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Abstract

In this paper, we make e�cient use of pipelining on LU decomposition with pivoting and

a column-scattered data decomposition to derive precise variations of the computational com-

plexities. We then compare these results with experiments on the Intel iPSC/860 and Paragon

machines.

1 Introduction

This paper presents an analytical estimation of the LU factorization algorithm on a distributed-

memory, message-passing multiprocessor. We focus on column-scattered data distribution and the

columnwise kji, or \right looking," elimination method with pivoting.

Our procedure comprises two parts. First, we study the algorithm with synchronous commu-

nication and compare the execution times for a complete network and a ring topology. Second, we

introduce the possibility of overlapping the communication by the computation (i.e., asynchronous
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for k = 0 to n� 2

Scale: execute task Sk

for all columns j � k + 1

Update: execute task Ukj

endfor

endfor

Figure 1: Sequential \right looking" algorithm for Gaussian elimination

communication). Using our earlier analysis, we derive the equivalent of the pipeline ring algorithm

and the broadcast algorithm for any complex topology.

In each part, we introduce di�erent cases depending on the target machine parameters that

correspond to di�erent critical paths of the execution. The analytical complexities are corroborated

by experiments on Intel iPSC/860 and Paragon machines.

2 Gaussian Elimination and LU decomposition

Gaussian elimination can be used in the solution of a system of equations Ax = b. This process

transforms the matrix A in a triangular form with an accompanying update of the right-hand side,

so that the solution of the system Ax = b is straightforward by a triangular solve.

LU factorization uses the same algorithm and converts the matrix A in two matrices L and U ,

where A = LU and L and U are lower and upper triangular, respectively. Hence, many systems

can be solved by two triangular solves, Ly = b and Ux = y.

There are many versions of the LU algorithm depending on the way the three internal loops

are nested [Rob90, GL89]. We study the kji, or \right looking," form, which is most suitable for

parallel implementation (since the matrix can be distributed by columns, the pivoting is done easily

inside each processor without communication [PBKP92]).

� Task Sk comprises the pivot search, interchange, and scaling of the elimination column.

� Task Ukj comprises the interchange of pivot elements and the updating of the remaining

column j.

(Note: the multipliers, L, are saved in the array A in place of the elements that would become

zero in task Sk.)

3 Parallel kjiVersion of the LU Algorithmwith Column-scattered

Data Distribution

Parallel versions of the LU algorithm are described in [Saa86a, Saa86b, RTV89, Rob90]. Depending

on the topology, the di�erence between the methods is the manner in which the elimination column

is sent to all the processors. Two well-known methods for broadcast are the minimum spanning

tree broadcast and the pipeline ring (unidirectional broadcast along the ring) algorithms [Saa86a,

RTV89, Rob90].
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Task Sk Task Ukj

pivot(k; ipvt(k))

interchange(k; ipvt(k)) interchange(k; ipvt(k))

c = 1
akk

for i = k + 1 to n � 1

for i = k + 1 to n� 1 aij = aij � aik � akj
aik = aik � c endfor

endfor

Figure 2: Algorithms for the tasks Sk and Ukj of Gaussian elimination

me = my id()

for k = 0 to n� 2

if (alloc(k) == me) /* I own pivot col. */

Sk /* scale pivot col. */

endif

Ck(me) /* pipeline broadcast of pivot col. k */

for all j � k and alloc(j) == i

Ukj(me) /* update internal col. j */

endfor

endfor

Figure 3: Parallel pipeline broadcast LU decomposition algorithm
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Task Ck(me)

if (alloc(k) == me)

message := concatenate(ipvt(k); A[k; k+ 1 : n � 1])

endif

pipeline broadcast(me;message; n� k)

Figure 4: Algorithm for the task Ck of Gaussian elimination

In the following parallel algorithm, we assume that the data are equally distributed in a wrapped

manner along a virtual ring. Thus, with our algorithm, the same number of columns is assigned

to each processor; and, as the column distribution is wrapped, a given processor has a scattered

collection of columns. This approach ensures a good balance of the computational load between

the processors.

