
An Object Oriented Design for High Performance Linear Algebra on

Distributed Memory Architectures

Jack J. Dongarraxz, Roldan Pozoz, and David W. Walkerx

xOak Ridge National Laboratory zUniversity of Tennessee
Mathematical Sciences Section Department of Computer Science
P. O. Box 2008, Bldg. 6012 107 Ayres Hall
Oak Ridge, TN 37831-6367 Knoxville, TN 37996-1301

Tel: (615) 574-7401 Tel: (615) 974-8295
Fax: (615) 574-0680 Fax: (615) 974-8296

Abstract

We describe the design of ScaLAPACK++, an ob-

ject oriented C++ library for implementing linear

algebra computations on distributed memory multi-

computers. This package, when complete, will sup-

port distributed matrix operations for symmetric,

positive-de�nite, and non-symmetric cases. In ScaLA-

PACK++ we have employed object oriented design

methods to enchance scalability, portability, exibil-

ity, and ease-of-use. We illustrate some of these points

by describing the implementation of basic algorithms

and comment on tradeo�s between elegance, general-

ity, and performance.

1 Introduction

We describe an object oriented design for high per-

formance linear algebra on distributed memory archi-

tectures based on extensions to the LAPACK [1] li-

brary. LAPACK includes state-of-the-art numerical

algorithms for the more common linear algebra prob-

lems encountered in scienti�c and engineering appli-

cations. It is based on the widely used EISPACK

[14] and LINPACK [8] libraries for solving linear equa-

tions, linear least squares, and eigenvalue problems for

dense and banded systems.

ScaLAPACK++ is an object oriented extension de-

signed to support distributed dense, banded, sparse

matrix operations for symmetric, positive-de�nite,

and non-symmetric cases. We have initially focused

on the most common factorizations for dense sys-

tems: LU, QR, and Cholesky. The intent is that for

large scale problems these ScaLAPACK++ routines

should e�ectively exploit the computational hardware

of medium grain-sized multicomputers with up to a

few thousand processors, such as the Intel Paragon

and Thinking Machines Corporation's CM-5.

Among the important design goals of ScaLA-

PACK++ are scalability, portability, exibility, and

ease-of-use. Such goals present serious challenges, as

the layout of an application's data within the hier-

archical memory of a concurrent computer is critical

in determining the performance and scalability of the

parallel code. To enhance the programmability of the

library we would like details of the parallel implemen-

tation to be hidden as much as possible, but still pro-

vide the user with the capability to control the data

distribution. The ScaLAPACK++ release will include

a general two-dimensional matrix decomposition that

supports the most common block/scattered schemes

currently used. ScaLAPACK++ can be extended to

support arbitrary matrix decompositions by providing

the speci�c parallel BLAS library to operate on such

matrices.

Decoupling the matrix operations from the details

of the decomposition not only simpli�es the encoding

of an algorithm but also allows the possibility of post-

poning the decomposition until runtime. Often times

the optimal matrix decomposition of is strongly de-

pendent on how the matrix is utilized in other parts

of the driving application code. Furthermore, it may

be necessary to dynamically alter the matrix decom-

position at runtime to accommodate special routines.

The currently supported decomposition scheme de-

�nes global matrix objects which are distributed

across a P � Q logical grid of processors. Matrices

are mapped to processors using a block scattered class

of decompositions that allows a wide variety of matrix

mappings while enhancing scalability and maintaining

good load balance for various dense factorization algo-

rithms. At each node of the multicomputer we have a

sequential LAPACK++ library that provides the ob-

ject oriented framework to describe block algorithms

on conventional matrices in each individual processor.

Parallelism is exploited through the use of dis-

tributed memory versions of the Basic Linear Algebra

Subprogram (BLAS)[9] that perform the basic com-

putational units of the block algorithms. Thus, at a

higher level, the block algorithms used look the same

for the parallel or sequential versions, and only one

version of each needs to be maintained.

The bene�ts of an object oriented design for ScaLA-

PACK++ include the ability to hide the implementa-

tion details of distributed matrices from the applica-

tion programmer, and the ability to support a generic

interface to basic computational kernels (BLAS), such

as matrix multiply, without specifying the details of

the matrix storage class.

