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Abstract

This paper discusses the design of linear algebra libraries for high performance computers.

Particular emphasis is placed on the development of scalable algorithms for MIMD distributed

memory concurrent computers. A brief description of the EISPACK, LINPACK, and LAPACK

libraries is given, followed by an outline of ScaLAPACK, which is a distributed memory version

of LAPACK currently under development. The importance of block-partitioned algorithms in

reducing the frequency of data movement between di�erent levels of hierarchical memory is

stressed. The use of such algorithms helps reduce the message startup costs on distributed

memory concurrent computers. Other key ideas in our approach are the use of distributed

versions of the Level 3 Basic Linear Algebra Subgrams (BLAS) as computational building blocks,

and the use of Basic Linear Algebra Communication Subprograms (BLACS) as communication

building blocks. Together the distributed BLAS and the BLACS can be used to construct higher-

level algorithms, and hide many details of the parallelism from the application developer.

The block-cyclic data distribution is described, and adopted as a good way of distributing

block-partitioned matrices. Block-partitioned versions of the Cholesky and LU factorizations

are presented, and optimization issues associated with the implementation of the LU factor-

ization algorithm on distributed memory concurrent computers are discussed, together with its

performance on the Intel Delta system. Finally, approaches to the design of library interfaces

are reviewed.
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1 Introduction

The increasing availability of advanced-architecture computers is having a very signi�cant e�ect
on all spheres of scienti�c computation, including algorithm research and software development in
numerical linear algebra. Linear algebra|in particular, the solution of linear systems of equations|
lies at the heart of most calculations in scienti�c computing. This chapter discusses some of the
recent developments in linear algebra designed to exploit these advanced-architecture computers.
Particular attention will be paid to dense factorization routines, such as the Cholesky and LU
factorizations, and these will be used as examples to highlight the most important factors that
must be considered in designing linear algebra software for advanced-architecture computers. We
use these factorization routines for illustrative purposes not only because they are relatively sim-
ple, but also because of their importance in several scienti�c and engineering applications that
make use of boundary element methods. These applications include electromagnetic scattering and
computational uid dynamics problems, as discussed in more detail in Section 4.1.

Much of the work in developing linear algebra software for advanced-architecture computers is
motivated by the need to solve large problems on the fastest computers available. In this chapter,
we focus on four basic issues: (1) the motivation for the work; (2) the development of standards
for use in linear algebra and the building blocks for a library; (3) aspects of algorithm design and
parallel implementation; and (4) future directions for research.

For the past 15 years or so, there has been a great deal of activity in the area of algorithms and
software for solving linear algebra problems. The linear algebra community has long recognized
the need for help in developing algorithms into software libraries, and several years ago, as a
community e�ort, put together a de facto standard for identifying basic operations required in linear
algebra algorithms and software. The hope was that the routines making up this standard, known
collectively as the Basic Linear Algebra Subprograms (BLAS), would be e�ciently implemented on
advanced-architecture computers by many manufacturers, making it possible to reap the portability
bene�ts of having them e�ciently implemented on a wide range of machines. This goal has been
largely realized.

The key insight of our approach to designing linear algebra algorithms for advanced-architecture
computers is that the frequency with which data are moved between di�erent levels of the memory
hierarchy must be minimized in order to attain high performance. Thus, our main algorithmic
approach for exploiting both vectorization and parallelism in our implementations is the use of
block-partitioned algorithms, particularly in conjunction with highly-tuned kernels for performing
matrix-vector and matrix-matrix operations (the Level 2 and 3 BLAS). In general, the use of block-
partitioned algorithms requires data to be moved as blocks, rather than as vectors or scalars, so
that although the total amount of data moved is unchanged, the latency (or startup cost) associated
with the movement is greatly reduced because fewer messages are needed to move the data.

A second key idea is that the performance of an algorithm can be tuned by a user by varying
the parameters that specify the data layout. On shared memory machines, this is controlled by
the block size, while on distributed memory machines it is controlled by the block size and the
con�guration of the logical process mesh, as described in more detail in Section 5.

In Section 1, we �rst give an overview of some of the major software projects aimed at solving
dense linear algebra problems. Next, we describe the types of machine that bene�t most from the
use of block-partitioned algorithms, and discuss what is meant by high-quality, reusable software
for advanced-architecture computers. Section 2 discusses the role of the BLAS in portability and
performance on high-performance computers. We discuss the design of these building blocks, and
their use in block-partitioned algorithms, in Section 3. Section 4 focuses on the design of a block-
partitioned algorithm for LU factorization, and Sections 5, 6, and 7 use this example to illustrate
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the most important factors in implementing dense linear algebra routines on MIMD, distributed
memory, concurrent computers. Section 5 deals with the issue of mapping the data onto the
hierarchical memory of a concurrent computer. The layout of an application's data is crucial in
determining the performance and scalability of the parallel code. In Sections 6 and 7, details of
the parallel implementation and optimization issues are discussed. Section 8 presents some future
directions for investigation.