For the parallel kji LU decomposition, we selected the following set of computational tasks:

Sk is the scaling of the pivot column, Ukj(me) is the update of the internal columns (scattered

decomposition) of processor me (0 � me < p), and Ck(me) is the communication broadcast of

the column k on processor me using message passing (note that Ck(me) can be sends, receive and

sends, or a receive call, depending of the broadcast strategy and me).

Thus, the LU decomposition of an n�n matrix on p processors is (n�1) tasks Sj , and assuming

n and p are even, (np� p2

2
+ p

2
) tasks Cj and (n

2

2
+ n

2
) tasks Ukj .

4 Models

Our target machines are distributed-memory parallel multicomputers. We assume that the p pro-

cessors (0..p�1) are identical and that the same program runs (at the same time) on each processor.

The communication network topology is assumed to be a fully connected network or a ring; the

results for the two con�gurations will be compared.

In the �rst part, we assume that the communication protocol is synchronous. In the second

part, on the other hand, we assume that the communication protocol is asynchronous; thus, each

processor has independent units for communication (which manage direct-memory access) and

computation (CPU). One can therefore perform in parallel on the same node at least unidirectional

data transfers on each link (half duplex and two-port assumptions) and arithmetic operations.

The time needed to communicate a message of size m between two neighboring processors is

modeled as the startup time �com plus the lengthm times the throughput �com of the communication

channel [SS89]. We assume that the messages are sent in one block.

For arithmetic operations, the arithmetic logical unit of the CPU is assumed to be superscalar.

We use a linear model (�+m�) for its performance on vector of sizem. In all our experiments we use

64-bit double precision 
oating-point arithmetic. This model corresponds roughly to the currently

available commercial machines, such as the Intel iPSC/860 [Dun90] and Paragon [EK93, Int93].

In the remainder of this paper we call �scal and �scal the parameters for the cost of the inversion

of the pivot element, the search for the maximum of the vector, the interchange of these two

elements, and the scale of the vector by a scalar using the Level 1 BLAS DSCAL function [DCDH90].

We de�ne �upd and �upd as the parameters for the cost of the pivot interchanges and the multiply

and add operations on the vector (DAXPY function of the Level 1 BLAS).
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Machine �upd(�sec=flop) �scal(�sec=flop) �com(�sec=double)

iPSC/860 0.097 0.57 5

Paragon 0.058 0.32 2

Table 1: Values of the machine parameters for the di�erent Tasks.

These parameters of the target machine are determined experimentally with the results shown

in Figures 5 and 6. The corresponding asymptotical values of the � parameters are given in the

table of Figure 1. Notice that the pivot search and interchange are costly (taskS is far from the

peak performance of the DSCAL function) and that the target machine presents its best performance

for vector of size around 1 K for the iPSC/860 and 1.5 K for the Paragon (probably because of

memory and cache management).

In this paper, we study the critical path of the LU decomposition algorithm with column-

scattered data distribution. For our path analysis, we use the notation of [LKK83], where a task

is an indivisible unit of computational activity and the precedence binary relation between tasks

is denoted by �. This relation is nonre
exive, antisymmetric, and transitive. If we let A and

B belong to the set of tasks, then A � B means that task A must complete execution before B

commences execution.

5 Related Work

Numerous methods have been proposed for LU factorization (see [PBKP92] and the related works of

[Saa86b, Cap87, CTV87, RT88, CRT89, DO90, Rob90]). For example, [CG87] advocates partial piv-

oting and load balancing in rowwise methods with a straightforward parallel triangular solve algo-

rithm, but [LC89] shows that the parallel triangular solve algorithm can have the same performance

with columnwise storage. In [RTV89], the panel-wrapped column-distribution method is proved

to be e�cient because it leads to a good load-balancing between computation and communication;

and, in practice, this method has given good results with blocked computations [RT88, DO90].

Blockwise distribution is introduced in [CDW92], and [BDL91, DGW92] show that the communi-

cation can be reduced by using a block-wrapped data decomposition of the data.

