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Abstract

Polynomial iterative methods, such as methods of the conjugate gradient type,
involve a starting vector, a right hand side vector, a coefficient matrix, possibly a
preconditioning matrix, and for methods based on conjugacy, an inner product.
In this paper, we give a rigorous definition of vector sequences that are generated
by polynomial methods, and we characterize those methods in terms of the
above-mentioned elements.

1  Introduction

We start by defining polynomial iterative methods.

Definition 1 A polynomial iterative method is a sequence of vectors {z;}i>1,
denoted by a 4-tuple ({m;};i>1, A, 1, f) where x1, f are vectors in R", A is an

n x n matrix, and the m; are polynomials with deg(m;) = i <1; the sequence is

defined by
Tipl ST1 = FZ(A){Al‘l C}f} (1)

Next we will define polynomial sequences independent of the particular choices
for A, {m;}, and f, but only dependent on a solution vector.
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Definition 2 A sequence {x;};>1 is called a polynomial sequence for the vec-
tor z if it is a polynomial method ({m; }i>1, A, 21, f), and A and f are such that
Ax = f. The vector z is called the solution vector of the sequence.

Such methods can be motivated informally from the following observations. First

of all
m=Anof=>z=A"f =0 <A .

Then, there is a polynomial ¢ such that ¢(A) = 0, and without loss of generality
we can write ¢(x) = 1 4+ xm(2) with 7 an inhomogenous polynomial. Then

A7l = en(A) SO zor, = m(A)r.
Polynomial iterative methods then construct subsequent polynomials than in

some sense approximate this polynomial 7.

Lemma 1 If X is a polynomial sequence for  and B is an invertible matrix,
then BX is a polynomial sequence for B, specifically, if X is ({m; }i>1, A, x1, f)
then BX is {{mi}i>1, BAB™', Bz, Bf).

Proof. This follows from

Bziyy & Bz = m(BAB™Y{(BAB™')Bz, < Bf}.

2 Tools

In this section we will develop some tools that will facilitate further presentation
and analysis.

First of all, we will often abbreviate vector sequences as a matrix:
X = (1‘1, Lo, .. )
Next we introduce the ‘left-shift’ operator J for sequences:

0

so that for sequences X and Y the statement Y = XJ implies y; = iy1.
Also, Krylov sequences y;41 = Ay; can conveniently be denoted as AY = YJ.
Furthermore, we introduce the matrix



1
E = 0

which picks the first element of a sequence: if Y = X Fy then y; = x; for all i.
The matrices J and FEp are convenient in talking about updating a sequence:
Y=X({JoI) = Yi = Tip1 ST
and
Y=X({J&E) & Ui = @iy Sy
The relation between J <1 and J < E; is as follows:
JeFB = (JehIe)) !
Jel=(JeE) <]

The following auxiliary lemma shows that constructing a sequence by

Tipl ST1 = E k’jCjZ'
i<i

is equivalent to updating it as
Tipl ST = Z k’jéji.
i<i
Lemma 2 If X and K are sequences, U is upper triangular, then
X(J<Il)=FKU iff X(J©FE)=KV

for some upper triangular matrix V.
Proof: Choose V = U (I &J%).

The right hand side in (1) can be described differently in terms of a Krylov
sequence.

Lemma 3 A sequence Y is generated by applying successive polynomials to an
initial vector kq as

yi = mi(A)ky; degree(m;) = i <1,
iff there is an upper triangular matrix U such that

Y =KU

where K is the Krylov sequence k; 1 = Ak;. The polynomialsm; have coeflicients
in the i-th column of U; specifically,



mi(2) = upe' ™t usi A+ g
Proof. See [1]. .

Occasionally we will use the vector e = (1,...)%; for instance, we can denote
residuals r; = Az; < f as a sequence by R = AX & fel.

The subject of Hessenberg matrices also comes up in the discussion of poly-
nomial iterative methods. The following auxiliary lemma states the connection
between Hessenberg matrices and Krylov sequences.

Lemma 4 If AR = RH and rq || k1, then H is an irreducible upper Hessenberg
matrix iff there is a nonsingular upper triangular matrix U such that R = KU,
with K the Krylov sequence satisfying AK = KJ; U and H are related by H =
U-lJu.

Proof. See [1]. .

We will have occasion to use the following lemmas characterizing Hessenberg
matrices.

Lemma 5 Let U be a non-singular upper triangular matrix and H = U~1JU.
Then the first row of U is constant iff H has zero column sums.