1.1 Dense Linear Algebra Libraries

Over the past twenty-�ve years, the �rst author has been directly involved in the development of
several important packages of dense linear algebra software: EISPACK, LINPACK, LAPACK, and
the BLAS. In addition, both authors are currently involved in the development of ScaLAPACK,
a scalable version of LAPACK for distributed memory concurrent computers. In this section, we
give a brief review of these packages|their history, their advantages, and their limitations on
high-performance computers.

1.1.1 EISPACK

EISPACK is a collection of Fortran subroutines that compute the eigenvalues and eigenvectors
of nine classes of matrices: complex general, complex Hermitian, real general, real symmetric,
real symmetric banded, real symmetric tridiagonal, special real tridiagonal, generalized real, and
generalized real symmetric matrices. In addition, two routines are included that use singular value
decomposition to solve certain least-squares problems.

EISPACK is primarily based on a collection of Algol procedures developed in the 1960s and
collected by J. H. Wilkinson and C. Reinsch in a volume entitled Linear Algebra in the Handbook for
Automatic Computation [57] series. This volume was not designed to cover every possible method of
solution; rather, algorithms were chosen on the basis of their generality, elegance, accuracy, speed,
or economy of storage.

Since the release of EISPACK in 1972, over ten thousand copies of the collection have been
distributed worldwide.

1.1.2 LINPACK

LINPACK is a collection of Fortran subroutines that analyze and solve linear equations and linear
least-squares problems. The package solves linear systems whose matrices are general, banded,
symmetric inde�nite, symmetric positive de�nite, triangular, and tridiagonal square. In addition,
the package computes the QR and singular value decompositions of rectangular matrices and applies
them to least-squares problems.

LINPACK is organized around four matrix factorizations: LU factorization, pivoted Cholesky
factorization, QR factorization, and singular value decomposition. The term LU factorization is
used here in a very general sense to mean the factorization of a square matrix into a lower triangular
part and an upper triangular part, perhaps with pivoting. These factorizations will be treated at
greater length later, when the actual LINPACK subroutines are discussed. But �rst a digression
on organization and factors inuencing LINPACK's e�ciency is necessary.

LINPACK uses column-oriented algorithms to increase e�ciency by preserving locality of ref-
erence. This means that if a program references an item in a particular block, the next reference
is likely to be in the same block. By column orientation we mean that the LINPACK codes al-
ways reference arrays down columns, not across rows. This works because Fortran stores arrays
in column major order. Thus, as one proceeds down a column of an array, the memory references
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proceed sequentially in memory. On the other hand, as one proceeds across a row, the memory ref-
erences jump across memory, the length of the jump being proportional to the length of a column.
The e�ects of column orientation are quite dramatic: on systems with virtual or cache memories,
the LINPACK codes will signi�cantly outperform codes that are not column oriented. We note,
however, that textbook examples of matrix algorithms are seldom column oriented.

Another important factor inuencing the e�ciency of LINPACK is the use of the Level 1 BLAS;
there are three e�ects.

First, the overhead entailed in calling the BLAS reduces the e�ciency of the code. This reduc-
tion is negligible for large matrices, but it can be quite signi�cant for small matrices. The matrix
size at which it becomes unimportant varies from system to system; for square matrices it is typ-
ically between n = 25 and n = 100. If this seems like an unacceptably large overhead, remember
that on many modern systems the solution of a system of order 25 or less is itself a negligible calcu-
lation. Nonetheless, it cannot be denied that a person whose programs depend critically on solving
small matrix problems in inner loops will be better o� with BLAS-less versions of the LINPACK
codes. Fortunately, the BLAS can be removed from the smaller, more frequently used program in
a short editing session.

Second, the BLAS improve the e�ciency of programs when they are run on nonoptimizing
compilers. This is because doubly subscripted array references in the inner loop of the algorithm
are replaced by singly subscripted array references in the appropriate BLAS. The e�ect can be seen
for matrices of quite small order, and for large orders the savings are quite signi�cant.

Finally, improved e�ciency can be achieved by coding a set of BLAS [17] to take advantage of
the special features of the computers on which LINPACK is being run. For most computers, this
simply means producing machine-language versions. However, the code can also take advantage of
more exotic architectural features, such as vector operations.

Further details about the BLAS are presented in Section 2.

1.1.3 LAPACK

LAPACK [14] provides routines for solving systems of simultaneous linear equations, least-squares
solutions of linear systems of equations, eigenvalue problems, and singular value problems. The
associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also pro-
vided, as are related computations such as reordering of the Schur factorizations and estimating
condition numbers. Dense and banded matrices are handled, but not general sparse matrices. In
all areas, similar functionality is provided for real and complex matrices, in both single and double
precision.

