implementation of the bisection algorithm is correct ,

we assert that it terminates and all of the following hold:

� Every desired eigenvalue is computed exactly once.

� The computed eigenvalues are correct to within the user speci�ed error tolerance, i.e.

for all desired i > 0, j�i� �
0
i
j � �i + �i (in case �i > �i, the implementation can easily

guarantee that j�i � �
0
i
j � �i). See section 2.2, Assumption 4B for a de�nition of �i.

� The computed eigenvalues are in sorted order.

We say that an implementation of the bisection algorithm is incorrect when any of the

above fails to hold.

3 Outline of the Paper

In this section, we outline our results in four tables. Table 1 lists all the implementations

of FloatingCount() we consider, and says where they are discussed in the paper. Table 2

lists all the implementations of bisection we consider, and says where they are discussed

in the paper. These bisection algorithms all use an implementation of FloatingCount()

internally. Table 3 summarizes the error analyses of the FloatingCount() implementations in

Table 1. It reports which parts of Assumption 1, about arithmetic, and Assumption 2, about

the input matrix, are necessary to prove whether FloatingCount() satis�es Assumption

4, and whether or not FloatingCount() is monotonic. Detailed numerical error bounds

for each implementation of FloatingCount() are reported in section 5, especially Tables 5

through 9. Table 4 says which assumptions are needed to guarantee the correctness of

the overall bisection algorithms in Table 2. Basically, all algorithms require Assumption

3, about choosing the bisection point, Assumption 4, which depends on FloatingCount as

summarized in Table 3, and all parallel bisection algorithms require Assumption 1D about

parallel processors having identical arithmetic.

So, for example, Table 4 says that Algorithms Ser Bisec, Ser AllEig, Par AllEig2

and Par AllEig3 will be correct when used with any of the implementations of Floating-
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Algorithms Description Where

bisect algorithm used in the Eispack routine; See section 5.2

most 
oating point exceptions avoided by tests and branches and [21]

IEEE IEEE standard 
oating point arithmetic used to accommodate See section 5.3

possible exceptions; tridiagonals only and [4, 16]

sstebz algorithm used in the Lapack routine See section 5.4


oating point exceptions avoided by tests and branches and [1]

Best Scaling like sstebz, but prescales for optimal error bounds See section 5.5

Routine and [4, 16]

Table 1: Di�erent implementations of FloatingCount()

Algorithms Description Where

Ser Bisec Serial bisection algorithm that �nds all the eigenvalues See section 4.4

of T in a user-speci�ed interval

Ser AllEig Serial bisection algorithm that �nds all the eigenvalues of T See section 4.4

Par AllEig1 Parallel bisection algorithm that �nds all the eigenvalues See section 4.5

of T , load balancing by equally dividing the Gerschgorin

interval into p equal subintervals; needs monotonic arithmetic

Par AllEig2 Similar to Par AllEig1, but monotonic arithmetic unneeded See section 4.5

Par AllEig3 Parallel bisection algorithm that �nds all the eigenvalues See section 4.5

of T , load balancing by making each processor �nd an

equal number of eigenvalues; monotonic arithmetic unneeded

Table 2: Di�erent implementations of Bisection

Assumptions about Results Proofs

Arithmetic and Input Matrix

T is symmetric tridiagonal ^ For bisect's FloatingCount(x), See section 4.2

(1A(ii) _ 1A(iii)) ^ 1B ^ Assumption 4 holds but and section 5.2

2A ^ 2B(ii) FloatingCount(x) can be nonmonotonic

T is symmetric tridiagonal ^ For IEEE routine's FloatingCount(x), See section 5.3

(1A(ii) _ 1A(iii)) ^ 1B ^ Assumption 4 holds and and section 6

2A ^ 2B FloatingCount(x) is monotonic

T is symmetric acyclic ^ For sstebz's FloatingCount(x), See section 5.4

1A ^ 1B ^ 1C ^ Assumption 4 holds and and section 6

2A ^ 2B(ii) FloatingCount(x) is monotonic

T is symmetric acyclic ^ For Best Scaling's FloatingCount(x), See section 5.5

1A ^ 1B ^ 1C ^ Assumption 4 holds and and section 6

2A FloatingCount(x) is monotonic

Table 3: Results of Roundo� Error Analysis and Monotonicity
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Assumptions Results Proofs

3, 4 Algorithm Ser Bisec is correct See section 7

3, 4 Algorithm Ser AllEig is correct See section 4

1D, 3, 4, and Algorithm Par AllEig1 is correct See section 7.2

FloatingCount(x) is monotonic

1D, 3, 4 Algorithm Par AllEig2 is correct See section 7.2

1D, 3, 4 Algorithm Par AllEig3 is correct See section 7.2

Table 4: Correctness Results

Count in Table 1, provided the corresponding conditions in Table 3 are met. On the other

hand, Algorithm Par AllEig1 cannot be used correctly with bisect's FloatingCount,

since that FloatingCount is not monotonic.

4 Correctness of Bisection Algorithms

We now investigate the correctness of bisection algorithms and exhibit some existing \natu-

ral" implementations of bisection that are incorrect. Table 4 summarizes all the correctness

results that we prove in this paper.

4.1 An Incorrect Serial Implementation of Bisection

We give an example of the failure of Eispack's bisect routine in the face of a nonmonotonic

FloatingCount(x). Suppose we use IEEE standard double precision 
oating point arithmetic

with " = 2�52 � 2:2 �10�16 and we want to �nd the eigenvalues of the following 2�2 matrix:

A =

 
0 "

" 1

!

In exact arithmetic, A has eigenvalues near 1 and �"2 � �4:93 � 10�32. But bisect

reports that the interval [�10�32; 0) contains �1 eigenvalues. The reason for this is bisect's
incorrect provision against division by zero (See Algorithm 3 in Section 5). In Section 6,

by the proof of Theorem 6.1, we will show that this cannot happen for the Lapack routine

dstebz(sstebz) even for general symmetric acyclic matrices.

4.2 Nonmonotonicity of Parallel Pre�x Algorithm

We now give another example of a nonmonotonic FloatingCount(x) when Count(x) is im-

plemented using a fast parallel algorithm called parallel pre�x [9]. Figure 1 shows the

FloatingCount(x) of a 64 � 64 matrix of norm near 1 with 32 eigenvalues very close to

5 � 10�8 computed both by the conventional bisection algorithm and the parallel pre�x

algorithm in the neighborhood of the eigenvalues; see [19, 12] for details.

4.3 A Correct Serial Implementation of the Bisection Algorithm

As we saw in Section 4.1, the Eispack implementation of the bisection algorithm fails in

the face of nonmonotonicity of the function FloatingCount(x). We now present an imple-
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Figure 1: Parallel Pre�x vs Conventional Bisection

mentation which works correctly irrespective of whether FloatingCount(x) is monotonic or

not.

All the intervals referred to in the following discussion will be half-open intervals of

the form [�; �). We de�ne a task to be a 5-tuple T = (�; �; n�; n�; O), where [�; �) is a

non-empty interval, n� and n� are the counts associated with � and � respectively, and

O is the set of indices corresponding to the eigenvalues being searched for in this interval.

We obviously require O � I
n�
n� , where I

n�
n� = fn� + 1; : : : ; n�g (I

n�
n� = ; when n� � n�).

We do not insist that n� = FloatingCount(�), and n� = FloatingCount(�), only that

n� � FloatingCount(�) and n� � FloatingCount(�). In most implementations O = I
n�
n�

and the index set O is not explicitly maintained by the implementation.

Algorithm Ser Bisec (see Figure 2) is a correct serial implementation of bisection, that

�nds all the eigenvalues speci�ed by the given initial task (left; right; nleft; nright; I
nright
nleft ),

the ith eigenvalue being found to the desired accuracy �i (note that we allow di�erent tol-

erances to be speci�ed for di�erent eigenvalues, �i being the i
th component of the input

tolerance vector �). The di�erence between this implementation and the Eispack imple-

mentation is the initial check to see if nleft � nright, and the forcing of monotonicity on

FloatingCount(x) by executing statement 10 at each iteration. Statement 10 has no ef-

fect if FloatingCount(x) is monotonic, whereas it forces nmid to lie between n� and n� if

FloatingCount(x) is nonmonotonic.

Theorem 4.1 Algorithm Ser Bisec is correct if Assumptions 3 and 4 hold.

