
ORNL/TM-12309

Engineering Physics and Mathematics Division

Mathematical Sciences Section

PARALLEL MATRIX TRANSPOSE ALGORITHMS

ON DISTRIBUTED MEMORY CONCURRENT COMPUTERS

Jaeyoung Choi x

Jack J. Dongarra xy

David W. Walker x

x Mathematical Sciences Section
Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

y Department of Computer Science
University of Tennessee at Knoxville
107 Ayres Hall
Knoxville, TN 37996-1301

Date Published: October 1993

Research was supported by the Applied Mathematical Sciences
Research Program of the O�ce of Energy Research, U.S. De-
partment of Energy, by the Defense Advanced Research Projects
Agency under contract DAAL03-91-C-0047, administered by the
Army Research O�ce, and by the Center for Research on Parallel
Computing

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831

managed by
Martin Marietta Energy Systems, Inc.

for the
U.S. DEPARTMENT OF ENERGY

under Contract No. DE-AC05-84OR21400

Contents

1 Introduction : 1
2 Design Issues : 2
3 Matrix Transpose Algorithms : 5

3.1 P and Q : relatively prime : 8
3.2 P and Q : not relatively prime : 10

4 Results : 14
5 Conclusions and Remarks : 19
6 References : 19

- iii -

PARALLEL MATRIX TRANSPOSE ALGORITHMS

ON DISTRIBUTED MEMORY CONCURRENT COMPUTERS

Jaeyoung Choi

Jack J. Dongarra

David W. Walker

Abstract

This paper describes parallel matrix transpose algorithms on distributed memory con-

current processors. We assume that the matrix is distributed over a P � Q processor

template with a block scattered data distribution. P , Q, and the block size can be arbi-

trary, so the algorithms have wide applicability.

The communication schemes of the algorithms are determined by the greatest common

divisor (GCD) of P and Q. If P and Q are relatively prime, the matrix transpose algo-

rithm involves complete exchange communication. If P and Q are not relatively prime,

processors are divided into GCD groups and the communication operations are overlapped

for di�erent groups of processors. Processors transpose GCD wrapped diagonal blocks si-

multaneously, and the matrix can be transposed with LCM=GCD steps, where LCM is

the least common multiple of P and Q.

The algorithms make use of non-blocking, point-to-point communication between pro-

cessors. The use of nonblocking communication allows a processor to overlap the messages

that it sends to di�erent processors, thereby avoiding unnecessary synchronization.

Combined with the matrix multiplication routine, C = A �B, the algorithms are used

to compute parallel multiplications of transposed matrices, C = A
T
�B

T , in the PUMMA

package [5]. Details of the parallel implementation of the algorithms are given, and results

are presented for runs on the Intel Touchstone Delta computer.

- v -

1. Introduction

Matrix transposition is a fundamental matrix operation of linear algebra [8, 13] and arises in

many scienti�c and engineering applications. On a uniprocessor, an algorithm involving a trans-

posed matrix may not actually require the matrix data to be transposed in physical memory.

Instead, it may be accessed simply by exchanging the row and column indices. However, in a

distributed-memory multiprocessor environment, we cannot simply interchange the global row

and column indices. Instead, the data must be physically moved from one processor to another.

Transposition of a matrix is a redistribution of its elements. Many researchers have con-

sidered the problem for di�erent architectures. In 1972, Eklundh [7] considered the problem

of directly accessing rows or columns of a matrix when its size is larger than the available

high-speed storage. O'Leary [12] implemented an algorithm for transposing an N � N matrix

on a one-dimensional systolic array. Azari, Bojanczyk and Lee [1] developed an algorithm for

transposing an M �N matrix on an N �N mesh-connected array processor, and Johnsson and

Ho [10] presented an algorithm for a Boolean n-cube, or hypercube.

Current advanced architecture computers possess hierarchical memories in which accesses

to data in the upper levels of the memory hierarchy (registers, cache, and/or local memory) are

faster than those in lower levels (shared or o�-processor memory). To exploit the power of such

machines, block-partitioned algorithms are preferred for dense linear algebra computations, in

which operations are performed on submatrices, rather than individual matrix elements. In

distributing matrix data over processors we therefore assume a block scattered decomposition

[4, 6]. The block scattered decomposition can reproduce the most common data distributions

used in dense linear algebra, as described brie
y in the next section.

In this paper, the parallel matrix transpose algorithms are presented based on the block

scattered decomposition. The algorithms are implemented on the Intel Touchstone Delta com-

puter. The communication schemes of the algorithms are determined by the greatest common

divisor (GCD) of the number of rows and columns (P and Q) of the processor template. If P

and Q are relatively prime, the matrix transpose algorithm involves complete exchange com-

munication. This is called all-to-all personalized communication, in which each of Np = P �Q

processors is required to send distinct subblocks to each of the remaining Np � 1 processors,

and receive distinct subblocks from each of them. Bokhari and Berryman [2] have developed

binary exchange and quadrant exchange algorithms on a circuit switched mesh, where P and

Q are powers of 2. The complete exchange communication in our transpose algorithms arises

for any processor con�guration, and is not limited to the case where P and Q are powers of

2. We implemented the complicated two-dimensional complete exchange communication prob-

lem by generalizing the one-dimensional complete exchange communication based on direct

point-to-point communication. Details are discussed in Section 3.1.