The original goal of the LAPACK project was to make the widely used EISPACK and LIN-
PACK libraries run e�ciently on shared-memory vector and parallel processors. On these machines,
LINPACK and EISPACK are ine�cient because their memory access patterns disregard the multi-
layered memory hierarchies of the machines, thereby spending too much time moving data instead
of doing useful oating-point operations. LAPACK addresses this problem by reorganizing the algo-
rithms to use block matrix operations, such as matrix multiplication, in the innermost loops [3, 14].
These block operations can be optimized for each architecture to account for the memory hierarchy
[2], and so provide a transportable way to achieve high e�ciency on diverse modern machines. Here
we use the term \transportable" instead of \portable" because, for fastest possible performance,
LAPACK requires that highly optimized block matrix operations be already implemented on each
machine. In other words, the correctness of the code is portable, but high performance is not|if
we limit ourselves to a single Fortran source code.

LAPACK can be regarded as a successor to LINPACK and EISPACK. It has virtually all the
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capabilities of these two packages and much more besides. LAPACK improves on LINPACK and
EISPACK in four main respects: speed, accuracy, robustness and functionality. While LINPACK
and EISPACK are based on the vector operation kernels of the Level 1 BLAS, LAPACK was
designed at the outset to exploit the Level 3 BLAS |a set of speci�cations for Fortran subprograms
that do various types of matrix multiplication and the solution of triangular systems with multiple
right-hand sides. Because of the coarse granularity of the Level 3 BLAS operations, their use tends
to promote high e�ciency on many high-performance computers, particularly if specially coded
implementations are provided by the manufacturer.

1.1.4 ScaLAPACK

The ScaLAPACK software library, scheduled for completion by the end of 1994, will extend the
LAPACK library to run scalably on MIMD, distributed memory, concurrent computers [10, 11].
For such machines the memory hierarchy includes the o�-processor memory of other processors,
in addition to the hierarchy of registers, cache, and local memory on each processor. Like LA-
PACK, the ScaLAPACK routines are based on block-partitioned algorithms in order to minimize
the frequency of data movement between di�erent levels of the memory hierarchy. The funda-
mental building blocks of the ScaLAPACK library are distributed memory versions of the Level
2 and Level 3 BLAS, and a set of Basic Linear Algebra Communication Subprograms (BLACS)
[16, 26] for communication tasks that arise frequently in parallel linear algebra computations. In
the ScaLAPACK routines, all interprocessor communication occurs within the distributed BLAS
and the BLACS, so the source code of the top software layer of ScaLAPACK looks very similar to
that of LAPACK.

We envisage a number of user interfaces to ScaLAPACK. Initially, the interface will be similar to
that of LAPACK, with some additional arguments passed to each routine to specify the data layout.
Once this is in place, we intend to modify the interface so the arguments to each ScaLAPACK
routine are the same as in LAPACK. This will require information about the data distribution of
each matrix and vector to be hidden from the user. This may be done by means of a ScaLAPACK
initialization routine. This interface will be fully compatible with LAPACK. Provided \dummy"
versions of the ScaLAPACK initialization routine and the BLACS are added to LAPACK, there
will be no distinction between LAPACK and ScaLAPACK at the application level, though each
will link to di�erent versions of the BLAS and BLACS. Following on from this, we will experiment
with object-based interfaces for LAPACK and ScaLAPACK, with the goal of developing interfaces
compatible with Fortran 90 [10] and C++ [24].

1.2 Target Architectures

The EISPACK and LINPACK software libraries were designed for supercomputers used in the
1970s and early 1980s, such as the CDC-7600, Cyber 205, and Cray-1. These machines featured
multiple functional units pipelined for good performance [43]. The CDC-7600 was basically a
high-performance scalar computer, while the Cyber 205 and Cray-1 were early vector computers.

The development of LAPACK in the late 1980s was intended to make the EISPACK and
LINPACK libraries run e�ciently on shared memory, vector supercomputers. The ScaLAPACK
software library will extend the use of LAPACK to distributed memory concurrent supercomputers.
The development of ScaLAPACK began in 1991 and is expected to be completed by the end of
1994.

The underlying concept of both the LAPACK and ScaLAPACK libraries is the use of block-
partitioned algorithms to minimize data movement between di�erent levels in hierarchical memory.
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Thus, the ideas discussed in this chapter for developing a library for dense linear algebra compu-
tations are applicable to any computer with a hierarchical memory that (1) imposes a su�ciently
large startup cost on the movement of data between di�erent levels in the hierarchy, and for which
(2) the cost of a context switch is too great to make �ne grain size multithreading worthwhile.
Our target machines are, therefore, medium and large grain size advanced-architecture computers.
These include \traditional" shared memory, vector supercomputers, such as the Cray Y-MP and
C90, and MIMD distributed memory concurrent supercomputers, such as the Intel Paragon, and
Thinking Machines' CM-5, and the more recently announced IBM SP1 and Cray T3D concurrent
systems. Since these machines have only very recently become available, most of the ongoing de-
velopment of the ScaLAPACK library is being done on a 128-node Intel iPSC/860 hypercube and
on the 520-node Intel Delta system.