Proof. The theorem is proved in Section 7. tu
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subroutine Ser Bisec(n,T ,left,right,nleft,nright,�) /* computes the eigenvalues of T

in the interval [left; right] to the desired accuracy � */

1: if (nleft � nright or left > right) return;

2: if (FloatingCount(left) > nleft or FloatingCount(right) < nright) return;

3: enqueue (left; right; nleft; nright; I
nright
nleft

) to Worklist;

4: while (Worklist is not empty)

5: dequeue (�; �; n�; n�; I
n�
n� ) from Worklist;

6: mid = inside(�; �);

7: if (� � � < min
n�

i=n�+1
�i) then

8: print \Eigenvalue min(max((�+ �)=2; �); �) has multiplicity n� � n�";

9: else

10: nmid = min(max(FloatingCount(mid); n�); n�);

11: if (nmid > n�) then

12: enqueue (�;mid; n�; nmid; I
nmid
n�

) to Worklist;

13: end if

14: if (nmid < n�) then

15: enqueue (mid; �; nmid; n�; I
n�
nmid

) to Worklist;

end if

end if

end while

end subroutine

Figure 2: Algorithm Ser Bisec
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subroutine Ser Alleig(n,T ,�) /* computes all the eigenvalues of T */

(gl; gu) = Compute Gerschgorin(n,T );

call Ser Bisec(n,T ,gl,gu,0,n,�);

end subroutine

function Compute Gerschgorin(n,T ) /* returns the Gerschgorin Interval (gl; gu) */

1: gl = minn
i=1(Tii �

P
j 6=i

jTij j); /* Gerschgorin left bound */

2: gu = maxn
i=1(Tii +

P
j 6=i

jTij j); /* Gerschgorin right bound */

3: bnorm = max(jglj; jguj);
4: gl = gl� bnorm � 2n"� �0; gu = gu+ bnorm � 2n" + �n; /* see Table 9 */

5: return(gl,gu);

end function

Figure 3: Algorithm Ser Alleig computes all the eigenvalues of T

Note that in all our theorems about the correctness of various bisection algorithms,

unless stated otherwise, we do not require FloatingCount(x) to be monotonic.

Algorithm Ser Alleig (see �gure 3) is designed to compute all the eigenvalues of

T to the desired accuracy. Compute Gerschgorin is a subroutine that computes the

Gerschgorin interval of the symmetric acyclic matrix T . Note that in line 4 of the pseu-

docode, the Gerschgorin interval is widened to ensure that FloatingCount(gl) = 0 and

FloatingCount(gu) = n and hence is guaranteed to contain all the eigenvalues (this is

proved in Section 4). Due to the correctness of Algorithm Ser Bisec, we have the following

corollary :

Corollary 4.1 Algorithm Ser Alleig is correct if Assumptions 3 and 4 hold.

4.4 Parallel Implementation of the Bisection Algorithm

We now discuss parallel implementations of the bisection algorithm. The bisection algorithm

o�ers ample opportunities for parallelism, and many parallel implementations exist [6, 13,

18, 14]. We �rst discuss a natural parallel implementation which gives the false appearance

of being correct . Then, we give a correct parallel implementation that has been tested

extensively on the Connection Machine CM-5 supercomputer.

4.4.1 A Simple, Natural and Incorrect Parallel Implementation

A natural way to divide the work arising in the bisection algorithm among p processors is to

partition the initial Gerschgorin interval into p equal subintervals, and assign to processor i

the task of �nding all the eigenvalues in the ith subinterval. Algorithm Par Alleig0 (see

�gure 4) is a simple and natural parallel implementation based on this idea that attempts to

�nd all the eigenvalues of T (the p processors are assumed to be numbered 0; 1; 2; : : : ; p�1).

However, algorithm Par Alleig0 fails to �nd the eigenvalue of a 1�1 identity matrix when

12



subroutine Par Alleig0(n,T ,�) /* computes all the eigenvalues of T in parallel */

i = My Processor Number();

(gl,gu) = Compute Gerschgorin(n,T );

average width = (gr� gl)=p;

�(i) = gl+ i � average width;
�(i) = �(i) + average width;

n�(i) = FloatingCount(�(i));

n�(i) = FloatingCount(�(i));

call Ser Bisec(n,T ,�(i),�(i),n�(i),n�(i),�);

end subroutine

Figure 4: Algorithm Par Alleig0 executed by processor i | An Incorrect Parallel Im-

plementation

implemented on a 32 processor CM-5! The reason is that when p = 32, average width is

so small that �(i) = �(i) for i = 0; : : : ; p� 1. Thus, none of the processors are able to �nd

the only eigenvalue. (This would happen on any machine with IEEE arithmetic, not just

the CM-5.)

The error in algorithm Par Alleig0 is in the way �(i) is computed. Algorithm Par Alleig1

(see �gure 5) �xes the problem by computing �(i) as gl + (i + 1) � average width. This

results in the following theorem, which we prove in Section 7.

Theorem 4.2 Algorithm Par Alleig1 is correct if Assumptions 1D, 3 and 4 hold and

FloatingCount(x) is monotonic.

However, when FloatingCount(x) is nonmonotonic, Algorithm Par Alleig1 is still

incorrect ! The error in the algorithm is that when FloatingCount(x) is nonmonotonic, a

desired eigenvalue may be computed more than once. For example, suppose n = p = 3,

n�(0) = 0, n�(0) = n�(1) = 2, n�(1) = n�(2) = 1, and n�(2) = 3. In this case, the second

eigenvalue will be computed both by processors 0 and 2.

Algorithm Par Alleig2 (see �gure 6) corrects this problem by making processor 0

�nd all the initial tasks that are input to algorithm Ser Alleig. These initial tasks are

formed such that n�(i) � n�(i), for i = 0; : : : ; p � 1, and are then communicated to the

other processors. Note that these initial tasks may also be formed by computing n�(i) and

n�(i) in parallel on each processor, making sure n�(i) � n�(i), and then doing two max

scans replacing n�(i) by maxj�i n�(j) and n�(i) by maxj�i n�(j). This would take log(p)

steps on p processors. The function send(i,n
) sends the number n
 to processor i, while

receive(0,n�(i)) results in n�(i) being set to the number sent by processor 0. Thus, we have

the following theorem:

Theorem 4.3 Algorithm Par Alleig2 is correct if Assumptions 1D, 3 and 4 hold.

Proof. The theorem is proved in Section 7. tu
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subroutine Par Alleig1(n,T ,�) /* computes all the eigenvalues of T in parallel */

i = My Processor Number();

(gl,gu) = Compute Gerschgorin(n,T );

average width = (gr� gl)=p;

�(i) = gl+ i � average width;
�(i) = max(gl+ (i+ 1) � average width; �(i));
if (i = p� 1) �(i) = gu;

n�(i) = FloatingCount(�(i));

n�(i) = FloatingCount(�(i));

call Ser Bisec(n,T ,�(i),�(i),n�(i),n�(i),�);

end subroutine

Figure 5: Algorithm Par Alleig1 executed by processor i | Correct when

FloatingCount(x) is monotonic

4.4.2 A Practical Correct Parallel Implementation

Although correct, Algorithm Par Alleig2 is very sensitive to the eigenvalue distribution

in the Gerschgorin interval, and does not result in high speedups on massively parallel

machines when the eigenvalues are not distributed uniformly. We now give a more practical

parallel implementation, and prove its correctness. Algorithm Par Alleig3 (see �gure 7)

partitions the work among the p processors by making each processor �nd an almost equal

number of eigenvalues (for ease of presentation, we assume that p divides n). This static

partitioning of work has been observed to give good performance on parallel machines like

the CM-5 [13], for almost all eigenvalue distributions.

In algorithm Par Alleig3, processor i attempts to �nd eigenvalues i(n=p)+1 through

(i + 1)n=p. The function Find Init Task invoked on processor i �nds a 
oating point

number �(i) such that FloatingCount(�(i)) = (i+ 1)n=p, unless �(i+1)n=p is part of a clus-

ter of eigenvalues. In the latter case, Find Init Task �nds a 
oating point number �(i)

such that FloatingCount(�(i)) is bigger than (i+1)n=p and �(i+1)n=p; : : : ; �FloatingCount(�(i))

form a cluster relative to the user speci�ed error tolerance, � . If the cluster is so big that

FloatingCount(�(i)) is larger than (i+2)n=p, processor i sets n�(i) to (i+1)n=p in order to

ensure that each desired eigenvalue is computed just once. Each processor i computes �(i),

and communicates with processor i� 1 to receive �(i), and then calls algorithm Ser Bisec

with the initial task (�(i), �(i),n�(i),n�(i),I
�(i)
�(i)) returned by the function Find Init Task.

When the eigenvalues are well separated, each processor �nds an equal number of eigenval-

ues.

Theorem 4.4 Algorithm Par Alleig3 is correct if Assumptions 1D, 3 and 4 hold.