2 Design Hierarchy

In �gure 1 we illustrate the design hierarchy of

ScaLAPACK++. A parallel SPMD application will

utilize ScaLAPACK++ kernels to perform distributed

linear algebra operations. Each node of a multicom-

puter runs a similar C++ program with calls to the

ScaLAPACK++ interface. At this level distributed

matrices are seen as a single object. The ScaLA-

PACK++ kernel, in turn, is built upon two important

constituents: the basic algorithms of LAPACK++,

and a parallel implementation of lower-computational

kernels (BLAS). Since the code parallelism is imbed-

ded in the low level BLAS kernels, the driving routines

employing block matrix operations will look the same.

Thus, the essential di�erences between LAPACK++

and ScaLAPACK++ codes are simply in the declara-

tions of the matrix objects supported.

The parallel BLAS are modeled after their sequen-

tial counterparts and perform such tasks as matrix

multiply, solving triangular systems, and performing

rank-k updates. These operations constitute the basic

level of parallelism in ScaLAPACK++ and typically

require coordination between the various processors

participating in the computation. At the local node

level, interprocessor communication is accomplished

Parallel
Application

Parallel
BLAS

Sequential
BLAS

Message
Passing
Primitves

 GLOBAL

LOCAL

ScaLAPACK++

LAPACK++

BLACS

Figure 1: Design Hierarchy of ScaLAPACK++. In an

SPMD environment, components above the horizontal

reference line, represent a global viewpoint (a single

distributed structure), while elements below represent

a per-node local viewpoint of data.

via the Basic Linear Algebra Communication Subpro-

gram (BLACS)[2] which utilize vectors and matrices

as atomic message elements. This provides a portable

message passing interface which hides the speci�c de-

tails of the underlying architecture-dependent message

passing primitives. The BLACS, for example, have

been implemented on top the Intel iPSC message pass-

ing interface , as well as the PVM [4] environment

for heterogeneous networks. Ports to other platforms

soon becoming available.

To illustrate the notion of how matrix algorithms

are speci�ed independent of their data decomposition,

consider a block matrix algorithm to perform one of

the most common matrix factorizations: a decompo-

sition of a general non-symmetric matrix into upper

and lower triangular factors, A = LU . This basic op-

eration is performed as a subtask in solving systems

of linear equations, Ax = b. Figure 2 describes the

U

LL

U

L
B

C

E E’

U
0L

0

L 1

U1

Figure 2: A schematic of the right-looking LU factor-

ization algorithm using block matrix operations.

algorithm. The matrix A is broken up into panels and

at each step we perform the following computation

1. LU factor the panel B into L1; L0; and U0,

2. compute U1 by solving the triangular system

L0U1 = U1, and

3. update the trailing submatrix E0 = E � L1U1.

Ideally, the C++ code to implement this should

be as close to the mathematical description as pos-

sible, only involving high-level matrix operations. In

a sense, the above steps de�ne the right-looking LU

algorithm. No mention is made of how the matrix

is stored or decomposed. This allows us to elegantly

decouple what we are describing from how it is imple-

mented. The result is that we can construct a common

source code of this LU algorithm for any matrix de-

composition.

The high-level programming style of the matrix

classes may seem to imply that they are ine�cient and

incur a signi�cant runtime performance overhead com-

pared to similar computations using optimized For-

tran. This section illustrates that this implication is

not necessarily true. For single node performance,

we have tested various prototype LAPACK++[11]

modules on several architectures and found that they

achieve competitive performance with similar opti-

mized Fortran LAPACK routines. For example,

�gure 3 illustrates the performance of the LU factor-

ization routine on an IBM RS/6000 Model 550 work-

station. This particular implementation used GNU

g++ v. 2.3.1 and utilized the BLAS-3 routines from

the native ESSL library. The performance results are

nearly identical with those of optimized Fortran call-

ing the same library. This is accomplished by inlining

the LAPACK++ kernels directly into the underlying

Fortran or assembly-language. In this case, the C++

code is essentially expanded via macros to the under-

lying LAPACK Fortran routine DGETRF() and incurs

no runtime overhead.

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

45

50

Matrix Size (N)

S
pe

ed
 in

 M
flo

ps

LAPACK++ (solid)

LAPACK (dashed)

Figure 3: Performance of LAPACK++ LU factoriza-

tion on the IBM RS/6000 Model 550 workstation, us-

ing GNU g++ v. 2.3.1 and BLAS routines from the

IBM ESSL library. The results are nearly identical to

the Fortran LAPACK performance.

3 Square Block Scattered Data De-

composition

In this section we consider the complications aris-

ing from distributed matrix structures and why it is

important to decouple a matrix's decomposition from

the driving algorithm. We present one of the more

general matrix decomposition strategies that provides

good performance on a variety of architectures.

