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Abstract

Polynomial iterative methods, such as methods of the conjugate gradient type,

involve a starting vector, a right hand side vector, a coe�cient matrix, possibly a

preconditioning matrix, and for methods based on conjugacy, an inner product.

In this paper, we give a rigorous de�nition of vector sequences that are generated

by polynomial methods, and we characterize those methods in terms of the

above-mentioned elements.

1 Introduction

We start by de�ning polynomial iterative methods.

De�nition 1 A polynomial iterative method is a sequence of vectors fxigi�1,

denoted by a 4-tuple hf�igi�1; A; x1; fi where x1, f are vectors in Rn, A is an

n� n matrix, and the �i are polynomials with deg(�i) = i � 1; the sequence is

de�ned by

xi+1 � x1 = �i(A)fAx1 � fg: (1)

Next we will de�ne polynomial sequences independent of the particular choices

for A, f�ig, and f , but only dependent on a solution vector.

�
. This work was supported by DARPA under contract number DAAL03-91-C-0047

1



De�nition 2 A sequence fxigi�1 is called a polynomial sequence for the vec-

tor �x if it is a polynomial method hf�igi�1; A; x1; fi, and A and f are such that

A�x = f . The vector �x is called the solution vector of the sequence.

Such methods can be motivated informally from the following observations. First

of all

r1 = Ax1 � f ) �x = A�1f = x1 � A�1r1:

Then, there is a polynomial � such that �(A) = 0, and without loss of generality

we can write �(x) = 1 + x�(x) with � an inhomogenous polynomial. Then

A�1 = ��(A) so �x� x1 = �(A)r1:

Polynomial iterative methods then construct subsequent polynomials than in

some sense approximate this polynomial �.

Lemma 1 If X is a polynomial sequence for �x and B is an invertible matrix,

then BX is a polynomial sequence for B�x, speci�cally, if X is hf�igi�1; A; x1; fi

then BX is hf�igi�1; BAB
�1; Bx1; Bfi.

Proof. This follows from

Bxi+1 �Bx1 = �i(BAB
�1)f(BAB�1)Bx1 � Bfg:

�

2 Tools

In this section we will develop some tools that will facilitate further presentation

and analysis.

First of all, we will often abbreviate vector sequences as a matrix:

X = (x1; x2; : : :):

Next we introduce the `left-shift' operator J for sequences:

J = (�i;j+1) =

0
BB@

0

1 0

1 0
.. .

. . .

1
CCA

so that for sequences X and Y the statement Y = XJ implies yi = xi+1.

Also, Krylov sequences yi+1 = Ayi can conveniently be denoted as AY = Y J .

Furthermore, we introduce the matrix

2



E1 =

0
@
1 : : :

0 : : :
...

1
A

which picks the �rst element of a sequence: if Y = XE1 then yi = x1 for all i.

The matrices J and E1 are convenient in talking about updating a sequence:

Y = X(J � I) , yi = xi+1 � xi

and

Y = X(J � E1) , yi = xi+1 � x1:

The relation between J � I and J � E1 is as follows:

J �E1 = (J � I)(I � J t)�1

J � I = (J � E1)(I � J t)

The following auxiliary lemma shows that constructing a sequence by

xi+1 � x1 =
X
j�i

kjcji

is equivalent to updating it as

xi+1 � xi =
X
j�i

kj~cji:

Lemma 2 If X and K are sequences, U is upper triangular, then

X(J � I) = KU i� X(J � E1) = KV

for some upper triangular matrix V .

Proof: Choose V = U (I � J t). �

The right hand side in (1) can be described di�erently in terms of a Krylov

sequence.

Lemma 3 A sequence Y is generated by applying successive polynomials to an

initial vector k1 as

yi = �i(A)k1; degree(�i) = i � 1;

i� there is an upper triangular matrix U such that

Y = KU

whereK is the Krylov sequence ki+1 = Aki. The polynomials�i have coe�cients

in the i-th column of U ; speci�cally,
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�i(x) = uiix
i�1 + � � �+ u2ix+ u1i:

Proof. See [1]. �

Occasionally we will use the vector e = (1; : : :)t; for instance, we can denote

residuals ri = Axi � f as a sequence by R = AX � fet.

The subject of Hessenberg matrices also comes up in the discussion of poly-

nomial iterative methods. The following auxiliary lemma states the connection

between Hessenberg matrices and Krylov sequences.

Lemma 4 If AR = RH and r1 k k1, then H is an irreducible upper Hessenberg

matrix i� there is a nonsingular upper triangular matrix U such that R = KU ,

with K the Krylov sequence satisfying AK = KJ ; U and H are related by H =

U�1JU .

Proof. See [1]. �

We will have occasion to use the following lemmas characterizing Hessenberg

matrices.