- 2 -

We have presented the Parallel Universal Matrix Multiplication Algorithms (PUMMA) in [5]

for performing C (�op(A) � op(B) + �C, where op(X) = X or XT , based on the block

scattered decomposition. One of the cases in the PUMMA package, C (�AT � BT + �C,

is implemented in two steps (T (�B � A; C (T
T + �C). The second step involves

parallel matrix transposition. The performance of this algorithm for evaluating C = A
T �BT

is compared with the algorithm for evaluating C = A � B on the Intel Delta machine in

Section 4.

2. Design Issues

The way in which an algorithm's data are distributed over the processors of a concurrent

computer has a major impact on the load balance and communication characteristics of the

concurrent algorithm, and hence largely determines its performance and scalability. The block

scattered decomposition provides a simple, yet general-purpose way of distributing a block-

partitioned matrix on distributed memory concurrent computers. In the block scattered de-

composition, described in detail in [4, 6], an M � N matrix is partitioned into blocks of size

r�s, and blocks separated by a �xed stride in the column and row directions are assigned to the

same processor. If the stride in the column and row directions is P and Q blocks respectively,

then we require that P �Q equal the number of processors, Np. Thus, it is useful to imagine the

processors arranged as a P �Q mesh, or template. The processor at position (p; q) (0 � p < P ,

0 � q < Q) in the template is assigned the blocks indexed by,

(p+ i � P; q + j �Q); (1)

where i = 0; : : : ; b(Mb � p � 1)=P c, j = 0; : : : ; b(Nb � q � 1)=Qc, and Mb � Nb is the size in

blocks of the matrix (Mb = dM=re, Nb = dN=se).

Blocks are scattered in this way so that good load balance can be maintained in parallel

algorithms, such as LU factorization [3, 6]. The nonscattered decomposition (or pure block

distribution) is just a special case of the scattered decomposition in which the block size is

given by r = dM=P e and s = dN=Qe. A purely scattered decomposition (or two-dimensional

wrapped distribution) is another special case in which the block size is given by r = s = 1.

If P and Q are relatively prime, the matrix transpose algorithm involves a two-dimensional

complete exchange communication, where each of Np processors is required to send distinct

subblocks to each of the remaining Np� 1 processors, and receive distinct subblocks from each

of them. We implemented the complicated two-dimensional complete exchange algorithm by

generalizing the one-dimensional complete exchange algorithm. Three one-dimensional com-

plete exchange communication schemes are shown in Figure 1, where each processor needs one

subblock from each other processor, and the number in parentheses denotes the number of

- 3 -

step 1 step 2 step 3

0

1

2

3

4

5

6

7
step 1

0

1

2

3

4

5

6

7
step 2 step 3

(4)

(4)

(4)

(4)

step 1

0

1

2

3

4

5

6

7

(7)

(7)

 :

 :

(7)

step 2

(6)

(6)

 :

 :

(6)

(1) (1) (1)

(1) (1) (1)

.....

(b) Rotating (c) Direct Communication

(4)

(4)

(4)

(4)

(4)

(4)

(4)

(4)

(1) (1)
(1) :

 :

 :

 :
 :

 :

(a) Binary Exchange

 :

 :

(5)

(5)

(5)

step3

Figure 1: Three complete exchange communication schemes on 8 processors. The number in
parentheses denotes the amount of data to transmit.

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

Binary Exchange

Rotating

Direct Comm

Block Size (Kbytes)

T
im

e
(s

ec
on

ds
)

Figure 2: Comparison of three exchange communication schemes on 16 processors.

- 4 -

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

 0 1 2 3 4 5 6 7 8 9 10 11

(a) block distribution over template

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

 0 1 2 3 4 5 6 7 8 9 10 11

(b) LCM block distribution

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

Figure 3: A matrix with 12�12 blocks is distributed over a 2�3 processor template. (a) Each
shaded and unshaded area represents di�erent templates. The numbered squares represent
blocks of elements, and the number indicates at which location in the processor template the
block is stored { all blocks labeled with the same number are stored in the same processor.
The slanted numbers, on the left and on the top of the matrix, represent indices of row block
and column block, respectively. (b) The matrix has 2� 2 LCM blocks. Blocks belong to the
same processor if the relative locations of blocks are the same in each square LCM block. The
de�nition of the LCM block is de�ned in the text.

subblocks to transmit.

The binary exchange scheme completes in dlog2P e steps and the amount of data transmit-

ted in each step is �xed at 2dlog2Pe�1 subblocks, where P is the number of processors. The

rotating scheme can avoid network congestion, but requires P �1 steps and the amount of data

transmitted in the initial steps is large. In the direct point-to-point communication scheme,

the number of steps is the same in the rotating scheme, but the amount of data transmitted in

each step is only one subblock.