Proof. The theorem is proved in Section 7. tu
Note that we used some communication between processors to guarantee correctness of
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subroutine Par Alleig2(n,T ,�) /* computes all the eigenvalues of T in parallel */

i = My Processor Number();

(gl,gu) = Compute Gerschgorin(n,T );

average width = (gr� gl)=p;

�(i) = gl+ i � average width;
�(i) = gl+ (i+ 1) � average width;
if (i = p� 1) �(i) = gu;

if (i = 0) then

n
 = 0;

for (i = 1; i < p; i = i+ 1) do /* does a max scan */


 = gl+ i � average width;
n
 = max(FloatingCount(
); n
);

send(i,n
);

end for

else

receive(0,n�(i));

end if

if (i 6= 0) then

send(i� 1,n�(i));

end if

if (i 6= p� 1) then

receive(i+ 1,n�(i));

end if

call Ser Bisec(n,T ,�(i),�(i),n�(i),n�(i),�);

end subroutine

Figure 6: Algorithm Par Alleig2 executed by processor i | A Correct Parallel Imple-

mentation
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subroutine Par Alleig3(n,T ,�) /* computes all the eigenvalues of T in parallel */

i = My Processor Number();

(gl,gu) = Compute Gerschgorin(n,T );

(�(i),�(i),n�(i),n�(i)) = Find Init Task(n,T ,gl,gu,0,n,�);

call Ser Bisec(n,T ,�(i),�(i),n�(i),n�(i),�);

end subroutine

function Find Init Task(n,T ,�(i),�(i),n�(i),n�(i),�) /* returns initial task */

save = �(i); nsave = n�(i);

while ( (n�(i) 6= (i+ 1)n=p) and (�(i)� �(i) > min
n�(i)

i=n�(i)+1
�i))

mid = inside(�(i); �(i)); nmid = min(max(FloatingCount(mid); n�(i)); n�(i));

if (nmid � (i+ 1)n=p) then

�(i) =mid; n�(i) = nmid;

else

�(i) = mid; n�(i) = nmid;

end if

end while


(i) = �(i);

if (n�(i) > (i+ 2)n=p) then

n�(i) = (i+ 1)n=p;


(i) = �(i);

end if

if (i 6= p� 1) then

send(i + 1,
(i));

send(i + 1,n�(i));

end if

if (i 6= 0) then

receive(i � 1,�(i));

receive(i � 1,n�(i));

else

�(i) = save; n�(i) = nsave ;

end if

return(�(i),�(i),n�(i),n�(i));

end function

Figure 7: Algorithm Par Alleig3 executed by processor i when each processor �nds an

(almost) equal number of eigenvalues
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the parallel algorithms. It is much harder (and less elegant) to construct and prove correct-

ness of similar correct and e�cient parallel algorithms that do not use any communication.

5 Roundo� Error Analysis

As we mentioned before, Algorithm 1 was recently extended to the symmetric acyclic ma-

trices. In [8] the following implementation of Count(x) for acyclic matrices was given. The

algorithm refers to the tree G(T ), where node 1 is chosen (arbitrarily) as the root of the

tree, and node j is called a child of node i if Tij 6= 0 and node j has not yet been visited by

the algorithm.

Algorithm 2: Count(x) returns the number of eigenvalues of the symmetric

acyclic matrix T that are less than x.

call TreeCount(1; x; d; s)

Count = s

procedure TreeCount(i; x; d; s) /* i and x are inputs, d and s are outputs */

s = 0

sum = 0

for all children j of i do

call TreeCount(j; x; d0; s0)
sum = sum+ T

2
ij
=d
0

s = s+ s
0

endfor

d = (Tii � x)� sum

if d < 0 then s = s+ 1

end TreeCount

In [8] it is also shown that barring over/under
ow, the 
oating point version of Algorithm

2 has the same attractive backward error analysis as the 
oating point version of Algorithm

1: Let FloatingCount(x; T ) denote the value of Count(x; T ) computed in 
oating point

arithmetic. Then FloatingCount(x; T ) = Count(x; T 0), where T 0 di�ers from T only slightly:

jTij � T
0
ij j � f(C=2 + 2; ")jTijj if i 6= j and Tii = T

0
ii; (5.2)

where " is the machine precision, C is the maximum number of children of any node in the

graph G(T ) and f(n; ") is de�ned by

f(n; ") = (1 + ")n � 1:

By Assumption 2A (n" � :1), we have [22]:

f(n; ") � 1:06n":

(Strictly speaking, the proof of this bound is a slight modi�cation of the one in [8], and

requires that d be computed exactly as shown in TreeCount. The analysis in [8] makes no

17



assumption about the order in which the sum for d is evaluated, whereas the bound (5.2)

for TreeCount assumes the parentheses in the sum for d are respected. Not respecting the

parentheses weakens the bounds just slightly, and complicates the discussion below, but

does not change the overall conclusion.)

This tiny componentwise backward error permits us to compute the eigenvalues quite

accurately, as we now discuss. Suppose the backward error in (5.2) can change eigenvalue

�k by at most �k. For example, Weyl's Theorem [20] implies that �k � kT � T
0k2 �

2f(C=2 + 2; ")kTk2, i.e. that each eigenvalue is changed by an amount small compared to

the largest eigenvalue. If Tii = 0 for all i, then �k � (1�(C+4)")1�nj�kj, i.e. each eigenvalue
is changed by an amount small relative to itself. See [16, 5, 10] for more such bounds.

Now suppose that at some point in the algorithm we have an interval [x; y), x < y,

where

i = FloatingCount(x; T ) < FloatingCount(y; T ) = j : (5.3)

Let T 0x be the equivalent matrix for which FloatingCount(x; T ) = Count(x; T 0x), and T
0
y be

the equivalent matrix for which FloatingCount(y; T ) = Count(y; T 0y), Thus x � �i+1(T
0
x) �

�i+1(T )+�i+1, or x��i+1 � �i+1(T ). Similarly, y > �j(T
0
y) � �j(T )��j , or �j(T ) < y+�j .

Altogether,

x� �i+1 � �i+1(T ) � �j(T ) < y + �j : (5.4)

If j = i+ 1, we get the simpler result

x� �j � �j(T ) < y + �j : (5.5)

This means that by making x and y closer together, we can compute �j(T ) with an accuracy

of at best about ��j ; this is when x and y are adjacent 
oating point numbers and j = i+1

in (5.3). Thus, in principle �j(T ) can be computed nearly as accurately as the inherent

uncertainty �j permits.

Accounting for over/under
ow is done as follows. We �rst discuss the way it is done

in Eispack's bisect routine [21], then the superior method in Lapack's sstebz routine

[1, 16]. The di�culty arises because if d0 is tiny or zero, the division T
2
ij
=d
0 can over
ow. In

addition, T 2
ij
can itself over/under
ow. We would like to account for this by modifying the

algorithm to avoid over/under
ow (not necessary if we have IEEE arithmetic), and slightly

increasing the backward error bound (5.2).

We denote the pivot d computed when visiting node i by di. The 
oating point operations

performed while visiting node i are then

di = fl((Tii � x)� (
X

all children

j of i

T
2
ij

dj
)): (5.6)

To analyze this formula, we will let subscripted "'s and �'s denote independent quantities

bounded in absolute value by " and �!. We will also make standard substitutions likeQ
n

i=1(1 + "i) = (1 + ~")n where j~"j � ", and (1 + "i)
�1
�j = �j .
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5.1 Model 1: Barring Over
ow, Acyclic Matrix

Barring over
ow, (5.6) and Assumption 2B(i) leads to

di = f(Tii � x)(1 + "
i

a
) + �1i �

X
all children

j of i

T
2
ij

dj
(1 + ~"ij)

C+1 � (2C � 1)�2ig(1 + "
i

b
) + �3i:

or

di

1 + "
i

b

= (Tii � x)(1 + "
i

a
)�

X
all children

j of i

T
2
ij

dj
(1 + ~"ij)

C+1 + 2C � �02i + �
0
3i:

or
di

(1 + "ic)
2
= Tii � x�

X
all children

j of i

T
2
ij

dj
(1 + "̂ij)

C+2 + (2C + 1)�i:

Let ~di = di=(1 + "
i

c)
2, �nally,

~di = Tii + (2C + 1)�i � x �
X

all children

j of i

T
2
ij

~dj
(1 + "ij)

C+4
: (5.7)

Remark 5.1 Under Model 2, IEEE arithmetic with gradual under
ow, the under
ow error

(2C + 1)�i of the above equation can be replaced by C�i because addition and subtraction

never under
ow.