To understand the e�ectiveness of these various methods and to be able to predict perfor-

mance on a target machine, we must carry out an analytical analysis. In this paper, we focus on

the performance of column-decomposition algorithms. We show that a nearly complete overlap

of communications can be achieved. Thus, we obtain quasi-optimal performance with a simple

column-scattered data distribution. The overlapping strategy can easily be extended to blockwise

algorithms.

6 Synchronous Communication

We begin with an analysis of the algorithm with no overlapping. Two con�gurations are compared:

a complete network and a ring topology.
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6.1 Analysis of the Pipeline algorithm on the Complete Network (PC algo-

rithme)

With our model when no overlap is allowed, the critical path of LU decomposition is given by

the precedence constraints of the sequential execution and is described by the precedence graph of

Figure 7, where the edges of the path represent the relation � between tasks.

The critical path follows the following schema (where k represents the remaining local columns

to update):

S0 � C0(0) � C0(1) � U0;k(1) � S1 � C1(1) � C1(2) � U1;k(2) � : : : � Sn�2 � Cn�2(p� 2) �

Cn�2(p� 1) � Un�2(p� 1)

Following this critical path, we compute the execution time analytically.

Proposition 1 The total parallel execution time of the PC algorithm with no overlap of commu-

nication and computation is given by Equation 1.

T
complete
pipe = T c

scal + T c
com + T c

upd; (1)

where

T c
scal =

n�2X
i=0

(�scal + (n� i� 1)�scal) = (n� 1)�scal +
n(n� 1)

2
�scal (2)

T c
com =

n�2X
i=0

(�com + (n� i)�com) = (n� 1)�com +
(n+ 2)(n� 1)

2
�com (3)

T c
upd =

n
p
�1X

j=0

"
pX

k=1

�
(
n

p
� j)(n� (j(p� 1) + k))�upd + �upd

�
� (�upd +

n2

p
�upd)

#

= (n� 1)�upd +

 
n3

3p
+

n2

4
�
3n2

4p
+

n

4
�

np

12

!
�upd

Thus,

T
complete
pipe = (n� 1)(�upd + �scal + �com) +

n(n � 1)

2
(�scal + �com)

+

 
n3

3p
+

n2

4
�

3n2

4p
+

n

4
�

np

12

!
�upd (4)

Note that on other topologies, the critical path must follow the alloc decomposition of the

Cj(alloc(j)) and Uj(alloc(j)) between the Sj and Sj+1 tasks.

6.2 Analysis of the Pipeline algorithm on the Ring (PR algorithm)

Figure 7 shows the critical path of the pipeline LU algorithm corresponding to the ring topology

on the left. This topology introduces idle times because of the precedence edges between tasks

Cj(i�1) (send) and Cj(i) (receive), which are now executed one by one from processor to processor.

Depending on the machine parameters, these dependencies introduce various idle periods of time

in the critical path. If we examine the \zoom" in Figures 8 and 9, we can distinguish two cases:

when Tscal(k) > Tcom(k�2) (case 1) and its inverse (case 2):
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Scale Update Communication

P0 P1 P2P3 P0P1 P2 P3

Figure 7: Time diagram of synchronous algorithms (left on the ring, right on the complete network)
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Scale Update Communication

Figure 8: Zoom on the idle times in the critical path (case 1)

At step k, we can determine into which case the algorithm fell:

Tscal(k) > Tcom(k�2)

�scal + (n� k + 1)�scal > �com + (n� k + 2)�com

k > or <
�com � �scal + (n+ 2)�com � (n� 1)�scal

�com � �scal
(5)

depending on whether the sign of �com � �scal is > 0 or < 0. Generally (and it is true with our

target machines), �com is at least one order bigger than �scal. Thus the preceding formula 5 can be

estimated as follows:

k > (n+ 2) + o(1);

which is never true. Hence, on most machines the complexity analysis will correspond to case 2.