The three schemes have been implemented on 16 nodes of the Delta and their performances

are compared in Figure 2. The binary exchange and the rotating schemes are implemented

with an odd-even communication scheme, which is preferable to a simultaneous communication

scheme on the Delta [5, 11]. In this algorithm, odd-numbered processors send their own blocks

and even-numbered processors receive them in the �rst step, and even-numbered processors

send and odd-numbered processors receive in the next step. On P = 2d processors, as shown in

Figure 2, the binary exchange scheme is the fastest. However, if P is not a power of 2, then this

scheme becomes very complicated and may be slower than the direct communication scheme.

The direct communication scheme is about 20% slower than the binary exchange scheme for

the worst case (P = 2d), but it is simple to implement on an arbitrary number of processors.

We adopted the simple direct communication scheme for the implementation of the matrix

transpose algorithms, which are explained in detail in the next section.

- 5 -

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

A

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

AT

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

transpose

(a) matrix transpose from matrix point-of-view

P0

P3

P1

P4

P2

P5

 0

 2

 4

 1

 3

 5

 0 3 1 4 2 5

A

P0

P3

P1

P4

P2

P5

 0

 2

 4

 1

 3

 5

 0 3 1 4 2 5

AT

transpose

(b) matrix transpose from processor point-of-view

Figure 4: An example of matrix transpose for a block scattered decomposition, when P = 2,
Q = 3, and Mb = Nb = 6.

3. Matrix Transpose Algorithms

We assume that a matrix is distributed over a two-dimensional processor mesh, or template, so

that in general each processor has several blocks of the matrix as shown in Figure 3 (a), where

a matrix with 12� 12 blocks is distributed over a 2� 3 template. Denoting the least common

multiple of P and Q by LCM , we refer to a square of LCM �LCM blocks as an LCM block.

Thus, the matrix may be viewed as a 2�2 array of LCM blocks, as shown in Figure 3 (b). The

concept of the LCM block was introduced in [5], and is very useful for implementing algorithms

that use a block scattered data distribution. Blocks belong to the same processor if their relative

locations are the same in each square LCM block. An algorithm may be developed for the

�rst LCM block, and then it can be directly applied to the other LCM blocks, which all have

the same structure and the same data distribution as the �rst LCM block. That is, when

an operation is executed on a block of the �rst LCM block, the same operation can be done

simultaneously on other blocks, which have the same relative location in each LCM block.

- 6 -

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

A

0 1 2
3 4 5
6 7 8

0 1 2
3 4 5
6 7 8

0 1 2
3 4 5
6 7 8

0 1 2
3 4 5
6 7 8

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

AT

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

transpose

(a) matrix transpose from matrix point-of-view

P0

P3

P6

P1

P4

P7

P2

P5

P8

 0

 2

 4

 1

 3

 5

 0 3 1 4 2 5

A

P0

P3

P6

P1

P4

P7

P2

P5

P8

 0

 3

 1

 4

 2

 5

 0 3 1 4 2 5

AT

transpose

(b) matrix transpose from processor point-of-view

Figure 5: An example of matrix transpose for a block scattered decomposition, when P = 3,
Q = 3, and Mb = Nb = 6.

We now describe parallel matrix transpose algorithms. A matrix A, distributed over a

P � Q processor template, has Mb � Nb blocks and each block consists of r � s elements,

where r and s are arbitrary. Figure 4 (a) shows an example of a matrix transpose on a 2 � 3

template. If A is transposed, the transposed matrix AT is distributed over the same P � Q

template, and it has Nb �Mb blocks and each block has s � r elements. The elements of each

block remain in the same block, but may be in a di�erent processor, and each block is itself

transposed. Figure 4 (b) shows the same example from the processor point-of-view. If P and

Q are relatively prime, as shown in the �gure, blocks in the �rst processor P0 are scattered to

all processors. As shown in Figure 5, which is the same example on a 3 � 3 square template,

the blocks in each processor are not dispersed, but they are moved as one entity to a di�erent

processor. Parallel matrix transpose algorithms for the block scattered data distribution have

several communication patterns determined by the greatest common divisor (GCD) of P and

Q.

- 7 -

DO J = 0; Q� 1
DO I = 0; P � 1

[Copy all blocks of A required by P hp+ I; q � Ji to T1
(in condensed and transposed form)]
[Send T1 to P hp+ I; q � Ji]
[Receive T2 from P hp� I; q + Ji]
[Copy T2 to C]

END DO
END DO

Figure 6: A parallel matrix transpose algorithm from the processor point-of-view, when P and
Q are relatively prime. P hp; qi represents PMOD(p;P);MOD(q;Q). Processor Pp;q (0 � p < P and
0 � q < Q) communicates with P hp+ I; q � Ji to send, and P hp� I; q + Ji to receive based
on direct point-to-point communication. `p + I' and `q � J ' can be replaced with a di�erent
combination of signs.

3.1. P and Q : relatively prime

We start with the simple case where P and Q are relatively prime, i. e. GCD = 1. In this

case blocks in P0 are scattered to all processors after being locally transposed as shown in

Figure 4 (b). This case involves the two-dimensional complete exchange communication. That

is, every processor needs to communicates with every other processor. The complete exchange

problem is implemented by direct communication between sender and receiver.