Just as matrix algorithms in LAPACK seek to make

e�cient use of the hierarchical memory by maximizing

data reuse, the block-partitioned algorithms in ScaLA-

PACK++ seek to reduce the frequency with which

data must be transferred between processors. This re-

duces the �xed startup cost (or latency) incurred each

time a message is communicated.

For matrix problems one can think of arranging the

processors as a P by Q grid. Thus the grid consists

of P rows of processors and Q columns of processors,

and Np = PQ. Each processor can be uniquely identi-

�ed by its position, (p; q), on the processor grid. The

decomposition of an M � N matrix can be regarded

as the tensor product of two vector decompositions,

� and �. The mapping � decomposes the M rows

of the matrix over the P rows of processors, and �

decomposes the N columns of the matrix over the Q

columns of processors. Thus, if �(m) = (p; i) and

�(n) = (q; j) then the matrix entry with global index

(m;n) is assigned to the processor at position (p; q) on

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

Figure 4: An example of block scattered decomposi-

tion over an 2x4 processor grid.

the processor grid, where it is stored in a local array

with index (i; j).

Two common decompositions are the block and the

scattered decompositions [7, 13]. The block decom-

position, �, assigns contiguous entries in the global

vector to the processors in blocks.

�(m) = (bm=Lc ;m mod L) ; (1)

where L = dM=P e. The scattered decomposition, �,

assigns consecutive entries in the global vector to dif-

ferent processors,

�(m) = (m mod P; bm=P c) (2)

By applying the block and scattered decomposi-

tions over rows and columns a variety of matrix de-

compositions can be generated.

The block scattered decomposition scatters blocks

of r elements over the processors instead of single el-

ements, and if the blocks are rectangular, is able to

reproduce the decompositions resulting from all pos-

sible block and scattered decompositions. Thus, by

using the block scattered decomposition a large de-

gree of decomposition independence can be attained.

In the block scattered decomposition the mapping of

the global index, m, can be expressed as a triplet of

values, �(m) = (p; t; i), where p is the processor posi-

tion, t the block number, and i the local index within

the block. For the block scattered decomposition we

may write,

�r(m) =

��
m mod T

r

�
;
jm
T

k
; m mod r

�
(3)

where T = rP . It should be noted that this reverts

to the scattered decomposition when r = 1, with local

block index i = 0. A block decomposition is recovered

when r = L, with block number t = 0. The block

scattered decomposition in one form or another has

previously been used by various research groups (see

[6] for references). It is also one of the decompositions

provided in the Fortran D programming style [12].

We can view the block scattered decomposition as

stamping a P � Q processor grid, or template, over

the matrix, where each cell of the grid covers r � s

data items, and is labeled by its position in the tem-

plate (�g. 4). The block and scattered decompositions

may be regarded as special cases of the block scat-

tered decomposition. In general, the scattered blocks

are rectangular, however, the use of nonsquare blocks

can lead to complications, and additional concurrent

overhead. We, therefore, propose to restrict ourselves

to the square block scattered (SBS) class of decom-

positions. The column and row decompositions can

still be recovered by setting P = 1 or Q = 1. How-

ever, more general decompositions for which r 6= s,

and neither P nor Q is 1, cannot be reproduced by

a SBS decomposition. These types of decomposition

are not often used in matrix computations.

The SBS decomposition scheme is practical and suf-

�ciently general-purpose for most, if not all, dense

linear algebra computations. Furthermore, in prob-

lems, such as LU factorization, in which rows and/or

columns are eliminated in successive steps, the SBS

decomposition enhances scalability by ensuring statis-

tical load balance.

Preliminary experiments of an object-based LU fac-

torization algorithm using an SBS decomposition [6]

suggest these algorithms scale well on multicomput-

ers. For example, on the Intel Touchtone Delta Sys-

tem, a 520 i860-based multicomputer, such algorithms

can achieve nearly twelve Gops (�gure 5).

4 Object Oriented Representation

ScaLAPACK++ utilizes an abstract base class

LaDistGenMat, for Lapack Distributed General

Matrix, from which various speci�c matrix decompo-

sition (such as SBS) and other user-de�ned mappings

can be derived. Since this is an abstract base class

0 0.5 1 1.5 2 2.5 3

x 10
4

0

2

4

6

8

10

12

Matrix Size (N)

G
lfo

ps

2x16

4x16

4x32

8x32

8x64

Figure 5: Performance of distributed LU factoriza-

tion using an SBS matrix decomposition on the Intel

Touchstone Delta system. Results are provided for

various processor-grid con�gurations.

no objects of this type are explicitly created. Rather,

they are used as placeholders in ScaLAPACK++ and

parallel BLAS kernels.