The execution time of the PR algorithm is then computed following the critical path and taking

into account the idle times (note that we do not �nd the same total time of [PBKP92] since we

take into account the idle times introduced by the pipeline strategy). As the pivot column needs

to be transmitted to the next processor (which holds the next column with our scattered data

distribution), the Tcom time is increased by a factor of two. The idle time Tidle can be expressed as

a function of Tscal and Tcom .

Proposition 2 The total cost of the PR algorithm with no overlap of communication and compu-

tation is given by Equation 6.

T
ring
pipe = T r

scal + T r
com + T r

upd + T r
idle; (6)

where

T r
scal = T c

scal (7)
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IDLE 1

IDLE 2

Scale Update Communication

Figure 9: Zoom on the idle times in the critical path (case 2)

T r
com =

n�2X
i=0

2(�com + (n� i)�com) = 2 � T c
com

T r
upd = T c

upd (8)

T r
idle =

n�3X
i=1

�
(Ci�1

� Si)+ + Ci�1
� Ci

�

=
n�3X
i=1

�
(�com + (n� i)�com � (�scal + (n� i� 1)�scal))

+ + �com
�

=

�
(n� 3) � (�com + �scal) +

(n+ 2)(n� 3)

2
�com �

n(n� 3)

2
�scal

�+
+(n� 3)�com (9)

where (x)+ is the function which return x if x > 0 and 0 otherwise. Thus, we obtain

Case 1 (Tscal(k) > Tcom(k�2)) :

T
ring
pipe = T

complete
pipe + (n� 1)�com +

n(n� 1)

2
�com (10)

Case 2: (Tscal(k) � Tcom(k�2)) :
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T
ring
pipe = T

complete
pipe + (2n� 4)�com + (n2 � n� 3)�com

�(n� 3)�scal �
n(n� 3)

2
�scal

= T
ring
pipe (case1) + (n� 3)�com + (n2=2 + 3n=2� 3)�com

�(n� 3)�scal �
n(n� 3)

2
�scal (11)

7 Asynchronous Communications

In this section, we present a strategy for improving the execution times, based on the reduction of

the communication time by its partial overlap with computation. This overlap is realized inside a

processor; it does not correspond to the overlap between processors steps described in [PBKP92],

which is the e�ect of pipeline algorithms.

We will see that the execution time of the complete network can be obtained with the pipeline

algorithm on a ring. Hence, on any complex topology (including a ring, complete network, hyper-

cube, and mesh), the execution time will remain the same.

7.1 Complete Network

Figure 10 shows that the critical path on the complete network is not changed while using asyn-

chronous communications. Although only a slight improvement occurs at the beginning of the task

Ukk on the pivot processor, the execution time of the critical path is not a�ected. This is because

the task C must wait for the receive to complete before the execution of the U tasks.

Proposition 3 The total cost of the PC algorithm with asynchronous sends (overlap of communi-

cation and computation) is given by Equation 12.

T
complete
pipe�async = T c

scal + T c
com + T c

upd; (12)

where T c
scal; T

c
com, and T c

upd are the same as in the synchronous section.

7.2 Ring Topology

When asynchronous communications are available, the processor holding the next pivot column

is not delayed by the sending of the current pivot column. Thus, it starts its U tasks as soon as

possible.

As the data are distributed equally (see Section 4), the tasks U are nearly of the same duration;

thus, the ring communications cannot perturb the critical path execution time (see Figure 11).

As shown in Figure 10, we follow the critical path to determine the total duration of the

algorithm execution. It leads to the following results.

Proposition 4 The total cost of the PR algorithm with asynchronous sends (overlap of communi-

cation and computation) is given by Equation 13.

T
ring
pipe;asynchrone = T r

scal + T r
com + T r

upd; (13)
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P0 P1 P2P3 P0P1 P2 P3

Scale Update Communication

Figure 10: Time diagram of nonblocking algorithms (ring on the left, complete network on the

right)

Scale Update Communication

Figure 11: Zoom on the critical path
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Figure 12: Intel iPSC/860 execution timings and complexity curves as a function of the matrix size

where T r
scal and T r

upd are the same as in the synchronous case and T r
com is half of the synchronous

one.