The Intel Paragon supercomputer can have up to 2000 nodes, each consisting of an i860 processor
and a communications processor. The nodes each have at least 16 Mbytes of memory, and are
connected by a high-speed network with the topology of a two-dimensional mesh. The CM-5 from
Thinking Machines Corporation [53] supports both SIMD and MIMD programming models, and
may have up to 16k processors, though the largest CM-5 currently installed has 1024 processors.
Each CM-5 node is a Sparc processor and up to 4 associated vector processors. Point-to-point
communication between nodes is supported by a data network with the topology of a \fat tree"
[46]. Global communication operations, such as synchronization and reduction, are supported by a
separate control network. The IBM SP1 system is based on the same RISC chip used in the IBM
RS/6000 workstations and uses a multistage switch to connect processors. The Cray T3D uses the
Alpha chip from Digital Equipment Corporation, and connects the processors in a three-dimensional
torus.

Future advances in compiler and hardware technologies in the mid to late 1990s are expected
to make multithreading a viable approach for masking communication costs. Since the blocks
in a block-partitioned algorithm can be regarded as separate threads, our approach will still be
applicable on machines that exploit medium and coarse grain size multithreading.

1.3 High-Quality, Reusable, Mathematical Software

In developing a library of high-quality subroutines for dense linear algebra computations the design
goals fall into three broad classes:

� performance

� ease-of-use

� range-of-use

1.3.1 Performance

Two important performance metrics are concurrent e�ciency and scalability. We seek good per-
formance characteristics in our algorithms by eliminating, as much as possible, overhead due to
load imbalance, data movement, and algorithm restructuring. The way the data are distributed
(or decomposed) over the memory hierarchy of a computer is of fundamental importance to these
factors. Concurrent e�ciency, �, is de�ned as the concurrent speedup per processor [32], where the
concurrent speedup is the execution time, Tseq, for the best sequential algorithm running on one
processor of the concurrent computer, divided by the execution time, T , of the parallel algorithm
running on Np processors. When direct methods are used, as in LU factorization, the concurrent
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e�ciency depends on the problem size and the number of processors, so on a given parallel com-
puter and for a �xed number of processors, the running time should not vary greatly for problems
of the same size. Thus, we may write,

�(N;Np) =
1

Np

Tseq(N)

T (N;Np)
(1)

where N represents the problem size. In dense linear algebra computations, the execution time is
usually dominated by the oating-point operation count, so the concurrent e�ciency is related to
the performance, G, measured in oating-point operations per second by,

G(N;Np) =
Np

tcalc
�(N;Np) (2)

where tcalc is the time for one oating-point operation. For iterative routines, such as eigensolvers,
the number of iterations, and hence the execution time, depends not only on the problem size, but
also on other characteristics of the input data, such as condition number. A parallel algorithm
is said to be scalable [37] if the concurrent e�ciency depends on the problem size and number
of processors only through their ratio. This ratio is simply the problem size per processor, often
referred to as the granularity. Thus, for a scalable algorithm, the concurrent e�ciency is constant as
the number of processors increases while keeping the granularity �xed. Alternatively, Eq. 2 shows
that this is equivalent to saying that, for a scalable algorithm, the performance depends linearly
on the number of processors for �xed granularity.

1.3.2 Ease-Of-Use

Ease-of-use is concerned with factors such as portability and the user interface to the library.
Portability, in its most inclusive sense, means that the code is written in a standard language,
such as Fortran, and that the source code can be compiled on an arbitrary machine to produce a
program that will run correctly. We call this the \mail-order software" model of portability, since
it reects the model used by software servers such as netlib [20]. This notion of portability is quite
demanding. It requires that all relevant properties of the computer's arithmetic and architecture be
discovered at runtime within the con�nes of a Fortran code. For example, if it is important to know
the overow threshold for scaling purposes, it must be determined at runtime without overowing,
since overow is generally fatal. Such demands have resulted in quite large and sophisticated
programs [28, 44] which must be modi�ed frequently to deal with new architectures and software
releases. This \mail-order" notion of software portability also means that codes generally must be
written for the worst possible machine expected to be used, thereby often degrading performance
on all others. Ease-of-use is also enhanced if implementation details are largely hidden from the
user, for example, through the use of an object-based interface to the library [24].