Consider how a region of an distributed SBS ma-

trix is viewed in each processor. Figure 6 depicts an

SBS submatrix as from the global viewpoint and lo-

cally within each processor. Such a region might be

selected, for example, to be used in a BLAS oper-

ation, or might be selected to receive the results of

some previous calculation. In this example, processor

0 holds a complete block, while processors 2 and 6 do

not contain any region of the submatrix. Thus, the

local viewpoint of the SBS submatrix looks quite dif-

ferent in each processor and a nontrivial data structure

is required to maintain this information.

Constructing SBS matrices can be accomplished by

specifying a P � Q processor grid and blocksize r, as

shown in �gure 4. This is a piece of SPMD code that

runs in each processor. Here Procgrid is an P �Q ar-

ray of processor id's which describe the processor grid.

The object, together with the blocksize can completely

describe an SBS decomposition, D, which can in turn

be used to initialize SBS matrices. For example, line

LaDistGenMat<double> A(M, N, D); creates an SBS

matrix of size M � N using the given decomposition

characterization. At this point, the matrix A can be

thought of as a special instance (derived class) of a

more general (base class) distributed matrix class.

We can now call any matrix algorithm described in

terms of the abstract distributed matrix class. The

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

1 20 3

4 5 6 7

Processors

0 1 2 3

Block Size

4 5 6 7

Figure 6: A submatrix as seen from the global view-

point and locally within each processor. The internal

details used to represent arbitrary rectangular regions

of SBS matrices can become rather complicated.

LaMatrix<pid> Procgrid(P,Q);

LaSBSDecomp D(Procgrid, r);

LaSBSDistGenMat<double> A(M, N, D);

LaSBSDistGenMat<double> X(M, nb, D), B(M, nb, D);

Initialize(A,B);

LaSolve(A, X, B);

Figure 7: Constructing and utilizing distributed SBS

matrices in ScaLAPACK++.

void Initialize(LaSBSDistGenMat<double> &A,

LaSBSDistGenMat<double> &B)

{

for (i=0; i<A.localsize(0); i++)

for (j=0; j<A.localsize(1); j++)

{

I = A.globalindex(0,i);

J = A.globalindex(1,j);

A.local(i,j) = f(I,J);

}

...

}

Figure 8: A local viewpoint of an SBS matrix. Here

we illustrate the mapping between global and local

indices.

proper method will be called by using dynamic bind-

ing. All we need to supply with each new matrix de-

composition is a matching parallel BLAS library that

can perform the basic functions. The notion is that

describing a new BLAS library is much simpler than

specifying a new LAPACK library.

The code fragment in �gure 4 illustrates how one

can initialize the local processor-owned sections of the

matrix using translation functions that map between

local and global matrix indices.

5 LU Decomposition

To illustrate the ScaLAPACK++ code for the

right-looking LU factorization, we �rst need to ex-

plain two other attributes of general block-matrix al-

gorithms. The �rst is how to specify submatrix regions

and the second is how to collect the pieces of an LU

factorization into a single object.

Distributed submatrices in ScaLAPACK++ are

denoted by specifying a subscript range via the

LaIndex() function. For example,

A(LaIndex(0,2), LaIndex(3,6))

denotes the elements aij; i = 0; 1; 2; j = 3; 4; 5; 6.

This is equivalent to the A(0:2, 3:6) notation of For-

tran 90. By specifying an optional third argument to

LaIndex() we can specify a non-unit stride, so that

the expression LaIndex(s,e,i) generates the index

sequence

s; s + i; s + 2i; : : : s+ b
e � s

i
ci

Factorization classes are used to describe the

various types of matrix decompositions: LU,

Cholesky (LLT), QR, and singular-value decompo-

sitions (SVD). The driver routines of LAPACK++

typically choose an appropriate factorization, but the

advanced user can express speci�c factorization algo-

rithms and their variants for �ner control of their ap-

plication or to meet speci�c memory storage and per-

formance requirements.