If there is no under
ow during the computations of di either, then (5.7) simpli�es to:

~di = Tii � x�
X

all children

j of i

T
2
ij

~dj
(1 + "ij)

C+4
:

This proves (5.2), since the ~di are the exact pivots correspond to T 0 where T 0 satis�es (5.2)
and sign( ~di) = sign(di).

Remark 5.2 We need to bar over
ow in principle for symmetric acyclic matrix with IEEE

arithmetic, because if in (5.6), there are two children j1 and j2 of i such that T
2
ij1
=dj1

over
ows to 1 and T
2
ij2
=dj2 over
ows to �1; then di will be NaN, not even well-de�ned.

19



5.2 Models 2 and 3: Eispack's bisect routine, Tridiagonal Matrix

Eispack's bisect can over
ow for symmetric tridiagonal or acyclic matrices with Model

1 arithmetic, and return NaN's for symmetric acyclic matrices and IEEE arithmetic since

it makes no provision against over
ow (see Remark 5.2). In this subsection, we assume T

is a symmetric tridiagonal matrix whose graph is just a chain, i.e. C = 1. Therefore, to

describe the error analysis for bisect, we need the following assumptions:

Assumption 1A(ii): Model 2. Full IEEE arithmetic with 1 and NaN arithmetic, and

with gradual under
ow.

Assumption 1A(iii): Model 3. Full IEEE arithmetic with 1 and NaN arithmetic, but

with under
ow 
ushing to zero.

Assumption 2B(ii): �M � maxi;j jTijj �
p

.

Algorithm 3: Eispack bisect. Count(x) returns the number of eigenvalues of a

real symmetric tridiagonal matrix T that are less than x.

Count = 0;

d0 = 1;

for i = 1 to n

if (di = 0) then

v = jbi�1j="
else

v = b
2
i�1=di

endif

di = ai � x� v

if di < 0 then Count = Count + 1

endfor

Under Models 2 and 3, our error expression (5.7) simpli�es to

~di = ai + 3�i � x� b
2
i�1(1 + "ij)

5

~di�1
:

where ai = Tii and bi�1 = Ti�1;i.
However, bisect's provision against division by zero can drastically increase the back-

ward error bound (5.2). When dj = 0 for some j in (5.6), it is easy to see that what bisect

does is equivalent to perturbing aj by "jbj j. This backward error is clearly small in norm,

i.e. at most "kTk2, and so by Weyl's Theorem, can perturb computed eigenvalue by no

more than "kTk2. If one is satis�ed with absolute accuracy, this is su�cient. However, it

can clearly destroy any componentwise relative error, because "jbjj maybe much larger than
jaj j.

Furthermore, suppose there is some k such that dk over
ows, i.e. jdkj � 
. Since
�M �

p

, it must be b2

k�1=dk�1 that over
ows. So ~dk is �sign(b2k�1=dk�1) �1 which has the

same sign as the exact pivot corresponds to T 0. But this will contribute an extra uncertainty
to ak+1 of at most �M2

=
, since jb2
k
=dkj � �M2

=
.
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Therefore we get the following backward error for bisect:

jTij � T
0
ij
j � f(2:5; ")jTijj if i 6= j:

and

jTii � T
0
ii
j � "kTk2 +

�M2



+

(
"! Model 2

3! Model 3
:

5.3 Models 2 and 3: IEEE routine, Tridiagonal Matrix

The following code can work only for symmetric tridiagonal matrices under Models 2 and 3

for the same reason as bisect: otherwise we could get T 2
ij1
=dj1+T

2
ij2
=dj2 =1�1 = NaN .

So in this subsection, we again assume T is a symmetric tridiagonal matrix. By using IEEE

arithmetic, we can eliminate all tests in the inner loop, and so make it faster on many

architectures [11]. To describe the error analysis, we again make Assumptions 1A(ii), 1A(iii)

and 2B(ii) as in Section 5.2, and Assumption 2B(i), which is �B � mini6=j T
2
ij
� !.

Algorithm 4: IEEE routine. Count(x) returns the number of eigenvalues of a

real symmetric tridiagonal matrix T that are less than x.

Count = 0;

d0 = 1;

for i = 1 to n

/* note that there is no provision against over
ow and division by zero */

di = (ai � x)� b
2
i�1=di�1

Count = Count + SignBit (di)

endfor

By Assumption 2B(i), b2
i
never under
ows. Therefore when some di under
ows, we do

not have the headache of dealing with 0=0 which is NaN.

Algorithm 4 is quite similar to bisect except there is no provision against division by

zero, and the SignBit(�0) function (= 0 or 1) is used to count eigenvalues. More precisely,

if di = 0, di+1 would be �1, so after two steps, Count will increase by 1. On the other

hand, if di = �0, di+1 would be 1, therefore Count also increases by 1 after two steps,

which is correct. Using an analysis analogous to the last section, if we use Model 2 (gradual

under
ow), T 0 di�ers from T by

jTij � T
0
ij
j � f(2:5; ")jTijj if i 6= j and jTii � T

0
ii
j �

�M2



+ "!:

Using Model 3 (
ush to zero), we have the slightly weaker results that

jTij � T
0
ij j � f(2:5; ")jTijj if i 6= j and jTii � T

0
iij �

�M2



+ 3!:

Since �M �
p

, so

�M2
=

�M

� 1p


� ":

which tells us that �M �
p

 is a good scaling choice.
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5.4 Models 1, 2 and 3: Lapack's sstebz routine, Acyclic Matrix

In contrast to Eispack's bisect and IEEE routines, Lapack's sstebz can work in prin-

ciple for general symmetric acyclic matrices under all three models (although its current

implementation only works for tridiagonal matrices). So in this subsection, T is a symmet-

ric acyclic matrix. Let B = maxi6=j(1; T
2
ij
) � 
, and p̂ = 2C � B=
 (p̂ is called pivmin in

sstebz). In this subsection, we need the Assumptions 1A (model i, ii or iii) and 2B(ii).

Because of the Gerschgorin Disk Theorem, we can restrict our attention to those shifts x

such that jxj � (n+ 1)
p

.

Algorithm 5: Count(x) returns the number of eigenvalues of the symmetric

acyclic matrix T that are less than x.

call TreeCount(1; x; d1; s1)

Count = s1

procedure TreeCount(i; x; di; si) /* i and x are inputs, di and si are outputs */

di = fl(Tii � x)

si = 0

for all children j of i do

call TreeCount(j; x; dj; sj)

sum = sum+ T
2
ij
=dj

si = si + sj

endfor

di = (Tii � x)� sum

if (jdij � p̂) di = �p̂
if di < 0 then si = si + 1

end TreeCount

It is clear that jdij � p̂ for each node i, so

jTiij+ jxj+
X

all children

j of i

jT
2
ij

dj
j � (n+ 2)

p

+ C � B

p̂
� 


2
+ C

B

2C �B=
 = 
:

This tells us that sstebz never over
ows and it works under all three models. For all these

models, the assignment di = �p̂ when jdij is small can contribute an extra uncertainty to

Tii of no more than 2 � p̂. Thus we have the following backward error:

jTij � T
0
ij
j � f(C=2 + 2; ")jTijj if i 6= j:

and

jTii � T
0
iij � 2 � p̂+

8><
>:

(2C + 1)�! Model 1

C"! Model 2

(2C + 1)! Model 3

:
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5.5 Models 1,2 and 3: Best Prescaling Algorithm, Acyclic Matrix

Following Kahan[16], let � = !
1=4
�1=2 and M = � � 
 = !

1=4
1=2. The following code

assumes that the initial data has been scaled so that

�M � Mp
2C

and �M � Mp
2C

:

This code can be used to compute the eigenvalues of general symmetric acyclic matrix, so

in this subsection, T is a symmetric acyclic matrix. To describe the error analysis, we only

need Assumption 1A (i, ii or iii). Again because of the Gerschgorin Disk Theorem, the

shifts are restricted to those x such that jxj � (n + 1)M . The Best Scaling Algorithm is

almost the same as the sstebz except p̂ = �p!, so we do not repeat the code here.

Similar to sstebz, jdij �
p
! for any node i, so

jTiij+ jxj+
X

all children

j of i

jT
2
ij

dj
j � (n+1)M +

Mp
2C

+C �M
2
=2C

!1=2
� 
=2+C � !

1=2
=2C

!1=2
= 


which tells us over
ow never happens and the code can work �ne under all the models we

mentioned. For all the models, The backward error bound becomes,

jTij � T
0
ij
j � f(C=2 + 2; ")jTijj if i 6= j:

and

jTii � T
0
iij � 2

p
! +

8><
>:

(2C + 1)�! Model 1

C"! Model 2

(2C + 1)! Model 3

:

5.6 Error Bounds For Eigenvalues

We need the following lemma to give error bounds for the computed eigenvalues.