1.3.3 Range-Of-Use

Range-of-use may be gauged by how numerically stable the algorithms are over a range of input
problems, and the range of data structures the library will support. For example, LINPACK and
EISPACK deal with dense matrices stored in a rectangular array, packed matrices where only the
upper or lower half of a symmetric matrix is stored, and banded matrices where only the nonzero
bands are stored. In addition, some special formats such as Householder vectors are used internally
to represent orthogonal matrices. There are also sparse matrices, which may be stored in many
di�erent ways; but in this paper we focus on dense and banded matrices, the mathematical types
addressed by LINPACK, EISPACK, and LAPACK.
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2 The BLAS as the Key to Portability

At least three factors a�ect the performance of portable Fortran code.

1. Vectorization. Designing vectorizable algorithms in linear algebra is usually straightfor-
ward. Indeed, for many computations there are several variants, all vectorizable, but with
di�erent characteristics in performance (see, for example, [15]). Linear algebra algorithms can
approach the peak performance of many machines|principally because peak performance de-
pends on some form of chaining of vector addition and multiplication operations, and this
is just what the algorithms require. However, when the algorithms are realized in straight-
forward Fortran 77 code, the performance may fall well short of the expected level, usually
because vectorizing Fortran compilers fail to minimize the number of memory references|that
is, the number of vector load and store operations.

2. Data movement. What often limits the actual performance of a vector, or scalar, oating-
point unit is the rate of transfer of data between di�erent levels of memory in the machine.
Examples include the transfer of vector operands in and out of vector registers, the transfer
of scalar operands in and out of a high-speed scalar processor, the movement of data between
main memory and a high-speed cache or local memory, paging between actual memory and
disk storage in a virtual memory system, and interprocessor communication on a distributed
memory concurrent computer.

3. Parallelism. The nested loop structure of most linear algebra algorithms o�ers considerable
scope for loop-based parallelism. This is the principal type of parallelism that LAPACK and
ScaLAPACK presently aim to exploit. On shared memory concurrent computers, this type of
parallelism can sometimes be generated automatically by a compiler, but often requires the
insertion of compiler directives. On distributed memory concurrent computers, data must be
moved between processors. This is usually done by explicit calls to message passing routines,
although parallel language extensions such as Coherent Parallel C [31] and Split-C [13] do
the message passing implicitly.

The question arises, \How can we achieve su�cient control over these three factors to obtain
the levels of performance that machines can o�er?" The answer is through use of the BLAS.

There are now three levels of BLAS:

Level 1 BLAS [45]: for vector operations, such as y  �x+ y

Level 2 BLAS [18]: for matrix-vector operations, such as y  �Ax+ �y

Level 3 BLAS [17]: for matrix-matrix operations, such as C  �AB + �C.

Here, A, B and C are matrices, x and y are vectors, and � and � are scalars.
The Level 1 BLAS are used in LAPACK, but for convenience rather than for performance: they

perform an insigni�cant fraction of the computation, and they cannot achieve high e�ciency on
most modern supercomputers.

The Level 2 BLAS can achieve near-peak performance on many vector processors, such as a
single processor of a CRAY X-MP or Y-MP, or Convex C-2 machine. However, on other vector
processors such as a CRAY-2 or an IBM 3090 VF, the performance of the Level 2 BLAS is limited
by the rate of data movement between di�erent levels of memory.

The Level 3 BLAS overcome this limitation. This third level of BLAS performs O(n3) oating-
point operations on O(n2) data, whereas the Level 2 BLAS perform only O(n2) operations on
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Table 1: Speed (Megaops) of Level 2 and Level 3 BLAS Operations on a CRAY Y-MP. All matrices
are of order 500; U is upper triangular.

Number of processors: 1 2 4 8

Level 2: y  �Ax + �y 311 611 1197 2285

Level 3: C  �AB + �C 312 623 1247 2425

Level 2: x Ux 293 544 898 1613

Level 3: B  UB 310 620 1240 2425

Level 2: x U�1x 272 374 479 584

Level 3: B  U�1B 309 618 1235 2398

O(n2) data. The Level 3 BLAS also allow us to exploit parallelism in a way that is transparent to
the software that calls them. While the Level 2 BLAS o�er some scope for exploiting parallelism,
greater scope is provided by the Level 3 BLAS, as Table 1 illustrates.

3 Block Algorithms and Their Derivation

It is comparatively straightforward to recode many of the algorithms in LINPACK and EISPACK
so that they call Level 2 BLAS. Indeed, in the simplest cases the same oating-point operations
are done, possibly even in the same order: it is just a matter of reorganizing the software. To
illustrate this point, we consider the Cholesky factorization algorithm used in the LINPACK routine
SPOFA, which factorizes a symmetric positive de�nite matrix as A = UTU . We consider Cholesky
factorization because the algorithm is simple, and no pivoting is required. In Section 4 we shall
consider the slightly more complicated example of LU factorization.