Figure 6 shows the pseudocode from the processor point-of-view, where P hp; qi represents

PMOD(p;P);MOD(q;Q) in the processor template. Processor P hp; qi (0 � p < P and 0 � q < Q)

starts to transpose blocks whose transposed blocks belong to itself. Then it deals with blocks

whose transposition are in processors in the same column of the template (P hp�i; qi, 0 � i < P).

The processor sends blocks to its top neighbor, P hp�1; qi, and receives blocks from its bottom

neighbor, P hp+ 1; qi. Before sending the blocks, it is necessary to copy the blocks to be sent

into a contiguous message bu�er. Next it sends blocks to the next top processor, P hp � 2; qi,

and receives blocks from the next bottom processor, P hp+ 2; qi.

After it completes its operations with the processors in the same column, it sends blocks to

the processors to the left in the template (P hp� i; q� 1i, 0 � i < P), and receives blocks from

the processors to the right (P hp + i; q + 1i). All operations are completed in P � Q = LCM

steps.

We interpret the algorithm from the matrix point-of-view. In the �rst LCM block, the above

algorithm performs the operation by transposing one (wrapped) diagonal blocks at one step.

(Actually the algorithm transposes every LCM diagonal blocks of the matrix at each step.)

The �rst step of the algorithm in Figure 6 requires no explicit communication. It corresponds

- 8 -

A0,0

A1,1

A2,2

A3,3

A4,4

A5,5

0 1 2 0 1 2

3 4 5 3 4 5

0 1 2 0 1 2

3 4 5 3 4 5

0 1 2 0 1 2

3 4 5 3 4 5

(a) zeroth diagonal (A(i,j), MOD(j-i,LCM)=0)

A3,0

A4,1

A5,2

A0,3

A1,4

A2,5

0 1 2 0 1 2

3 4 5 3 4 5

0 1 2 0 1 2

3 4 5 3 4 5

0 1 2 0 1 2

3 4 5 3 4 5

(b) third diagonal (A(i,j), MOD(j-i,LCM)=3)

A2,0

A3,1

A4,2

A5,3

A0,4

A1,5

AT
2,0

AT
3,1

AT
4,2

AT
5,3

AT
0,4

AT
1,5

0 1 2 0 1 2

3 4 5 3 4 5

0 1 2 0 1 2

3 4 5 3 4 5

0 1 2 0 1 2

3 4 5 3 4 5

(c) fourth diagonal (A(i,j), MOD(j-i,LCM)=4)

A2,0

A3,1

A4,2

A5,3

A0,4

A1,5

AT
2,0

AT
3,1

AT
4,2

AT
5,3

AT
0,4

AT
1,5

0 1 2 0 1 2

3 4 5 3 4 5

0 1 2 0 1 2

3 4 5 3 4 5

0 1 2 0 1 2

3 4 5 3 4 5

(d) first diagonal (A(i,j), MOD(j-i,LCM)=1)

A4,0

A5,1

A0,2

A1,3

A2,4

A3,5

AT
4,0

AT
5,1

AT
0,2

AT
1,3

AT
2,4

AT
3,5

0 1 2 0 1 2

3 4 5 3 4 5

0 1 2 0 1 2

3 4 5 3 4 5

0 1 2 0 1 2

3 4 5 3 4 5

(e) second diagonal (A(i,j), MOD(j-i,LCM)=2)

A1,0

A2,1

A3,2

A4,3

A5,4

A0,5AT
1,0

AT
2,1

AT
3,2

AT
4,3

AT
5,4

AT
0,5

0 1 2 0 1 2

3 4 5 3 4 5

0 1 2 0 1 2

3 4 5 3 4 5

0 1 2 0 1 2

3 4 5 3 4 5

(f) fifth diagoanl (A(i,j), MOD(j-i,LCM)=5)

Figure 7: Snapshots of matrix transposition when P = 2, Q = 3 and Mb = Nb = 6. The
small slanted number in the upper left corner in each block represents processor identi�cation
number. One wrapped block diagonal is transposed in each step. The darkly shaded area
represents blocks to be shifted, and lightly shaded area stands for their transpositions.

- 9 -

DO J = 0; Q� 1
K = J n* Deterimine K-th diagonal block to transpose *n
WHILE (MOD(K;P) 6= 0) DO K = MOD(K + Q;LCM) END DO
DO I = 0; P � 1

[Copy every (K : Nb : LCM)-th wrapped diagonal blocks in Pp;q to T1]
[Move T1 from Pp;q to P hp+ I; q � Ji]
[Copy the received T1 to C]
K = MOD(K +Q;LCM)

END DO
END DO

Figure 8: A parallel matrix transpose algorithm from the matrix point-of-view, when P and
Q are relatively prime. One diagonal block is transposed at one step. The `While' statement
should be executed until MOD(K;P) becomes 0. (start : limit : intv) represents values of x,
where x = start + intv � y, y = 0; 1; � � �, and x can't exceed limit.

to an in-place transpose of the diagonal blocks of A (A(i; i)) (See Fig. 7(a)). Then every P

diagonal blocks of A (A(i; j);MOD(j � i; P) = 0) (See Fig. 7(b)) are transposed in the �rst

outer loop (J = 0) of Figure 6. In the next outer loop (J = 1), the next P diagonal blocks