Lemma 5.1 Assume T is an acyclic matrix and FloatingCount(x; T ) = Count(x; T 0),
where T 0 di�ers from T only slightly:

jTij � T
0
ij j � �(")jTijj if i 6= j and jTii � T

0
iij � �:

where �(") � 0 is a function of " and � � 0. Then this backward error can change the

eigenvalues �k by at most �k where

�k � 2�(") k T k2 +�: (5.8)

Proof. By Weyl's Theorem [20],

�k � kT � T
0k2 � kjT � T

0jk2 � k�(")jT � �j+ �Ik2 � �(")kjT � �jk2+ �:

and

kjT � �jk2 = kT � �k2 � kTk2 + k�k2 � 2kTk2:
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Algorithms Model 1 Model 2 Model 3

�(") � �(") � �(") �

bisect | | f(2:5; ") "kTk2+ �M2



+"! f(2:5; ") "kTk2+ �M2



+3!

sstebz f(2:5; ") 2p̂+3�! f(2:5; ") 2p̂+"! f(2:5; ") 2p̂+3!

best scaling f(2:5; ") 2
p
!+3�! f(2:5; ") 2

p
!+"! f(2:5; ") 2

p
!+3!

IEEE | | f(2:5; ")
�M2



+"! f(2:5; ")

�M2



+3!

Table 5: Backward Error Bounds for Symmetric Tridiagonal Matrices

Algorithms Model 1 Model 2 Model 3

bisect | [2f(2:5; ")+"]kTk2+ �M2



+"! [2f(2:5;")+"]kTk2+ �M2



+3!

sstebz 2f(2:5; ")kTk2+2p̂+3�! 2f(2:5; ")kTk2+2p̂+"! 2f(2:5; ")kTk2+2p̂+3!

best scaling 2f(2:5; ")kTk2+2
p
w+3�! 2f(2:5; ")kTk2+2

p
w+"! 2f(2:5; ")kTk2+2

p
w+3!

IEEE | 2f(2:5; ")kTk2+ �M2



+"! 2f(2:5; ")kTk2+ �M2



+3!

Table 6: Error Bounds �k of Eigenvalues for Symmetric Tridiagonal Matrices

where � = diag(di) which is the diagonal part of T . Therefore,

�k � 2�(")kTk2 + �:

tu
According to this lemma, we present the tables of backward errors �(") and �, and the

corresponding error bounds �k of the eigenvalues, for di�erent algorithms under di�erent

models (Tables 5 through 8)

5.7 Correctness of the Gerschgorin Bound

In this subsection, we will prove the correctness of the Gerschgorin bound computed by the

routine Compute Gerschgorin (see Figure 3).

Since

gl = min
i

(Tii �
X
j 6=i

jTijj); gu = max
i

(Tii +
X
j 6=i

jTij j):

So, bnorm = max(jglj; jguj) = kTk1. Notice that

fl((Tii �
X
j 6=i

jTijj)) = (Tii(1 + �i)
ki �

X
j 6=i

jTijj(1 + �j)
kj ):

Therefore,

jfl(gl)� glj � f(C; ")kTk1 � 2n"kTk1 = 2n" � bnorm:

Algorithms Model 1 Model 2 Model 3

�(") � �(") � �(") �

bisect | | | | | |

sstebz f(C=2+2; ") 2p̂+(2C+1)�! f(C=2+2; ") 2p̂+C"! f(C=2+2; ") 2p̂+(2C+1)!

best scaling f(C=2+2; ") 2
p
!+(2C+1)�! f(C=2+2; ") 2

p
!+C"! f(C=2+2; ") 2

p
!+(2C+1)!

IEEE | | | | | |

Table 7: Backward Error Bounds for Symmetric Acyclic Matrices
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Algorithms Model 1 Model 2 Model 3

bisect | |

sstebz 2f(C=2+2; ")kTk2+2p̂+(2C+1)�! 2f(C=2+2; ")kTk2+2p̂+C"! 2f(C=2+2; ")kTk2+2p̂+(2C+1)!

best scaling 2f(C=2+2; ")kTk2+2
p
w+(2C+1)�! 2f(C=2+2; ")kTk2+2

p
w+C"! 2f(C=2+2; ")kTk2+2

p
w+(2C+1)!

IEEE | |

Table 8: Error Bounds �k of Eigenvalues for Symmetric Acyclic Matrices

Algorithms Matrix Additional Assumptions Bounds of �k
bisect Tridiagonal Assumption 2C(i) 11" � bnorm
sstebz Acyclic Assumptions 2C(i), 2C(ii) (8n+ 6)" � bnorm
best scaling Acyclic | (4n+ 8)" � bnorm
IEEE Tridiagonal Assumption 2C(i) 10" � bnorm

Table 9: Upper Bounds for �k for Di�erent Algorithms under Di�erent Models

Similarly, jfl(gu)� guj � 2n" � bnorm. This proves that if we let

gl = gl� 2n" � bnorm� �0; gu = gu+ 2n" � bnorm+ �n:

then we can claim

FloatingCount(gl) = 0; FloatingCount(gu) = n:

For the algorithms we mentioned in the previous subsections, we can obtain the upper

bounds for �k under certain additional appropriate assumptions, which enable us to give

more speci�c and explicit Gerschgorin bounds computed by the routine Compute Gerschgorin

(See Table 9). For instance, the error bound of bisect for symmetric tridiagonal matrices

is at most [2f(2:5; ")+ "]kTk2+ �M2
=
+ 3!, with Assumption 2C(i): �M � !=", we have

[2f(2:5; ")+ "]kTk2 + �M2
=
+ 3! � (2 � 2:5 � 1:06"+ ")kTk2 +

�M



�M + 3" �M

� 7" � bnorm+ " � bnorm+ 3" � bnorm = 11" � bnorm:

According to Table 9, if we let

gl = gl� (10n+ 6)" � bnorm; gu = gu+ (10n+ 6)" � bnorm: (5.9)

Then we have

FloatingCount(gl) = 0; FloatingCount(gu) = n:

in all situations, which shows the Gerschgorin Bound ( 5.9) is correct for Eispack's bisect,

Lapack's sstebz, IEEE routine and Best Prescaling Algorithm.

5.8 The Splitting Criterion

The splitting criterion asks if an o�diagonal entry bi is small enough in magnitude to set to

zero without making unacceptable perturbations in the eigenvalues. This is useful because

setting bi to zero splits T into two independent subproblems which can be solved faster
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(serially or in parallel). If we are only interested in absolute accuracy, then Weyl's Theorem

[20] guarantees that the test

if jbij � tol then bi = 0 (5.10)

will not change any eigenvalue by more than tol. An alternative test for setting bi to zero is

� = (ai+1 � ai)
2
=4

� = (1� 2�1=2)(b2
i�1 + b

2
i+1)

� =
b
2
i

� + �
(2�+

�b
2
i

� + �
)

if � < tol
2 then bi = 0

This also guarantees that no eigenvalue will change by more than tol (in fact it guarantees

that the square root of the sum of the squares of the changes in all the eigenvalues is

bounded by tol) [15, 20]. Although it sets bi to zero more often than the simpler test (5.10),

it is much more expensive.

To guarantee relative accuracy, we need the following new result:

Lemma 5.2 Let T be a tridiagonal matrix where for a �xed i

jbij � tol � (jaiai+1j)1=2

Let T 0 = T except for setting b0
i
= 0. Then there exist other tridiagonal matrices T1 and T2

with the following properties:

i. �1i � �
0
i
� �2i, where Tj has eigenvalues �j1 � � � � � �jn.

ii. �1i � �i � �2i,

iii. T1 = T2 = T except for entries (i; i) and (i+ 1; i+ 1) which di�er from those of T by

factors 1� tol.

In other words, the eigenvalues of T 0 and T lie between the eigenvalues of matrices T1
and T2, where the entries of Tj approximate those of T with relative accuracy tol. This is

a nearly unimprovable backward error bound. Combined with [5, Theorem 4], this easily

yields

Corollary 5.1 Let T be 
-s.d.d., and suppose tol < (1�
)=(1+
) (see [5] for de�nitions).