Lemma 5 Let U be a non-singular upper triangular matrix and H = U�1JU .

Then the �rst row of U is constant i� H has zero column sums.

Proof. With the zero vector and the all-ones vector e we can formulate the zero

column sums as etH = 0t. Then

etH = etU�1JU = 0t , etU�1J = 0t

, etU�1 = (�; 0; 0; : : :) some nonzero �

, ��1et = (1; 0; 0; : : :)U

which proves the statement. �

Lemma 6 Let H be a Hessenberg matrix that allows factorization without piv-

oting toH = (I�L)U formwhere L contains a single nonzero lower subdiagonal.

Then the column sums of H are zero i� L = J .

Proof. Since the diagonal elements of U are nonzero, we have

xtU = 0t , xt = 0t:

Expressing the zero column sums of H as etH = 0t, we then �nd
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etH = 0t , et(I � L) = 0t , L = J

which concludes the proof. �

3 Characterization

Using the results of the previous section, we can now give some equivalent

de�nitions of polynomial iterative methods.

Lemma 7 Let X be a sequence, and let the matrix A and the vector f be

given. De�ne k1 = Ax1� f and let K be the Krylov sequence AK = KJ . Then

the following statements are equivalent.

� There are polynomials f�igi�1 such that

X(J � I) = (�1(A)k1; �2(A)k1; : : :):

� There are polynomials f�igi�1 such that

X(J �E1) = (�1(A)k1; �2(A)k1; : : :):

� There is an upper triangular matrix U such that

X(J � I) = KU:

� There is an upper triangular matrix U such that

X(J �E1) = KU:

The above lemma states that polynomial iterative methods use combinations of

a Krylov sequence for updating. The following lemma shows that the residuals of

the iterative method are then themselves combinations of this Krylov sequence;

there is a normalization condition on these combinations.

Lemma 8 Let a matrix A a vector f and a sequence X be given. Let R be

the sequence of residuals R = AX � fet, and let K be the Krylov sequence

satisfying AK = KJ , k1 = r1
1. Then there are polynomials f�igi�1 such that

X is generated by a polynomial iterative method hf�igi�1; A; x1; fi, i� there is

an upper triangular matrix ~U such that R = K ~U , with ~u1j � 1.

Proof. Suppose X is generated by a polynomial iterative method hf�igi�1; A;

x1; fi, and by lemma 7 write the generating equation as X(J � I) = KU with

U an upper triangular matrix. From R(J � I) = AKU = KJU it follows that

R(J � I)J t = K �U where �ui+1j+1 = uij and �u1j = �ui1 = 0. Since r1 = k1, we

can extend �U to Û and (J�I)J t to (I�J t) by putting a 1 in the (1; 1) position.

This gives R(I � J t) = KÛ , or R = K ~U with ~U = Û (I � J t)�1. It is easy to

see that ~U satis�es ~u1j � 1.

1. There is no loss of generality over assuming k1kr1.
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Inspection of this proof shows that all implications can be reversed. �

Combining this lemma and lemma 3 we �nd that there are polynomials associ-

ated with the sequence R of residuals, and the polynomials are normalized at

zero.

Corollary 9 Let A, f , X, R be given as in the previous lemma. Then X is

generated by a polynomial iterative method hf�igi�1; A; x1; fi i� there are poly-

nomials f~�igi�1 satisfying

ri = ~�i(A)r1; deg(~�i) = i � 1; ~�i(0) = 1:

These polynomials are called the residual polynomials.

Proof. Lemma 8 states that the residuals are combinations of the Krylov se-

quence, and it states the condition on the �rst row of the triangular matrix de-

scribing the combinations. Use lemma 3 to translate this to polynomial terms.

�

We shall now characterize all polynomial iterative methods for a given solution

vector, by relating them to the residuals with respect to a given system.

Theorem 1 Let a vector �x and a sequence X be given, and let A and f be such

that A�x = f . De�ne residuals by R = AX � fet, then the following statements

are equivalent:

1. The sequence X is a polynomial method for �x.

2. There are a nonsingular matrix M and Hessenberg matrix H with zero

column sums such that

AMR = RH that is, AMri = hi+1iri+1 + � � �+ h1ir1:

3. There are a nonsingular matrix M and upper triangular matrix U such

that

X(J � I) = MRU; that is, xi+1 � xi =
X
j�i

Mrjuji:

4. There are a sequence P (the `search directions'), a nonsingular matrixM ,

a diagonal matrix D, and a normalized upper triangular matrix U such

that

APD = R(I � J) that is, ri+1 = ri �Apidii;
and

PU =MR that is, pi =Mri �
X
j<i

pjuji:

5. There are a nonsingular matrix M and polynomials f�igi�1 such that

ri = �i(AM )r1; deg(�i) = i � 1; �i(0) = 1:
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Proof. Let X be the speci�c polynomial method hf�igi�1; B; x1; gi with B�x = g.