In an object-oriented paradigm it is natural to en-

capsulate the factored representation of a matrix in a

single object. A successful LU factorization, for ex-

ample, will return the upper and unit-lower triangu-

lar factors, L and U , as well the pivoting information

that describes how the rows were permuted during

the factorization process. The representation of the

L and U factors is meaningless without this informa-

tion. Rather than store and manage these components

separately, we couple the L and U matrices together

with the pivot vector into one object. For example, to

solve AX = B we could write

LaGenMat<double> A, B, X;

LaGenFact<double> F;

LaLUFactor(F,A);

LaSolve(F, X ,B);

The ScaLAPACK++ code for the right-looking LU

decomposition is shown in �gure 9. The main point of

this example code is that it independent of matrix de-

composition. The code also includes a pivoting phase

where rows of the original matrix are exchanged to

enhance numerical stability of the algorithm.

6 Conclusion

We have presented a design of an object oriented

scalable linear algebra library for distributed and hi-

erarchical memory architectures. The design treats

#include <scalapack++.h>

int LaLUFactorDouble(LaGenMatDouble &A,

LaGenFactDouble &F, int nb)

{

// if blocksize is unacceptable

// use the unblocked version of the code

int j, jb, M = A.size(0), N = A.size(1);

if (nb < 1 || nb > min(M,N))

// use BLAS-2 level

return LaLUFactorDoubleUnblocked(A,F);

else

{

LaGenFactDouble F1;

// use blocked code

for (j=0; j<min(M,N); j+=nb)

{

jb = min(min(M,N)-j+1,nb);

// factor current panel, unblocked version

LaLUFactorDoubleUnblocked(

A(Index(j,M-1), Index(j,j+jb-1)), F1);

// apply interchanges to rows 0:j

LaSwap(A(Index(), Index(0,j)),

F1.pivot()(Index(0,jb-1)));

if (j+jb < N)

{

// apply interchanges to rows j + jb-1:N

LaSwap(A(Index(), Index(j+jb-1,N)),

F1.pivot()(Index(0,jb-1)));

// update global pivot vector

F.pivot()(Index(j,min(M,j+jb-1))) =

F1.pivot()(Index(0,jb-1)+(j-1));

// compute block row of U

LaSolve(F1.L(), A(Index(j+jb,M),

Index(j,j+jb-1)));

// update trailing submatrix E = E - LU

LaMatMult(A(Index(j+jb,M), Index(j+jb,N)), -1.0,

A(Index(j+jb,M), Index(j,j+jb-1)), 1.0,

A(Index(j+jb,M), Index(j+jb,N)));

}

}

}

}

Figure 9: ScaLAPACK++ example listing for right-

looking LU decomposition.

both conventional and distributed matrices as funda-

mental objects. The ScaLAPACK++ library will in-

clude the basic matrix factorizations: LU , LLT and

QR decompositions.

In short, the goal of the ScaLAPACK++ software

design is to denote numerical liner algebra algorithms

in terms of high level primitives which are indepen-

dent of a matrix's decomposition over the physical

nodes of a multicomputer. By describing these ma-

trix algorithms in terms of abstract base classes, we

can share a common source code for both parallel and

sequential versions. This is based on the observation

that the parallelism available from block matrix al-

gorithms, such as the LU decomposition is embedded

deep inside in the block-level computational kernels,

such as matrix multiply. These matrices may reside

on a single processor, on a shared memory machine,

distributed across a multicomputer, or over a cluster

of workstations.

Although we have used the square scattered sub-

block (SBS) matrix decompositions to illustrate some

of the issues in building distributed linear algebra

subroutines, the exibility of ScaLAPACK++ allows

for arbitrary user-de�ned matrix decompositions. All

that is needed is to provide a parallel BLAS kernel that

supports the fundamental matrix operations (such as

matrix multiply, triangular solve, etc.)

Decoupling the matrix algorithm from a speci�c

data decomposition provides three important at-

tributes: (1) it results in simpler code which more

closely matches the underlying mathematical formula-

tion, (2) it allows for one \universal" algorithm, rather

than supporting one version for each data decompo-

sition needed, and (3) it allows one to postpone the

data decomposition decision until runtime.

The third point is perhaps the most important in

establishing truly portable software platforms for dis-

tributed memory architectures. The ideal data layout

is not only dependent on the BLAS operations but also

on how the matrix is used in other parts of the driv-

ing application. Moreover, the application any require

various data decompositions during a single execution.