Suppose jbij � tol � (jaiai+1j)1=2, and let T 0 = T except for b0
i
= 0. Then

exp(
�tol

1� 

1+tol

1�tol
) � �

0
i

�i
� exp(

tol

1� 

1+tol

1�tol
)

When tol � 1� 
 then

1� tol

1� 

� �

0
i

�i

� 1 +
tol

1� 
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Proof of Lemma 5.2. By the Courant Minimax Theorem [20] it su�ces to construct

T1 and T2 satisfying condition iii in the Lemma such that for all vectors x

x
T
T1x � x

T
T
0
x � x

T
T2x and x

T
T1x � x

T
Tx � x

T
T2x (5.11)

Since all the matrices di�er only in the i-th and i + 1-st rows and columns, it su�ces to

consider two by two matrices only:

T =

"
ai bi

bi ai+1

#
; T

0 =

"
ai 0

0 ai+1

#
;

We claim that the following matrices satisfy condition (5.11):

T1 =

"
ai � toljaij bi

bi ai+1 � toljai+1j

#
; T2 =

"
ai + toljaij bi

bi ai+1 + toljai+1j

#

To prove this requires us to verify that"
�toljaij 0

0 �toljai+1j

#
and

"
�toljaij bi

bi �toljai+1j

#

are positive (negative) semide�nite, which is immediately implied by the assumption of the

lemma. tu
This leads us to recommend the splitting criterion

if jbij � toljaiai+1j1=2 then bi = 0 (5.12)

since this does not change the eigenvalues any more than relative perturbations of size tol

in the matrix entries. Note that it will never be applied to tridiagonals with zero diagonal

unless bi is exactly zero.

This criterion is more stringent than the criterion in the Eispack code bisect [21], which

essentially is

if jbij � tol(jaij+ jai+1j) then bi = 0: (5.13)

Note that this is at least about as stringent as the absolute accuracy criterion (5.10) but

less stringent than the relative accuracy criterion (5.12). To see that it can fail to deliver

high relative accuracy when (5.12) will succeed, consider the example"
1020 5 � 109
5 � 109 1

#

which is 
-s.d.d. with 
 = :5. Let tol = 10�10. Then Eispack would set the o�diagonals to

zero, returning eigenvalues 1020 and 1. The true eigenvalues (to about 20 digits) are 1020

and .75.

Note that criterion (5.12) could possibly be used as the stopping criterion in a QR

algorithm [5] in the hopes of attaing high relative accuracy. However, the rounding errors in

any existing QR algorithm generally cause far more inaccuracy in the computed eigenvalues

than the currently used stopping criteria (which are generally identical to (5.13)).
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6 Proof of Monotonicity of Count(x)

In 1966 Kahan proved but did not publish the following result [16]: if the 
oating point

arithmetic is monotonic, then FloatingCount(x) is a monotonically increasing function of x

for symmetric tridiagonal matrices. That monotonic 
oating point arithmetic is necessary

for FloatingCount(x) to be monotonic is easily seen by considering 1-by-1 matrices: if

addition fails to be monotonic so that x < x
0 but fl(a1 � x) < 0 < fl(a1 � x

0), then
FloatingCount(x) = 1 > 0 = FloatingCount(x0). In this section, we will extend this proof

of monotonicity of FloatingCount(x) to symmetric acyclic matrices.

In section 2.1, we mentioned that we will number the rows and columns of T in pre-

order, as they are accessed by Algorithm 2 (see section 5). This means node 1 is the root

of the tree, since it is accessed �rst, and children are numbered higher than their parents.

This lets us relabel the variables in Algorithm 2 as follows, where we also introduce roundo�:

Algorithm 6: Count(x) returns the number of eigenvalues of the symmetric

acyclic matrix T that are less than x.

call TreeCount(1; x; d1; s1)

Count = s1

procedure TreeCount(i; x; di; si)

/* i and x are inputs, di and si are outputs */

di = fl(Tii � x)

si = 0

for all children j of i do

call TreeCount(j; x; dj; sj)

di = fl(di � fl(T 2
ij
=dj))

si = si + sj

endfor

if di < 0 then si = si + 1

end TreeCount

(Without loss of generality we ignore roundo� in computing T
2
ij
.) Thus si is the to-

tal number of negative dj in the subtree rooted at i (including di). We may summarize

Algorithm 6 more brie
y by

di = fl(fl(Tii� x)� fl(
X

j2C(i)
fl(

T
2
ij

dj
))) (6.14)

si =
X

j2C(i)
sj +

(
0 if di � 0

1 if di < 0
(6.15)

where the sums are over the set C(i) of all children of i.

Let x be a 
oating point number, and let x0 denote the next 
oating point number larger
than x. To distinguish the results of Algorithm 6 for di�erent x we will write si(x) and

di(x). The theorem we wish to prove is:
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Theorem 6.1 If the 
oating point arithmetic used to implement Algorithm 6 is monotonic,

then si(x) � si(x
0).

We introduce some more de�nitions. In these de�nitions, y is always a 
oating point

number. The number y is a zero of di if di(y) � 0 > di(y
0). The number y is a pole of di

if di(y) < di(y
0). It is called a positive pole if in addition to being a pole di(y)di(y

0) > 0

or di(y) = 0. It is called a negative pole if in addition to being a pole di(y)di(y
0) < 0 or

di(y
0) = 0.

Suppose that some si is decreasing; we want to �nd a contradiction.

Lemma 6.1 Let m be the largest m such that sm is decreasing. This means that for some

y, sm(y) > sm(y
0). Then in fact dm(y) < 0 � dm(y

0), i.e. y is a negative pole of dm.

Proof. Since m is the largest integer for which sm is decreasing, we must have sk(y) �
sk(y

0) for all children k of m. Now write

0 > sm(y
0)� sm(y)

= fsm(y0)�
X

k2C(m)

sk(y
0)g+ f

X
k2C(m)

sk(y
0)�

X
k2C(m)

sk(y)g+ f
X

k2C(m)

sk(y)� sm(y)g

� t1 + t2 + t3 :

From (6.15) we we conclude t1 � 0 and t3 � �1. From the de�nition of m we conclude

t2 � 0. These inequalities have one solution, namely t1 = t2 = 0 and t3 = �1. From t1 = 0

we conclude that dm(y
0) � 0, and from t3 = �1 we conclude dm(y) < 0. In particular, this

means y is a negative pole of dm. tu

Lemma 6.2 If y is a pole of di, then i must have a child j for which y is either a positive

pole or a zero.

Proof. If y is a pole of di, then for some child j of i we must have

fl(
T
2
ij

dj(y)
) > fl(

T
2
ij

dj(y0)
) (6.16)

Otherwise all children would satisfy

fl(
T
2
ij

dj(y)
) � fl(

T
2
ij

dj(y0)
)

and so by the monotonicity of arithmetic

fl(
X

j2C(i)
fl(

T
2
ij

dj(y)
)) � fl(

X
j2C(i)

fl(
T
2
ij

dj(y0)
))

Arithmetic monotonicity further implies

fl(Tii � y) � fl(Tii � y
0)

29



and �nally

fl(fl(Tii� y)� fl(
X

j2C(i)
fl(

T
2
ij

dj(y)
))) � fl(fl(Tii� y

0)� fl(
X

j2C(i)
fl(

T
2
ij

dj(y0)
)))

or di(y) � di(y
0), contradicting the assumption that y is a pole. Applying arithmetic

monotonicity to (6.16) we conclude

T
2
ij

dj(y)
>

T
2
ij

dj(y0)
:

This means either dj(y) � 0 > dj(y
0) (i.e. y is a zero of dj) or dj(y) < dj(y

0) and dj(y) �
dj(y

0) > 0 (y is a positive pole of dj) or 0 = dj(y) < dj(y
0) (y is a positive pole of dj). tu

Remark 6.1 The proof of the last lemma does not depend on the order in which the

additions and subtractions of Tii, y, and T
2
ij
=dj are carried out. It is also not damaged by

inserting the line \if jdij < tol then di = �tol" just before \if di < 0 then si = si + 1" in

Algorithm 6; this is done in practice to avoid over
ow and division by zero; see Algorithm

5 and [1, 16]. However, the proof does not work for the algorithm used to avoid over
ow

in the subroutine bisect [21]. This is because bisect tests if a computed di is exactly

zero, and increases if it is; this can increase di(y
0) past di(y) even if inequalities (6.16) are

satis�ed. The example in section 4.2 shows that monotonicity can indeed fail in practice.

Lemma 6.3 If y is a pole of di, then there must be a l in the subtree rooted at i such that

y is a zero of dl and for all dj on the path from i to l, y is a positive pole of dj.

Proof. We can apply Lemma 6.2 to i to �nd a child l which is either a zero or a

positive pole. If it is a zero we are done, and otherwise we apply Lemma 6.2 again to l.