(A(i; j);MOD(j� i; P) = 1) are transposed. In Figures 7 (c) and (d), P0 (P h0; 0i) sends blocks

to P2 (P h0; 2i), and receives from P1 (P h0; 1i), where P0, P1 and P2 are in the same row. Then

P0 sends blocks to P5 (P h1; 2i), and receives from P4 (P h1; 1i), and so on. The pseudocode for

the algorithm from the matrix point-of-view is shown in Figure 8. Processors need to determine

a diagonal block of A (A(i; j);MOD(j � i; LCM) = K) which they start to transpose in the

outer J loop in order to communicate with other processors in the same row of the template.

The two lines before the inner DO-loop compute the value of K.

3.2. P and Q : not relatively prime

In the previous section, we have investigated the case when P and Q are relatively prime, which

involves complete exchange communication. In this section we consider the case of GCD > 1.

The former algorithm is a special case (GCD = 1) of this algorithm.

Figure 9 shows an example of transposing a 12 � 12 matrix on a 4 � 6 template from the

processor point-of-view. Each processor has its own 3 � 2 (= LCM=P � LCM=Q) array of

blocks. The processors can transpose the matrix with 6 (= LCM=P �LCM=Q = LCM=GCD)

communications steps. As shown in Figure 10, a processor P hp; qi starts to communicate

with P h~p; ~qi, where ~p and ~q are computed from p and q (details are explained later of this

section). Once P h~p; ~qi is determined, it communicates with other processors, whose vertical

and horizontal intervals are GCD from P h~p; ~qi. The two loops of the algorithm in Figure 6 are

- 10 -

P 0

P 6

P12

P18

P 1

P 7

P13

P19

P 2

P 8

P14

P20

P 3

P 9

P15

P21

P 4

P10

P16

P22

P 5

P11

P17

P21

 0

 4

 8

 1

 5

 9

 2

 6

 10

 3

 7

 11

 0 6 1 7 2 8 3 9 4 10 5 11

P 0

P 6

P12

P18

P 1

P 7

P13

P19

P 2

P 8

P14

P20

P 3

P 9

P15

P21

P 4

P10

P16

P22

P 5

P11

P17

P21

 0

 4

 8

 1

 5

 9

 2

 6

 10

 3

 7

 11

 0 6 1 7 2 8 3 9 4 10 5 11

Figure 9: A matrix transpose example on a 4� 6 template.

p, q

p+GCD, q

p+2 GCD, q

p, q p, q+GCD

p+GCD, q+GCD

p+2 GCD, q+GCD

~
~

~

~

~

~

~

~

~

~
~

~ ~

~

~

~~

~

~~

~

~
~
~

.

.

.

.

:
:

:
:

:
:

p+(LCM/Q)GCD, q
p + (LCM/Q)GCD,
q+GCD

p+(LCM/Q)GCD,
q+(LCM/P) GCD

p+2 GCD,
q+(LCM/P) GCD

p+GCD,
q+(LCM/P) GCD

p,
q+(LCM/P) GCD

Figure 10: Processor map for communication. A processor P hp; qi starts to communicate with
P h~p; ~qi, then it communicates with other processors, whose vertical and horizontal intervals are
GCD from P h~p; ~qi.

- 11 -

PARDO K = 1; GCD
g = MOD(q � p;GCD)
~p = MOD(p+ g; P); ~q = MOD(q � g;Q)
DO J = 0; LCM=P � 1

DO I = 0; LCM=Q� 1
[Copy to T1 (in condensed and transposed form) all blocks of A
required by P h~p+ I � GCD; ~q� J � GCDi]

[Send T1 to P h~p+ I � GCD; ~q� J � GCDi]
[Receive T2 from P h~p� I �GCD; ~q + J �GCDi]
[Copy T2 to C]

END DO
END DO

END PARDO

Figure 11: A modi�ed matrix transpose algorithm from the processor point-of-view. Operations
of GCD groups of processors are overlapped.