Suppose that after j�1 steps the block A00 in the upper lefthand corner of A has been factored
as A00 = UT

00
U00. The next row and column of the factorization can then be computed by writing

A = UTU as

0
B@

A00 bj A02

: ajj cT
j

: : A22

1
CA =

0
B@

UT

00
0 0

vT
j

ujj 0
UT

02
wj UT

22

1
CA
0
B@

U00 vj U02

0 ujj wT

j

0 0 U22

1
CA

where bj, cj, vj, and wj are column vectors of length j � 1, and ajj and ujj are scalars. Equating
coe�cients of the jth column, we obtain

bj = UT

00
vj

ajj = vT
j
vj + u2

jj
:

Since U00 has already been computed, we can compute vj and ujj from the equations

UT

00
vj = bj

u2
jj

= ajj � vT
j
vj :

The body of the code of the LINPACK routine SPOFA that implements the above method is
shown in Figure 1. The same computation recoded in \LAPACK-style" to use the Level 2 BLAS
routine STRSV (which solves a triangular system of equations) is shown in Figure 2. The call
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to STRSV has replaced the loop over K which made several calls to the Level 1 BLAS routine
SDOT. (For reasons given below, this is not the actual code used in LAPACK | hence the term
\LAPACK-style".)

This change by itself is su�cient to result in large gains in performance on a number of
machines|for example, from 72 to 251 megaops for a matrix of order 500 on one processor
of a CRAY Y-MP. Since this is 81% of the peak speed of matrix-matrix multiplication on this
processor, we cannot hope to do very much better by using Level 3 BLAS.

We can, however, restructure the algorithm at a deeper level to exploit the faster speed of the
Level 3 BLAS. This restructuring involves recasting the algorithm as a block algorithm|that is,
an algorithm that operates on blocks or submatrices of the original matrix.

3.1 Deriving a Block Algorithm

To derive a block form of Cholesky factorization, we partition the matrices as shown in Figure 4,
in which the diagonal blocks of A and U are square, but of di�ering sizes. We assume that the �rst
block has already been factored as A00 = UT

00
U00, and that we now want to determine the second

block column of U consisting of the blocks U01 and U11. Equating submatrices in the second block
of columns, we obtain

A01 = UT

00
U01

A11 = UT

01
U01 + UT

11
U11:

Hence, since U00 has already been computed, we can compute U01 as the solution to the equation

UT

00
U01 = A01

by a call to the Level 3 BLAS routine STRSM; and then we can compute U11 from

UT

11
U11 = A11 � UT

01
U01:

This involves �rst updating the symmetric submatrix A11 by a call to the Level 3 BLAS routine
SSYRK, and then computing its Cholesky factorization. Since Fortran does not allow recursion,
a separate routine must be called (using Level 2 BLAS rather than Level 3), named SPOTF2 in
Figure 3. In this way, successive blocks of columns of U are computed. The LAPACK-style code
for the block algorithm is shown in Figure 3. This code runs at 49 megaops on an IBM 3090,
more than double the speed of the LINPACK code. On a CRAY Y-MP, the use of Level 3 BLAS
squeezes a little more performance out of one processor, but makes a large improvement when using
all 8 processors.

But that is not the end of the story, and the code given above is not the code actually used in the
LAPACK routine SPOTRF. We mentioned earlier that for many linear algebra computations there
are several algorithmic variants, often referred to as i-, j-, and k-variants, according to a convention
introduced in [15] and used in [36]. The same is true of the corresponding block algorithms.

It turns out that the j-variant chosen for LINPACK, and used in the above examples, is not
the fastest on many machines, because it performs most of the work in solving triangular systems
of equations, which can be signi�cantly slower than matrix-matrix multiplication. The variant
actually used in LAPACK is the i-variant, which relies on matrix-matrix multiplication for most of
the work.

Table 2 summarizes the results.
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do j = 0, n-1

info = j + 1

s = 0.0e0

jm1 = j

if (jm1 .ge. 1) then

do k = 0, jm1 - 1

t = a(k,j) - sdot(k,a(0,k),1,a(0,j),1)

t = t/a(k,k)

a(k,j) = t

s = s + t*t

end do

end if

s = a(j,j) - s

if (s .le. 0.0e0) go to 40

a(j,j) = sqrt(s)

end do

Figure 1: The body of the LINPACK routine SPOFA for Cholesky factorization.

do j = 0, n - 1

call strsv( 'upper', 'transpose', 'non-unit', j, a, lda, a(0,j), 1 )

s = a(j,j) - sdot( j, a(0,j), 1, a(0,j), 1 )

if ( s .le. zero ) go to 20

a(j,j) = sqrt( s )

end do

Figure 2: The body of the \LAPACK-style" routine SPOFA for Cholesky factorization.

do j = 0, n-1, nb

jb = min( nb, n-j )

call strsm( 'left', 'upper', 'transpose', 'non-unit', j, jb, one,

a, lda, a(0,j), lda )

call ssyrk( 'upper', 'transpose', jb, j, -one, a(0,j), lda, one,

a(j,j), lda )

call spotf2( 'upper', jb, a(j,j), lda, info )

if( info .ne. 0 ) go to 20

end do

Figure 3: The body of the \LAPACK-style" routine SPOFA for block Cholesky factorization. In
this code fragment, nb denotes the width of the blocks.
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A00 A01 A02