This process must end in a zero since the leaves are of the form dl(x) = fl(Tll � x) and so

can only be zeros by arithmetic monotonicity. tu
Now use Lemma 6.1 to conclude that there is an m such that y is a negative pole of dm,

and X
k2C(m)

sk(y) =
X

k2C(m)

sk(y
0) : (6.17)

Use Lemma 6.3 to conclude that there is some l in the tree rooted at m for which y is a

zero. This means dl(y) � 0 > dl(y
0), so that dl contributes one more to the right hand side

of (6.17) than to the left hand side. So to maintain (6.17) there must be another p in the

tree rooted at m with dp(y) < 0 � dp(y
0), i.e. y is a negative pole of dp. By Lemma 6.3,

p cannot lie on the path from m to l, since only positive poles lie on this path. Therefore,

again by Lemma 6.3, there must be a q 6= l in the tree rooted at p such that y is a zero

of dq. But this means dp and dq together contribute equally to both sides of (6.17), and so

cannot balance dl. By the same argument, any other negative pole which would balance

dl has a counterbalancing zero. Therefore (6.17) cannot be satis�ed. This contradiction

proves Theorem 6.1.
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7 Proofs of Correctness

We now present the proofs of the various theorems stated in Section 4.

Proof of Theorem 4.1 To prove the theorem, we �rst prove the inductive assertion

that for every task (�; �; n�; n�; I
n�
n� ) in the Worklist, FloatingCount(�) � n� < n� �

FloatingCount(�). The inductive assertion is clearly true for the initial task in theWorklist

for which FloatingCount(�) � n� < n� � FloatingCount(�). Suppose that the inductive

assertion holds for some task. We prove that the assertion holds for the subtasks created

by this task. Statement 10 in Figure 2 ensures that n� � nmid � n� . A new subtask is

added to the Worklist if

i. n� < nmid. Statement 10 implies that nmid = min(FloatingCount(mid); n�) and

therefore, nmid � FloatingCount(mid). Thus, FloatingCount(�) � n� < nmid �
FloatingCount(mid), and the inductive assertion holds for the new subtask (�,mid,n�,

nmid,I
nmid
n�

).

ii. nmid < n� , which implies that nmid � FloatingCount(mid). Thus, FloatingCount(mid)

� nmid < n� � FloatingCount(�), and the inductive assertion holds for the new sub-

task (mid,�,nmid,n� ,I
n�
nmid).

Hence our inductive assertion holds for any task in theWorklist. Let �0 = min(max(fl(�+�

2 ); �); �)

be an eigenvalue output by Algorithm Ser Bisec. For simplicity, we assume that the eigen-

value is of multiplicity 1, i.e., n� = n�+1. The inductive assertion implies that there exists

at least one nth
�
jump-point of FloatingCount(x), �

00

n�
, in (�; �]. By the working of the algo-

rithm, j�0��
00

n�
j � �n� , and by the assumption about FloatingCount(x), j�00

n�
��n� j � �n� .

By the triangle inequality, j�0 � �n� j � �n� + �n� , and hence the computed eigenvalues are

correct to within the user speci�ed error tolerance. The proof when n� > n� + 1 is similar.

By Assumption 1, 
(inside(�; �)) 2 (�; �) for all �; � that arise (note that � � � for all

tasks in theWorklist). Thus, all subtasks have strictly smaller intervals, and the algorithm

must terminate. At any stage of the algorithm, the index sets corresponding to all the tasks

in the Worklist form a partition of the initial index set, I
nright
nleft . Each index i is contained

in exactly one index set and hence, each desired eigenvalue is computed exactly once. It is

also clear that the computed eigenvalues are in sorted order. tu

7.1 A Necessary and Su�cient Condition for Correctness

Having found a rather simple �x to the problem of nonmonotonicity in serial bisection, we

now prove a necessary and su�cient condition for the correctness of any serial or parallel

implementation of the bisection algorithm. First, we de�ne a few terms to help us in the

ensuing discussion. Consider a task T = (�; �; n�; n�; O). We say that this task covers the

index set O. If tasks T1; : : : ; Tk cover the index sets O1; : : : ; Ok respectively, then the set of

tasks fT1; : : : ; Tkg is said to cover the index set O1[O2 � � �[Ok . We de�ne an Index Cover

to be a set of tasks which covers the user index set U . A Disjoint Index Cover is an index

cover such that the index sets covered by any pair of tasks in the index cover are disjoint.

We assume that all the bisection algorithms discussed below maintain a set of tasks

(either explicitly or implicitly). Each task in this set, (�; �; n�; n�; O), is assumed to be
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such that � � � and FloatingCount(�) � n� < n� � FloatingCount(�). When the width

of an interval corresponding to some task becomes smaller than min
n�

i=n�+1
�i, this task is

marked as a �nal task, and is not further re�ned. We will refer to an interval corresponding

to a �nal task as a �nal interval. At the end of the algorithm, the midpoints of the

�nal intervals are output as the eigenvalues corresponding to the index sets covered by the

respective �nal tasks.

Consider the two tasks T1 = (�1; �1; n�1 ; n�1 ; O1), and T2 = (�2; �2; n�2; n�2 ; O2). Sup-

pose that min(max(fl((�1 + �1)=2); �1); �1) � min(max(fl((�2 + �2)=2); �2); �2). We say

that the pair T1 and T2 is ordered if 8i 2 O1; 8j 2 O2; i � j. A set of tasks is said to be

ordered if every pair of tasks in this set is ordered.

Theorem 7.1 A bisection algorithm is correct i� its �nal tasks form an ordered disjoint

index cover.

Proof. Suppose the �nal tasks form an ordered disjoint index cover. Consider a �nal

task (�; �; n�; n�; O) where O � I
n�
n� . Then 8i 2 O, the eigenvalues output from this task are

�
0
i
= min(max(fl((�+ �)=2); �); �). Since i 2 I

n�
n� , the interval (�; �) contains an i

th jump-

point,�
00

i
, of FloatingCount(x). Hence the reported eigenvalue �0

i
is such that j�0

i
��

00

i
j � �i.

By our assumptions about FloatingCount(x), j�i � �
00

i
j � �i. Thus j�i � �

0
i
j � �i + �i, and

every eigenvalue output is computed correctly. Since the �nal tasks form a disjoint index

cover, every desired eigenvalue is output exactly once. All �nal tasks are ordered, hence

the desired eigenvalues are output in sorted order.

If the �nal tasks do not form an index cover then at least one of the desired eigenvalues

will not be output. If any two �nal tasks cover intersecting index sets, then some eigenvalue

will be output more than once, and if some pair of �nal tasks is not ordered, then the

eigenvalues output will not be in sorted order. Hence, it is necessary for the �nal tasks to

form an ordered disjoint index cover. tu
It is easy to verify that Algorithm Ser Bisec satis�es the su�cient conditions of The-

orem 7.1. Note that the eigenvalues output will be correct if the �nal tasks form an index

cover.

7.2 Further Proofs

We now use the above characterization of correct bisection algorithms to prove the correct-

ness of the parallel algorithms given in Section 4.4

Proof of Theorems 4.2 and 4.3 The initial interval (�(i); �(i)] computed by each pro-

cessor is such that �(i) � �(i). Also �(i) = �(i + 1), n�(i) = n�(i+1) for i = 0; : : : ; p � 2,

�(0) = gl, n�(0) = 0, �(p� 1) = gu and n�(p�1) = n. Thus, the initial tasks that are input

to Algorithm Ser Bisec on all p processors, (�(i),�(i),n�(i),n�(i),I
�(i)
�(i)), form an ordered

index cover.

In algorithm Par AllEig1, �(i) � �(i) implies that n�(i) � n�(i) if FloatingCount(x)

is monotonic. By the way in which processor 0 computes these quantities, n�(i) � n�(i) in

algorithm Par AllEig2. Thus, the index cover produced by both the above algorithms is

disjoint.
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The correctness of algorithm Ser Bisec implies that all the �nal tasks form an ordered

disjoint index cover, and hence proves the correctness of algorithms Par AllEig1 and

Par AllEig2 (by theorem 7.1). tu

Proof of Theorem 4.4 We consider the initial tasks input to Algorithm Ser Bisec on

each processor. We �rst observe that �(0) = gl, n�(0) = 0, and �(p� 1) = gu, n�(p�1) = n.