Thus,

T
ring
pipe;asynchrone = T

complete
pipe;asynchrone (14)

We assume that the T r
com << T r

upd, which is true since small vector sizes n because T r
com = O(n2)

while T r
upd = O(n3).

It is remarkable that, from an analytical point of view, as soon as the targeted architecture is

able to run asynchronous send communications, the classical pipeline LU decomposition on a ring

has the best execution time on any topology.

8 Experiments

The experiments were performed on the Intel machines. On the iPSC/860, we used 2, 4, 8 and

16 processors with a ring embedded in the hypercube. On the Paragon, we used up to 64 nodes

and a virtual ring. Obviously, we were not able to conduct experiments on a complete network of

processors.

To have real synchronous sends, we used the sendrecv function (from the vendor librairy),

which makes possible to acknowledgement the reception of the message reception.

As shown by the complexity analysis, the asynchronous methods perform better than the syn-

chronous, and the di�erence increases slightly with the matrix size (Figures 12 and 13). From the

benchmarks described in Figures 6 and 5, we determined the parameters of our complexity analysis

(see Table 1) and plotted the corresponding complexity curves with the experiments.

They nicely corroborated the timing curves on the iPSC/860 machine (see Figure 12). On one

hand, the asynchronous theoretical timings are slightly better than the experiment and we think

this is due to the overhead of the program management and the setup of the asynchronous calls.

On the other hand, the synchronous theoretical timings are slightly worse than the experiment,
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Figure 13: Intel Paragon execution timings and complexity curves as a function of the matrix size

probably because of an overlap between communication and idle time resulting of the successive

communication calls (an example of such an e�ect for spanning binomial tree braodcast in hypercube

is studied in [DFT93]).

The results were less accurate on the Paragon machine, because we were using version 1.1 of

the multitasking operating system. For small machine sizes (up to 8 processors), the theoretical

curves are somewhat pessimistic, but they are very close to the experimental ones and perfect for

the 16-node experiments (see Figure 13). For bigger machine sizes, the operating system plays a

more important role while managing the communications; thus, the theoretical predictions are far

more optimistic.

We believe, however, that such analysis can predict the behavior of the algorithm on stable

machines for any number of processors, giving a timing interval in which the experimental data

will �t.

With the assembly-coded Level 1 BLAS routines, the total performance is in the range of

our kernel tests (see Section 4). The maximum performance obtained while decomposing a 2K

matrix with 8 processors is 64 M
ops on the iPSC and 136 M
ops on the Paragon (representing,

respectively, 8 and 17 M
ops per processor). Figure 14 shows the timing results for our algorithm

with the ring topology in the asynchronous case for the Paragon machine with up to 64 nodes.

Note that because we are not using a blocked version of the LU decomposition, we not could

use the assembly-coded Level 3 BLAS routines and reach the performance of Choi et al. [CDW92].

9 Conclusion and Future Work

We have described an approach for analyzing the complexity of the parallel LU decomposition

with a scattered-column data distribution in both synchronous and asynchronous communication

protocols cases. We have presented a complexity analysis for each algorithm. In addition, we have

described experiments to determine the values of the target machine parameters. We thus have a

tool that can be used for predicting the execution time.
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We have showed that in the case of synchronous communications, idle times have to be taken

into account in the ring topology complexity analysis. Furthermore, these idle periods are increasing

with the communication/computation elementary times ratio. On the other hand, in the case of

asynchronous communications, we have showed that no idle time is introduced by the topology

restriction to the ring.

Our focus has been on complete networks and on ring topologies. The analysis can be extended,

however, to grid topologies with scattered block data decomposition.

Our analytical analysis has been corroborated by experiments on the Intel iPSC/860 and

Paragon machines. Our experimental results also indicate that our method is e�cient: we achieved

0.42 G
ops on the iPSC860 and 0.47 G
ops on the Paragon for a 7K matrix on 64 processors,

compared with 1.34 G
ops of the ScaLAPACK implementation of the LU decomposition in the

LINPACK benchmark of the iPSC860 [DGW92].
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