A01
T A11 A12

A02
T A12

T A22

=

U00
T 0 0

U01
T U11

T 0

U02
T U12

T U22
T

∗

U00 U01 U02

0 U11 U12

0 0 U22

Figure 4: Partitioning of A, UT , and U into blocks. It is assumed that the �rst block has already
been factored as A00 = UT

00
U00, and we next want to determine the block column consisting of U01

and U11. Note that the diagonal blocks of A and U are square matrices.

Table 2: Speed (Megaops) of Cholesky Factorization A = UTU for n = 500

IBM 3090 VF, CRAY Y-MP, CRAY Y-MP,
1 proc. 1 proc. 8 proc.

j-variant: LINPACK 23 72 72
j-variant: using Level 2 BLAS 24 251 378
j-variant: using Level 3 BLAS 49 287 1225
i-variant: using Level 3 BLAS 50 290 1414

3.2 Examples of Block Algorithms in LAPACK

Having discussed in detail the derivation of one particular block algorithm, we now describe ex-
amples of the performance achieved with two well-known block algorithms: LU and Cholesky
factorizations. No extra oating-point operations nor extra working storage are required for either
of these simple block algorithms. (See Gallivan et al. [33] and Dongarra et al. [19] for surveys of
algorithms for dense linear algebra on high-performance computers.)

Table 3 illustrates the speed of the LAPACK routine for LU factorization of a real matrix,
SGETRF in single precision on CRAY machines, and DGETRF in double precision on all other
machines. Thus, 64-bit oating-point arithmetic is used on all machines tested. A block size of 1
means that the unblocked algorithm is used, since it is faster than { or at least as fast as { a block
algorithm.

LAPACK is designed to give high e�ciency on vector processors, high-performance \super-
scalar" workstations, and shared memory multiprocessors. LAPACK in its present form is less
likely to give good performance on other types of parallel architectures (for example, massively
parallel SIMD machines, or MIMD distributed memory machines), but the ScaLAPACK project,
described in Section 1.1.4, is intended to adapt LAPACK to these new architectures. LAPACK
can also be used satisfactorily on all types of scalar machines (PCs, workstations, mainframes).

Table 4 gives similar results for Cholesky factorization, extending the results given in Table 2.
LAPACK, like LINPACK, provides LU and Cholesky factorizations of band matrices. The

LINPACK algorithms can easily be restructured to use Level 2 BLAS, though restructuring has
little e�ect on performance for matrices of very narrow bandwidth. It is also possible to use Level
3 BLAS, at the price of doing some extra work with zero elements outside the band [22]. This
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Table 3: Speed (Megaops) of SGETRF/DGETRF for Square Matrices of Order n

Machine No. of Block Values of n
processors size 100 200 300 400 500

IBM RISC/6000-530 1 32 19 25 29 31 33
Alliant FX/8 8 16 9 26 32 46 57
IBM 3090J VF 1 64 23 41 52 58 63
Convex C-240 4 64 31 60 82 100 112
CRAY Y-MP 1 1 132 219 254 272 283
CRAY-2 1 64 110 211 292 318 358
Siemens/Fujitsu VP 400-EX 1 64 46 132 222 309 397
NEC SX2 1 1 118 274 412 504 577
CRAY Y-MP 8 64 195 556 920 1188 1408

Table 4: Speed (Megaops) of SPOTRF/DPOTRF for Matrices of Order n. Here UPLO = `U', so
the factorization is of the form A = UTU .

Machine No. of Block Values of n
processors size 100 200 300 400 500

IBM RISC/6000-530 1 32 21 29 34 36 38
Alliant FX/8 8 16 10 27 40 49 52
IBM 3090J VF 1 48 26 43 56 62 67
Convex C-240 4 64 32 63 82 96 103
CRAY Y-MP 1 1 126 219 257 275 285
CRAY-2 1 64 109 213 294 318 362
Siemens/Fujitsu VP 400-EX 1 1 53 145 237 312 369
NEC SX2 1 1 155 387 589 719 819
CRAY Y-MP 8 32 146 479 845 1164 1393
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process becomes worthwhile for large matrices and semi-bandwidth greater than 100 or so.

4 LU Factorization

In this section, we �rst discuss the uses of dense LU factorization in several �elds. We next develop
a block-partitioned version of the k, or right-looking, variant of the LU factorization algorithm. In
subsequent sections, the parallelization of this algorithm is described in detail in order to highlight
the issues and considerations that must be taken into account in developing an e�cient, scalable, and
transportable dense linear algebra library for MIMD, distributed memory, concurrent computers.