Proof. With the zero vector and the all-ones vector ¢ we can formulate the zero
column sums as e! H = 0. Then

eH=eUJU =0 U J=0"
U™ =(a,0,0,...) SOINe Nonzero o
sate = (1,0,0,..)U

which proves the statement. .

Lemma 6 Let H be a Hessenberg matrix that allows factorization without piv-
oting to H = (IL)U form where L contains a single nonzero lower subdiagonal.
Then the column sums of H are zero iff L = J.

Proof. Since the diagonal elements of U are nonzero, we have
2'U =0" <2 =0

Expressing the zero column sums of H as ¢! H = 0, we then find



fH=0oe(lsl)=0<L=J

which concludes the proof. .

3 Characterization

Using the results of the previous section, we can now give some equivalent
definitions of polynomial iterative methods.

Lemma 7 Let X be a sequence, and let the matrix A and the vector f be
given. Define ki = Az < f and let K be the Krylov sequence AK = K.J. Then
the following statements are equivalent.

. There are polynomials {m;};>1 such that
X(J C}I) = (71'1(14)]{71, 7T2(A)k’1, .. )

. There are polynomials {m;};>1 such that
X(J C}El) = (71'1(14)]{71, 7T2(A)k’1, .. )

. There is an upper triangular matrix U such that
X(Jel)=KU.

. There is an upper triangular matrix U such that

X(J ©F) = KU.

The above lemma states that polynomial iterative methods use combinations of
a Krylov sequence for updating. The following lemma shows that the residuals of
the iterative method are then themselves combinations of this Krylov sequence;
there 1s a normalization condition on these combinations.

Lemma 8 Let a matrix A a vector f and a sequence X be given. Let R be
the sequence of residuals B = AX & fe', and let K be the Krylov sequence
satisfying AK = KJ, ki = ri'. Then there are polynomials {71'2'}221 such that
X is generated by a polynomial iterative method ({m;}i>1, A, x1, f), iff there is
an upper triangular matrix U such that R = KU, with uy; = 1.

Proof. Suppose X is generated by a polynomial iterative method ({m;};>1, A,
z1, ), and by lemma 7 write the generating equation as X (J <1I) = KU with
U an upper triangular matrix. From R(J <) = AKU = KJU it follows that
R(J & )Jt = KU where ;41541 = u;j and @1; = @;; = 0. Since rq = ky, we
can extend U to U and (J&I)Jt to (I<J) by putting a 1 in the (1, 1) position.
This gives R(I &J') = KU, or R= KU with U = U(I & JHY7L T is easy to
see that U satisfies u; =1,

1. There is no loss of generality over assuming ki ||r1.



Inspection of this proof shows that all implications can be reversed. .

Combining this lemma and lemma 3 we find that there are polynomials associ-
ated with the sequence R of residuals, and the polynomials are normalized at
zero.

Corollary 9 Let A, f, X, R be given as in the previous lemma. Then X is
generated by a polynomial iterative method ({m;};>1, A, x1, f) iff there are poly-
nomials {7;};>1 satisfying

ri:ﬁ'i(A)rl, deg(ﬁ'i)zi@l, ﬁ'l(O) =1.

These polynomials are called the residual polynomaials.

Proof. Lemma 8 states that the residuals are combinations of the Krylov se-
quence, and it states the condition on the first row of the triangular matrix de-
scribing the combinations. Use lemma 3 to translate this to polynomial terms.
[ ]

We shall now characterize all polynomial iterative methods for a given solution
vector, by relating them to the residuals with respect to a given system.

Theorem 1 Let a vector  and a sequence X be given, and let A and f be such
that Az = f. Define residuals by R = AX < fe!, then the following statements
are equivalent:

1. The sequence X is a polynomial method for .
2. There are a nonsingular matrix M and Hessenberg matrix H with zero
column sums such that
AMR = RH thatis, AMr; = hi+1iri+1 + - by
3. There are a nonsingular matrix M and upper triangular matrix U such
that
X(J C}I) = MRU, that iS, Tipl ST = Z M?“ju]'i.
i<i
4. There are a sequence P (the ‘search directions’), a nonsingular matrix M,
a diagonal matrix D, and a normalized upper triangular matrix U such
that
d APD = R(I C}J) that is, Tig1 = 15 S Apid;;,
an
PU=MR thatis, p;=Mr C}iju]'i.
J<i
5. There are a nonsingular matrix M and polynomials {71'2'}221 such that

ri = mi(AM)r, deg(m;) = i <1, m;(0) = 1.