We have used the inheritance mechanism of the

object oriented design to provide a common source

code for both parallel and sequential versions of the

code. Because the parallelism in embedded in the par-

allel BLAS library, the sequential and parallel high

level matrix algorithms in ScaLAPACK++ look the

same. This tremendously simpli�es the complexity of

the parallel libraries.

We have used polymorphism, or late binding,

mechanisms to achieve a truly portable distributed

matrix library in which the data decomposition may

be dynamically changed at runtime.

We have utilized operator and function overload-

ing capabilities of C++ to simplify the syntax and

user interface into the LAPACK and BLAS functions.

We have utilized the function inlinig capabilities

of C++ to reduce the function-call overhead usually

associated with interfacing Fortran or assembly ker-

nels.

Finally we have also used the template facility of

C++ to reduce the amount of code redundancy by not

having to separately maintain single precision, double

precision, single complex precision, and double com-

plex precision versions. By making the matrix data

element type a parameter, we can acheive this goal

and also provide the extendability to integrate other

user-de�ned data types.

In short, we have used various important aspects of

object oriented mechanisms and C++ in the design of

ScaLAPACK++. These attributes were utilized not

because of novelty, but out of necessity to incorporate

a design which provides scalibility, portability, exi-

bility, and ease-of-use.

References

[1] E. Anderson and Z. Bai and J. Demmel and J.

Dongarra and J. DuCroz and A. Greenbaum and

S. Hammarling and A. McKenney and S. Ostrou-

chov and D. Sorensen, LAPACK Users' Guide,

SIAM Press, Philadelphia, PA, 1992.

[2] E. Anderson, A. Benzoni, J. Dongarra, S. Moul-

ton, S. Ostrouchov, B. Tourancheau, and

R. van de Geijn. Basic Linear Algebra Communi-

cation Subprograms. In Sixth Distributed Mem-

ory Computing Conference Proceedings, pages

287{290. IEEE Computer Society Press, 1991.

[3] E. Anderson, A. Benzoni, J. Dongarra, S. Moul-

ton, S. Ostrouchov, B. Tourancheau, and

R. van de Geijn. LAPACK for distributed mem-

ory architectures: Progress report. In Parallel

Processing for Scienti�c Computing, Fifth SIAM

Conference. SIAM, 1991.

[4] A. Beguelin, J. Dongarra, A. Geist, R. Manchek,

V. Sunderam, User's Guide to PVM: Parallel

Virtual Machine, ORNL/TM-11826, Mathemat-

ical Sciences Section, Oak Ridge National Labo-

ratory, Sept. 1991.

[5] R. Brent. The LINPACK benchmark on the AP

1000: Preliminary report. In Proceedings of the

2nd CAP Workshop, NOV 1991.

[6] J. Choi, J. J. Dongarra, R. Pozo, D. W. Walker

Proceedings of the Fourth Symposium on the

Frontiers of Massively Parallel Computation,

IEEE Press, Oct. 1992.

[7] E. F. Van de Velde. Data redistribution and

concurrency. Parallel Computing, 16, December

1990.

[8] J. J. Dongarra, J. R. Bunch, C. B. Moler, and

G. W. Stewart, LINPACK Users' Guide, SIAM,

Philadelphia, PA, 1979.

[9] J. J. Dongarra, J. Du Croz, I. S. Du�, and

S. Hammarling, A set of Level 3 Basic Linear

Algebra Subprograms, ACM Trans. Math. Soft.,

16 (1990), pp. 1{17.

[10] J. Dongarra and S. Ostrouchov. LAPACK block

factorization algorithms on the Intel iPSC/860.

Technical Report CS-90-115, University of Ten-

nessee at Knoxville, Computer Science Depart-

ment, October 1990.

[11] J. J. Dongarra, R. Pozo, D. W. Walker, LA-

PACK++: A design overview of Object Oriented

Extensions for High Peformance Linear Algebra,

in preparation.

[12] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel,

U. Kremer, C-W. Tseng, and M-Y. Wu. For-

tran D language speci�cation. Technical Report

CRPC-TR90079, Center for Research on Parallel

Computation, Rice University, December 1990.

[13] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W.

Otto, J. K. Salmon, and D. W. Walker. Solving

Problems on Concurrent Processors, volume 1.

Prentice Hall, Englewood Cli�s, N.J., 1988.

[14] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S.

Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler,

Matrix Eigensystem Routines { EISPACK Guide,

vol. 6 of Lecture Notes in Computer Science,

Springer-Verlag, Berlin, 2 ed., 1976.