Since A�x = f , there is a matrix M such that B = MA and g = Mf . If f�igi�1
is the sequence of polynomials of the method, then

xi+1 � xi = �i(B)(Bx1 � g) = �i(MA)(MAx1 �Mf)

=M�i(AM )(Ax1 � f)

,M�1(xi+1 � xi) = �i(AM )(Ax1 � f)

= �i(AM )
�
(AM )(M�1x1) � f

�

Equivalently, we �nd from lemma 3

M�1X(J � I) = K �U (2)

with �U upper triangular, and K the Krylov sequence satisfying

AMK = KJ; k1 = Ax1 � f:

From R = AX � fet = (AM )(M�1X) � fet this is equivalent (see lemma 8)

to the fact that R = K ~U for some upper triangular matrix ~U with �rst row

identical 1. By lemma 5 this is equivalent to AMR = RH with H a Hessenberg

matrix with zero column sums.2 It also follows that X(J � I) = MRU with

U = ~U�1 �U upper triangular.

From lemma 6 we know that H can be factored as (I � J)DU with D diagonal

and U normalized. Introducing P =MRU�1 gives the equivalence of 3 and 4.

For the proof 3) 1, note that

X(J � I) = MRU ) RH = AMR

withH = (J�I)U�1 an upper Hessenberg matrix. It then follows from lemma 4

that R = K ~U with the Krylov sequence K as above. Hence

M�1X(J � I) = K �U

with �U = ~UU . We can �nish now the proof by following the equivalences starting

with equation (2) in reverse.

In order to show the equivalence of 1 and 5, note that by corollary 9, 1 is equiv-

alent to the existence of polynomials f�igi�1 (with degree and normalization as

indicated) such that the residuals MR = BX � get satisfy

Mri = �i(B)(Bx1 � g)

= �i(MA)M (Ax1 � f)

, ri = �i(AM )(Ax1 � f):

�

2. Actually, the lemma only implies that the �rst row of ~U is constant; it is identical 1

since r1 = k1.
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4 Left and right preconditioning

The proof of theorem 1 noted that all systems with A�1f as solution can be writ-

ten as MAx =Mf . The matrixM is commonly called the `left-preconditioner'.

A right preconditioner can be employed as follows. If �x = A�1f , then a polyno-

mial method X = hf�igi�1; AN; x1; fi is a method for N�1x, and we need to

transform the iterates { which was not necessary in the case of a left precondi-

tioner { to obtain a method for the original system.

Speci�cally, we are interested in the sequence NX = fNxigi�1. From lemma 1

we already know that this is again a polynomial method, so by theorem 1 above

it can be characterized by a single left preconditioner, but we will derive this

fact in a second way.

Consider any polynomial method for N�1A�1f , and let residuals be de�ned by

R = ANX � fet. By theorem 1 above, we can compute iterates, residuals, and

search directions by

X(I � J) = PD; ANPD = R(I � J); MR = P (I � U ):

Since X is a method for N�1�x, we introduce the sequences

~X = NX; ~P = NP;

with which we get the method

~X(I � J) = PD; A ~PD = R(I � J); NMR = ~P (I � U ):

We see that the right preconditioner is simply aborbed as part of the total

preconditioner NM . Note also that R = ANX � fet = A ~X � fet, that is,

the residuals of the right preconditioned method are also the residuals of the

sequence for �x.

5 Inner product

It remains to describe the role of the polynomials. From lemma 8 it is clear

that we can equivalently talk about the upper triangular matrix U for which

R = KU , where K is the Krylov sequence generated. There are no a priori

restrictions on the matrix U , but for methods based on conjugacy it is equivalent

to choosing an inner product for orthogonalizing the residuals.

Lemma 10 IfN is a symmetric nonsingularmatrix, it is possible to construct U

such that RtNR is diagonal, where the sequence R is constructed fromR = KU .

Proof. Let Rn, Un be the initial n columns of R, U . Suppose inductively that

Rt
nNRn is diagonal. In order to let rn+1 be N -orthogonal to Rn, we need to

solve the n+ 1-st column, un+1, of U from the overdetermined system
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U t
n
�Nun+1 =

0
@
0
...

0

1
A
9=
;n

where �N is the n � n + 1 primary subblock of N . This determines un+1 up to

scaling. We scale it so that u1;n+1 = 1, so the system to be solved now becomes

�N

0
BB@

0

u2n+1
...

un+1n+1

1
CCA = �N

0
BB@

1

0
...

0

1
CCA :

Now it follows that Rt
nNrn+1 = 0, and by symmetry Rt

n+1NRn+1 is diagonal.

�
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