A0,0

A1,1

A2,2

A3,3

A4,4

A5,5

A6,6

A7,7

A8,8

A9,9

A10,10

A11,11

0 1 2 3 4 5 0 1 2 3 4 5

6 7 8 9 10 11 6 7 8 9 10 11

12 13 14 15 16 17 12 13 14 15 16 17

18 19 20 21 22 23 18 19 20 21 22 23

0 1 2 3 4 5 0 1 2 3 4 5

6 7 8 9 10 11 6 7 8 9 10 11

12 13 14 15 16 17 12 13 14 15 16 17

18 19 20 21 22 23 18 19 20 21 22 23

0 1 2 3 4 5 0 1 2 3 4 5

6 7 8 9 10 11 6 7 8 9 10 11

12 13 14 15 16 17 12 13 14 15 16 17

18 19 20 21 22 23 18 19 20 21 22 23
A11,0

A0,1

A1,2

A2,3

A3,4

A4,5

A5,6

A6,7

A7,8

A8,9

A9,10

A10,11

AT
0,1

AT
1,2

AT
2,3

AT
3,4

AT
4,5

AT
5,6

AT
6,7

AT
7,8

AT
8,9

AT
9,10

AT
10,11

AT
11,0

0 1 2 3 4 5 0 1 2 3 4 5

6 7 8 9 10 11 6 7 8 9 10 11

12 13 14 15 16 17 12 13 14 15 16 17

18 19 20 21 22 23 18 19 20 21 22 23

0 1 2 3 4 5 0 1 2 3 4 5

6 7 8 9 10 11 6 7 8 9 10 11

12 13 14 15 16 17 12 13 14 15 16 17

18 19 20 21 22 23 18 19 20 21 22 23

0 1 2 3 4 5 0 1 2 3 4 5

6 7 8 9 10 11 6 7 8 9 10 11

12 13 14 15 16 17 12 13 14 15 16 17

18 19 20 21 22 23 18 19 20 21 22 23

<LCM
block>

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

(a) transposing the zeroth wrapped block

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

<processor template>

(b) transposing the first wrapped block

Figure 12: Two snapshots of matrix transposition for transposing the zeroth and �rst wrapped
block diagonals, when P = 4, Q = 6 and Mb = Nb = 12. In this example, transposing of even
numbered wrapped block diagonals can be overlapped with that of odd numbered.

- 12 -

0 1 2

3 4 5

6 7 8

A0,0 A0,1 A0,2

A1,0 A1,1 A1,2

A2,0 A2,1 A2,2

A

0 1 2

3 4 5

6 7 8

A0,0
T A1,0

T A2,0
T

A0,1
T A1,1

T A2,1
T

A0,2
T A1,2

T A2,2
T

A

transpose

T

Figure 13: Matrix transposition when P = Q = GCD = 3. Processors transpose 3 (= GCD)
diagonal blocks at one step, so that the transposition is done in one step.

PARDO K = 1; GCD
g = MOD(q � p;GCD)
~p = MOD(p + g; P); ~q = MOD(q � g;Q)
DO J = 0; LCM=P � 1

K = J n* Deterimine K-th diagonal block to transpose *n
WHILE (MOD(K � g; P) 6= 0) DO K = MOD(K + Q;LCM) END DO
DO I = 0; LCM=Q� 1

[Copy every (K : Nb : LCM)-th diagonal blocks in P hp; qi to T1]
[Move T1 from P hp; qi to P h~p+ I �GCD; ~q � J � GCDi]
[Copy the received T1 to C]
K = MOD(K +Q;LCM)

END DO
END DO

END PARDO

Figure 14: A modi�ed matrix transpose algorithm from matrix point-of-view. GCD diagonal
blocks are transposed simultaneously.

- 13 -

changed from Q and P to LCM=P and LCM=Q. The pseudocode of the algorithm is shown

in Figure 11.

Figure 12 shows two snapshots of the same example, from the matrix point-of-view, to

transpose the zeroth and the �rst diagonal blocks of A (A(i; j), MOD(j � i; LCM) = 0 and 1,

respectively.) The processors which have the blocks to send out are shaded at the bottom. In

the example, only P � Q=GCD processors are involved in block communication in each step.

Processors are split into GCD groups of processors, and a processor P hp; qi belongs to a group

g if it has the same value of g = MOD(q � p;GCD). Processors in a group g send and receive

their blocks to other processors in another group g0 = MOD(GCD� g;GCD). The operations

of each group can be overlapped.

The problem is interpreted from the matrix point-of-view. In general, for transposing

the k-th diagonal block of A (A(i; j), MOD(j � i; LCM) = k), a group of processors gk =

MOD(k;GCD) send the blocks to another group g0k = MOD(GCD � gk; GCD). Since the

operations are overlapped over di�erent groups of processors, processors transpose GCD diag-

onal blocks simultaneously. So, the matrix can be transposed with LCM=GCD steps. For the

extreme case of P = Q = GCD = 3 as shown in Figure 13, processors transpose 3 (= GCD)

diagonal blocks at one step. That is, the transposition is done in one step. A processor P hp; qi

exchanges data with processor P hq; pi. The pseudocode of the algorithm from the matrix

point-of-view is shown in Figure 14. The code includes the case of GCD = 1.

96 processors 64 processors 48 processors

P �Q Time (second) P � Q Time (second) P � Q Time (second)

6� 16 0:404 4� 16 0:596 4� 12 0:652
8� 12 0:330 8� 8 0:572 6� 8 0:546
12� 8 0:307 16� 4 0:475 8� 6 0:527
16� 6 0:381 12� 4 0:547

Table 1: Dependence of performance on template con�guration for �xed number of processors
(M = N = 2400).

4. Results

In this section we present performance results of the parallel matrix transpose algorithms on

the Intel Touchstone Delta computer. The performance of the transpose algorithms cannot be

represented in
oating point operations per second (
ops), since there is no multiplications or

additions in the transpose algorithms. The algorithms are combined with a matrix multipli-

cation routine in the PUMMA to compute C = �AT �BT + �C in two steps (T (�B �A;

C(T
T + �C). We assume that � = 1 and � = 0 in our test. The performance of AT �BT is

compared with that of A �B.