For i = 0; : : : ; p � 2, it can be seen that n�(i) = n�(i+1). Also, �(i) = 
(i � 1) � �(i),

and n�(i) � n�(i) for i = 0; : : : ; p � 1. This is because FloatingCount(x) is forced to

be monotonic in function Find Init Task. Thus �(i) is no smaller than �(i), which is

communicated by processor i� 1. Thus, all the initial tasks input to Algorithm Ser Bisec

form a disjoint index cover. It can also be checked that this index cover is ordered. The

above statements rely on the assumption that identical 
oating point operations on di�erent

processors yield bitwise identical results (see Assumption 1). Hence by the correctness of

Algorithm Ser Bisec, Algorithm Par AllEig3 is correct. tu

7.3 A Family of Correct Parallel Bisection Implementations

We now prove the correctness of a family of bisection algorithms F . Every algorithm in this

family starts out with one task which covers the user index set U . All tasks are obtained by

re�ning existing tasks in the task set. A task T = (�; �; n�; n�; O) with � � � is removed

from the task set and is re�ned to form the k subtasks (�1; �2; n�1 ; n�2; O1); : : : ;(�k,�k+1,

n�k , n�k+1 ,Ok), where �0 = �, �k+1 = �, �i � �i+1 and n�i � n�i+1 , for i = 1; : : : ; k.

Furthermore, [k

i=1Oi = O, and Oi = I
n�i+1
n�i

\ O, for i = 1; : : : ; k. Note that a task may

be re�ned by doing k-way multisection or by a single iteration of a fast root �nder, such

as Newton's or Laguerre's iteration. These subtasks are now added to the task set(some

of them being marked �nal and not further re�ned). The tasks in the task set may be

processed by one or more processors. By the manner in which the tasks are re�ned, it is

easy to see that at each step of the algorithm, the tasks in the task set form an ordered

disjoint index cover. In particular, the �nal tasks form an ordered disjoint index cover.

Hence, using Theorem 7.1 we get :

Theorem 7.2 Every bisection algorithm from the family F is correct if Assumption 1 holds.

Algorithms Ser Bisec and Par AllEig1 are easily seen to belong to the above family.

Algorithm Ser Bisec may be modi�ed simply to yield a parallel algorithm, where all the

enqueuing and dequeing of tasks is done from a global Worklist that is distributed across

all the processors. Such an algorithm has been implemented on the CM-5 [13] | the

work is initially partitioned among the processors (as in algorithms Par AllEig1 and

Par AllEig3), and load imbalance is reduced by enqueuing and dequeing tasks from

other processors. This algorithm has been observed to give good performance even when

the initial partitioning of work is not good. Such an algorithm also belongs to the family

F , and hence is correct .
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8 Practical Implementation Issues

In section 5.3, we introduced the IEEE routine (Algorithm 4) which has no explicit tests

and branches in the inner loop. However, there are some practical issues we need to con-

sider. In this section, we will brie
y discuss three topics: SignBit, division by zero and

over/under
ow.

� SignBit.

An acceptable way to compute SignBit(d) in Fortran would be

SignBit(d) = 0:5� SIGN(0:5; d)

except that we need not a REAL number but an INTEGER to add to Count, so extra

time would have to be spent upon REAL-to-INTEGER conversion. In the language

C, the expression \(d < 0:0)" could be used in place of \SignBit(d)". However, both

of these expedients produce SignBit(�0:0) = 0, and that can cause function Count(x)

to malfunction on a few aberrant computer designs.

However, if we do some preprocessing work, like ai = ai + 0, before entering the

function Count(x), then all the di's will never become �0 no matter whether by

exact cancellation or under
ow, on any commercially signi�cant computer regardless

of whether it conforms to IEEE standard 754 or 854 for Floating-PointArithmetic.

But on machines that almost conform to such a standard, departing from it only

in that they may force under
owed subtractions to �0:0, function Count requires

that SignBit(�0:0) = 1 in order to account properly for the sign of �1 produced

subsequently by division by �0:0. On such computers SignBit must be implemented

in one of the following ways, which are optional for other computers.

IEEE Standards 754 & 854 recommend that conforming computers provide a function

CopySign which we may use safely in place of Fortran's SIGN function to implement

SignBit(d) = 0:5� CopySign(0:5; d):

Through an unfortunate accident, the arguments of CopySign have been reversed on

Apple computers, which otherwise conform conscientiously to IEEE 754; they require

SignBit(d) = 0:5� CopySign(d; 0:5).

Hardly any other computer's compilers' libraries o�er CopySign.

All computers can compute SignBit(d) quickly by shifting the sign bit of d logically

into the rightmost bit position of an integer register leaving zeros in all the other bits.

Equally good is a twos-complement arithmetic right shift that �lls the register with

copies of the sign bit, thereby producing �SignBit(d). Can either of these shifts be

expressed in a higher-level language in such a way as will achieve the desired e�ect on

every computer? Two obstacles get in the way.

The �rst obstacle is a disparity of widths. The INTEGER variables Count and n are

likely to be 2 or 4 bytes wide. (The algorithm for Count(x) can cope with matrices T

of as big a dimension n as memory capacity allows.) The REAL variable d may be 4

bytes wide but is most likely 8. INTEGERs 8 bytes wide are not in common use, so d
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# of Bytes Fortran declarations C declaration2

4 REAL, SINGLE PRECISION, REAL*4 
oat

8 DOUBLE PRECISON, REAL*8 double

10 EXTENDED, TEMPREAL, REAL*10 long double

Table 10: Width of real variable

is probably wider than the widest INTEGERs supported by the compiler. Therefore

the leading(leftmost) 2 or 4 bytes of d must be �rst located and then extracted as an

integer before the shift. Most computers, with separate registers for INTEGERs and

REALs, must �rst store d in memory and then reload it into an integer register.

Unfortunately, di�erent computers order the bytes of d di�erently. Motorola 68040s

give d and the byte with its sign the same address. Intel 486s must add ( (width of d

) �1 ) to the address of d to �nd the byte with d's sign; the width of d in bytes can

be found in table 9.

MIPS microprocessors can match either of the �rst two above. (Who gets to choose?)

DEC VAXs do something a little bit di�erent again. These diverse byte orderings con-

stitute a second obstacle impeding e�cient and portable programming of the SignBit

function.

Both obstacles can be overcome to a degree by Conditional Compilation in C using

#de�ne and #ifdef commands in its preprocessor to �nd out whether the computer

to which the program is being compiled belongs to a previously recognized family

for which an e�cient sequence of instructions has been prepared. This expedient

fails to cope with new computers whose C compilers proclaim conformity with all

applicable standards but whose arithmetic properties and memory-register mappings

were unknown at the time the program for Count(x) was promulgated. A better

solution to this problem is to include appropriately de�ned CopySign functions in

language standards; CopySign should reveal the sign of �0:0 on a computer whose

arithmetic respects it, and hide that sign on a computer whose arithmetic ignores

it, and return both REAL and INTEGER values according to the type of its �rst

argument.

� Division by Zero

IEEE 754 & 854 require by default ( unless the programmer explicitly requests other-

wise ) that \nonzero/zero" quotients be computed as appropriately signed in�nities.

Of course, \�nite/in�nite" quotients must produce appropriately signed zeros. Func-

tion IEEE Count(x) works perfectly under these conventions; that is why its program

contains no test to avert division by zero. A test like that is necessary on computers

that can not tolerate division by zero, but wastes time because division by zero is

unlikely to occur by accident as often as once in a million passes around the inner

loop, and is certain to be noticed by the computer if it does occur.

A little known alternative has long existed for users of proprietary Fortran compilers on

IBM /370s and DECVAXs; their programsmay request that \nonzero/zero" quotients
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deliver the computer's biggest 
oating-point magnitude with the numerator's sign.

This works almost as well as 1 would in the program above for Count(x).

Unfortunately, most computers that do conform to IEEE 754/854 treat division by

zero no better than nonconforming computers. The trouble is linguistic; language de-

signers and compiler writers have yet to agree upon standard ways for programmers to

request IEEE standards' default in�nities or IBM's ot DEC's biggest magnitude. In-

stead, division by zero is left unde�ned or de�ned as an error; either way, computation

stops.

� Over/Under
ow

Computers that abort computation when over
ow occurs present the same problems

as those that stop on division by zero. Once again, ways exist to tell any commercially

signi�cant computer to replace every over
ow by either1 or the biggest �nite 
oating-

point number with an appropriate sign, but no higher level programming language

provides a single way that works for every computer.

Inattention to troublesome details by designers and implementors of programming lan-

guages creates headaches for programmers would-be portable (reusable) programs. The

details in question here are the CopySign function and humane exception-handling. To

get around the lack of adequate language standards, programmers must avoid those de-

tails by inserting extra tests and branches into their programs. The annoyance at having

to complicate so simple a program is compounded by the performance penalty incurred

by data-dependent branches taken rarely, especially on massively parallel and vectorized

computers.

9 Conclusions

We have proved necessary and su�cient conditions for a bisection algorithm to be correct .

We have also seen examples of natural serial and parallel implementations that are incorrect ,

the errors arising from a nonmonotonic FloatingCount(x) and/or roundo�. Thus every

bisection implementation must be carefully analyzed and proven to satisfy the su�cient

conditions for correctness.
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