Proof. Let X be the specific polynomial method ({7;}i>1, B, 21, g) with BZ = g.
Since A% = f, there is a matrix M such that B = MA and g = M f. If {m;};>1
is the sequence of polynomials of the method, then
iy ou; = m(B)(Bry ©g) = mi(MA)Y (M Az, SMf)
= Mm(AM)(Ax, <f)
& M_l(xH_l ;) = m(AM)(Az, < f)
= m(AM)((AM)(M12) )
Equivalently, we find from lemma 3
M™'X(Jel)= KU (2)
with U upper triangular, and K the Krylov sequence satisfying
AMK = K J, k1= Az & f.

From R = AX & fe! = (AM)(M~1X) & fe this is equivalent (see lemma 8)
to the fact that R = KU for some upper triangular matrix U with first row
identical 1. By lemma b this i1s equivalent to AM R = RH with H a Hessenberg
matrix with zero column sums.? It also follows that X (J <) = MRU with
U =U"'U upper triangular.

From lemma 6 we know that H can be factored as (I <J)DU with D diagonal
and U normalized. Introducing P = M RU~1! gives the equivalence of 3 and 4.

For the proof 3 = 1, note that
X(J<el)=MRU = RH = AMR

with H = (J~¢>I)U_1 an upper Hessenberg matrix. It then follows from lemma 4
that R = KU with the Krylov sequence K as above. Hence

M™'X(Jel)= KU
with 7 = UU. We can finish now the proof by following the equivalences starting

with equation (2) in reverse.

In order to show the equivalence of 1 and 5, note that by corollary 9, 1 is equiv-
alent to the existence of polynomials {71'2'}221 (with degree and normalization as
indicated) such that the residuals MR = BX &ge' satisfy
Mr; = Fi(B)(Bl‘l @g)
= FZ(MA)M(Al‘l @f)
=T = FZ(AM)(Al‘l C}f)

2. Actually, the lemma only implies that the first row of U is constant; it is identical 1
since r1 = kj.



4 Left and right preconditioning

The proof of theorem 1 noted that all systems with A1 f as solution can be writ-
ten as M Ax = M f. The matrix M is commonly called the ‘left-preconditioner’.

A right preconditioner can be employed as follows. If # = A~!f, then a polyno-
mial method X = ({m;};>1, AN, %1, f) is a method for N~'z, and we need to
transform the iterates — which was not necessary in the case of a left precondi-
tioner — to obtain a method for the original system.

Specifically, we are interested in the sequence NX = {N#;};>1. From lemma 1
we already know that this is again a polynomial method, so by theorem 1 above
it can be characterized by a single left preconditioner, but we will derive this
fact in a second way.

Consider any polynomial method for N='A~!f, and let residuals be defined by
R=ANX & fe'. By theorem 1 above, we can compute iterates, residuals, and
search directions by

X(I<J)=PD, ANPD = R(I J), MR =P(I&U).
Since X is a method for N~'Z, we introduce the sequences

X =NX, P=NP,
with which we get the method

X(IeJ)=PD,  APD=R(I<J), NMR=P(IsU).

We see that the right preconditioner is simply aborbed as part of the total
preconditioner N M. Note also that R = ANX < fet = AX < fe', that is,
the residuals of the right preconditioned method are also the residuals of the
sequence for .

5 Inner product

It remains to describe the role of the polynomials. From lemma 8 it is clear
that we can equivalently talk about the upper triangular matrix U for which
R = KU, where K is the Krylov sequence generated. There are no a priori
restrictions on the matrix U, but for methods based on conjugacy it is equivalent
to choosing an inner product for orthogonalizing the residuals.

Lemma 10 If N is a symmetric nonsingular matrix, it is possible to construct U
such that R'N R is diagonal, where the sequence R is constructed from R = KU.

Proof. Let R,,, U, be the initial n columns of R, U. Suppose inductively that
R;NRH is diagonal. In order to let r,41 be N-orthogonal to E,, we need to
solve the n 4 1-st column, upy1, of U from the overdetermined system



0
U'Nupir = | ¢ n
0

where N is the n x n + 1 primary subblock of N. This determines u,,; up to
scaling. We scale it so that u; 41 = 1, so the system to be solved now becomes

0 1

Uan41 _ |0
=N

Un+1n+1 0

Now it follows that Rf, Nr,41 = 0, and by symmetry Rl N R, 41 is diagonal.
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