- 14 -

0 1200 2400 3600 4800 6000 7200
0

1

2

3

4

5

6

7

8
Α × Β
Α × ΒΤ Τ

Matrix Size, M

G
fl

op
s

Figure 15: Performance comparison ofA �B and AT �BT on 15�16 template. (P = 15; Q = 16,
and GCD = 1). C(A

T �BT is implemented in two steps, T(B �A, and then C(T
T .

Matrix elements are generated uniformly on the interval [�1; 1] in double precision. Con-

versions between measured runtimes and performance in giga
ops (G
ops) are made assuming

an operation count of 2MNL for the multiplication of a M �L by a L�N matrix. In our test

examples, all processors have the same number of blocks so there is no load imbalance. The

algorithms were implemented with force type communication [9].

First, we considered how, for a �xed number of processors Np = P�Q, performance depends

on the con�guration of the processor template. Some typical results are presented in Table 1

for a �xed number of processors. In the test, the block size is �xed at 5�5 elements. It may be

seen that the template con�guration does have some e�ect on performance. The performance

di�erence is between 19 and 24 %. For rectangular templates with di�erent aspect ratios, the

algorithm prefers those with small Q to those with small P . On the Delta, communication

speed along vertical links seems faster than along horizontal links.

Figures 15 � 19 show the performance of the routines on 15 � 16 (GCD = 1, i.e., P and

Q are relatively prime), 14 � 16 (GCD = 2), 12 � 16 (GCD = 4), 8 � 16 (GCD = 8), and

16 � 16 (P = Q = GCD = 16) templates, respectively. In all cases the block size is �xed

at 5 � 5 elements. The solid and the dashed lines show the performance of AT � BT and

A �B, respectively. The di�erence of the two lines shows the loss of performance due to matrix

transposition.

The transposed multiplication routine shows good performance relative to matrix multipli-

cation. The loss of performance due to the matrix transpose routine is about 2 or 3 %. The

- 15 -

0 1120 2240 3360 4480 5600 6720
0

1

2

3

4

5

6

7 Α × Β
Α × ΒΤ Τ

Matrix Size, M

G
fl

op
s

Figure 16: Performance comparison ofA �B and AT �BT on 14�16 template. (P = 14; Q = 16,
and GCD = 2)

0 960 1920 2880 3840 4800 5760 6720
0

1

2

3

4

5

6 Α × Β
Α × ΒΤ Τ

Matrix Size, M

G
fl

op
s

Figure 17: Performance comparison ofA �B and AT �BT on 12�16 template. (P = 12; Q = 16,
and GCD = 4)

- 16 -

0 800 1600 2400 3200 4000 4800 5600
0

1

2

3

4 Α × Β
Α × ΒΤ Τ

Matrix Size, M

G
fl

op
s

Figure 18: Performance comparison of A �B and AT �BT on 8� 16 template. (P = 8; Q = 16,
and GCD = 8)

0 1600 3200 4800 6400 8000
0

1

2

3

4

5

6

7

8
Α × Β
Α × ΒΤ Τ

Matrix Size, M

G
fl

op
s

Figure 19: Performance comparison of A �B and AT � BT on 16 � 16 template. (P = Q =
GCD = 16).

- 17 -

P �Q Matrix Size Block Size Time (second)

1 � 1 1:857
8� 16 4800� 4800 5 � 5 1:612

300� 300 1:564
1 � 1 1:280

12� 16 4800� 4800 5 � 5 0:893
100� 100 0:882
1 � 1 1:484

14� 16 5600� 5600 5 � 5 1:193
50� 50 1:161
1 � 1 1:740

15� 16 6000� 6000 5 � 5 1:437
25� 25 1:426
1 � 1 1:967

16� 16 6400� 6400 5 � 5 1:967
400� 400 1:967

Table 2: Dependence of performance on block size.

transpose routine has excellent performance if P and Q are relatively prime. In other cases

(GCD � 2), network congestion may degrade the performance of the routine.

P �Q Matrix Size (A;B) A �B (%) A
T �BT (%)

1� 1 500� 500 36:70 (100:0) 35:04 (100:0)
8� 16 5600� 5600 32:05 (87:3) 30:57 (87:3)
12� 16 6720� 6720 32:09 (87:4) 31:64 (90:3)
14� 16 6720� 6720 32:52 (88:6) 32:11 (91:6)
15� 16 7200� 7200 32:78 (89:3) 32:43 (92:6)
16� 16 8000� 8000 31:22 (85:1) 30:38 (86:7)

Table 3: Performance per node in M
ops. Block size is �xed to 5� 5 elements. 1� 1 template
gives performance of assembly-coded matrix multiplication. Numbers in parentheses represent
e�ciency compared with the performance on 1 processor.

Table 2 shows how the block size a�ects the performance of the algorithms. It includes

three cases of the block size, two extreme cases { the smallest and largest possible block sizes {

and 5� 5 block of elements. If P = Q, processors directly copy all blocks at once, so block size

does not a�ect the performance. For the case of the smallest block size (1 � 1 element) when

P 6= Q, processors make a copy element by element, so it takes a little more time to make a

copy. The routines with the smallest block sizes are slower than those with the largest possible

block sizes by between 15% and 31%. This di�erence is negligible, compared with the total

elapsed time of the matrix multiplication.

Performance per node is shown in Table 3. The 1 � 1 template gives the performance of

the assembly-coded level 3 BLAS matrix multiplication routine for the two cases A � B and

- 18 -

A
T �BT . Processors have about 85% e�ciency for A �B, and 87% for AT �BT if P = Q = 16.

The routines perform better on templates for which P 6= Q. Processors achieve about 89%,

and 93% of e�ciency for each case if P and Q are relatively prime.

5. Conclusions and Remarks

We have presented parallel matrix transpose algorithms based on the block scattered decom-

position. The algorithms have good performance for arbitrary processor con�gurations on the

Intel Delta computer.

If P and Q are relatively prime, the transpose routine involves complete exchange commu-

nication on a two-dimensional template. We have approached this complicated problem with a

direct point-to-point communication scheme (see Section 2). When P and Q are not relatively

prime (GCD > 1), the processors' operations are overlapped over di�erent groups, so that only

LCM=GCD communications are required.

In our Fortran implementation, we assume that the �rst dimension of the matrix may be

di�erent from the number of rows of the matrix in a processor. Even when P = Q, the processor

needs to copy blocks of A to a communication bu�er before sending, and copy the received

bu�er to blocks of C after receiving.

The parallel matrix transpose algorithms have been combined with matrix multiplication

routines. The integrated routines comprise a general-purpose matrix multiplication package,

called PUMMA [5], for MIMD message-passing computers. The package has good performance

for a wide range of decomposition parameters, that is, its performance depends weakly on

processor con�guration and block size.

The PUMMA package is currently available only for double precision real data, but will be

implemented in the near future for other data types, i.e., single precision real and complex, and

double precision complex. To obtain a copy of the software and a description of how to use it,

send the message \send pumma from misc" to netlib@ornl.gov.

Acknowledgments

The authors would like to thank Eduardo D'Azevedo at ORNL for his helpful suggestions

to improve the quality of the paper. This research was performed in part using the Intel

Touchstone Delta System operated by the California Institute of Technology on behalf of the

Concurrent Supercomputing Consortium. Access to this facility was provided through the

Center for Research on Parallel Computing.

6. References

[1] N. G. Azari, A. W. Bojanczyk, and S.-Y. Lee. Synchronous and asynchronous algorithms

- 19 -

for matrix transposition on MCAP. In SPIE Vol. 975, Advanced Algorithms and Archi-

tecture for Signal Processing III, pages 277{288, 1988.

[2] S. H. Bokhari and H. Berryman. Complete exchange on a circuit switched mesh. In

Proceedings of the 1992 Scalable High Performance Computing Conference, pages 300{

306. IEEE Press, 1992.

[3] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: A scalable linear

algebra library for distributed memory concurrent computers. In Proceedings of Fourth

Symposium on the Frontiers of Massively Parallel Computation (McLean, Virginia). IEEE

Computer Society Press, Los Alamitos, California, October 19-21 1992.

[4] J. Choi, J. J. Dongarra, and D. W. Walker. The design of scalable software libraries

for distributed memory concurrent computers. In Proceedings of Environment and Tools

for Parallel Scienti�c Computing Workshop, (Saint Hilaire du Touvet, France). Elsevier

Science Publishers, September 7-8 1992.

[5] J. Choi, J. J. Dongarra, and D. W. Walker. PUMMA : Parallel universal matrix mul-

tiplication algorithms on distributed memory concurrent computers. Technical Report

TM-12252, Oak Ridge National Laboratory, Mathematical Sciences Section, August 1993.

[6] J. J. Dongarra, R. van de Geijn, and D. Walker. A look at scalable linear algebra libraries.

In Proceedings of the 1992 Scalable High Performance Computing Conference, pages 372{

379. IEEE Press, 1992.

[7] J. O. Eklundh. A fast computer method for matrix transposing. IEEE Transactions on

Computers, 21:801{803, 1972.

[8] G. H. Golub and C. V. Van Loan. Matrix Computations. The Johns Hopkins University

Press, Baltimore, MD, 1989. Second Edition.

[9] Intel Corporation. Touchstone Delta Fortran Calls Reference Manual, April 1991.

[10] S. L. Johnsson and C.-T. Ho. Algorithms for matrix transposition on boolean n-cube

con�gured ensemble architecture. SIAM J. Matrix Anal. Appl, 9:419{454, July 1988.

[11] R. Little�eld. Characterizing and tuning communications performance for real applica-

tions. In Proceedings, First Intel Delta Application Workshop, CCSF-14-92, Pasadena,

California, pages 179{190, February 1992. presentation overheads.

[12] D. P. O'Leary. Systolic arrays for matrix transpose and other reorderings. IEEE Trans-

actions on Computers, 36:117{122, January 1987.

- 20 -

[13] G. Strang. Linear Algebra and Its Applications. Harcourt Brace Jovanovich, Inc., San

Diego, CA, 1988. Third Edition.