4.1 Uses of LU Factorization in Science and Engineering

A major source of large dense linear systems is problems involving the solution of boundary integral
equations. These are integral equations de�ned on the boundary of a region of interest. All examples
of practical interest compute some intermediate quantity on a two-dimensional boundary and then
use this information to compute the �nal desired quantity in three-dimensional space. The price
one pays for replacing three dimensions with two is that what started as a sparse problem in O(n3)
variables is replaced by a dense problem in O(n2).

Dense systems of linear equations are found in numerous applications, including:

� airplane wing design;

� radar cross-section studies;

� ow around ships and other o�-shore constructions;

� di�usion of solid bodies in a liquid;

� noise reduction; and

� di�usion of light through small particles.

The electromagnetics community is a major user of dense linear systems solvers. Of particular
interest to this community is the solution of the so-called radar cross-section problem. In this
problem, a signal of �xed frequency bounces o� an object; the goal is to determine the intensity
of the reected signal in all possible directions. The underlying di�erential equation may vary,
depending on the speci�c problem. In the design of stealth aircraft, the principal equation is the
Helmholtz equation. To solve this equation, researchers use the method of moments [38, 56]. In the
case of uid ow, the problem often involves solving the Laplace or Poisson equation. Here, the
boundary integral solution is known as the panel method [40, 41], so named from the quadrilaterals
that discretize and approximate a structure such as an airplane. Generally, these methods are
called boundary element methods.

Use of these methods produces a dense linear system of size O(N) by O(N), where N is the
number of boundary points (or panels) being used. It is not unusual to see size 3N by 3N , because
of three physical quantities of interest at every boundary element.

A typical approach to solving such systems is to use LU factorization. Each entry of the matrix
is computed as an interaction of two boundary elements. Often, many integrals must be computed.
In many instances, the time required to compute the matrix is considerably larger than the time
for solution.
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A00

A10 A11

A01

=

L00

L10 L11

0

∗

U00

U110

U01

Figure 5: Block LU factorization of the partitioned matrix A. A00 is r� r, A01 is r� (N � r), A10

is (M � r)� r, and A11 is (M � r) � (N � r). L00 and L11 are lower triangular matrices with 1's
on the main diagonal, and U00 and U11 are upper triangular matrices.

Only the builders of stealth technology who are interested in radar cross-sections are considering
using direct Gaussian elimination methods for solving dense linear systems. These systems are
always symmetric and complex, but not Hermitian.

For further information on various methods for solving large dense linear algebra problems that
arise in computational uid dynamics, see the report by Alan Edelman [30].

4.2 Derivation of a Block Algorithm for LU Factorization

Suppose the M � N matrix A is partitioned as shown in Figure 5, and we seek a factorization
A = LU , where the partitioning of L and U is also shown in Figure 5. Then we may write,

L00U00 = A00 (3)

L10U00 = A10 (4)

L00U01 = A01 (5)

L10U01 + L11U11 = A11 (6)

where A00 is r� r, A01 is r� (N � r), A10 is (M � r)� r, and A11 is (M � r)� (N� r). L00 and L11

are lower triangular matrices with 1s on the main diagonal, and U00 and U11 are upper triangular
matrices.

Equations 3 and 4 taken together perform an LU factorization on the �rst M � r panel of A
(i.e., A00 and A10). Once this is completed, the matrices L00, L10, and U00 are known, and the
lower triangular system in Eq. 5 can be solved to give U01. Finally, we rearrange Eq. 6 as,

A0

11
= A11 � L10U01 = L11U11 (7)

From this equation we see that the problem of �nding L11 and U11 reduces to �nding the LU
factorization of the (M � r)� (N � r) matrix A0

11
. This can be done by applying the steps outlined

above to A0

11
instead of to A. Repeating these steps K times, where

K = min (dM=re; dN=re) (8)

we obtain the LU factorization of the original M �N matrix A. For an in-place algorithm, A is
overwritten by L and U { the 1s on the diagonal of L do not need to be stored explicitly. Similarly,
when A is updated by Eq. 7 this may also be done in place.

15



L

U

B
C

E

L

U

E’L1

U1L0
U0

Figure 6: Stage k + 1 of the block LU factorization algorithm showing how the panels B and C,
and the trailing submatrix E are updated. The trapezoidal submatrices L and U have already been
factored in previous steps. L has kr columns, and U has kr rows. In the step shown another r
columns of L and r rows of U are evaluated.

After k of these K steps, the �rst kr columns of L and the �rst kr rows of U have been evaluated,
and matrix A has been updated to the form shown in Figure 6, in which panel B is (M � kr)� r

and C is r � (N � (k � 1)r). Step k + 1 then proceeds as follows,

1. factor B to form the next panel of L, performing partial pivoting over rows if necessary (see
Figure 14). This evaluates the matrices L0, L1, and U0 in Figure 6.

2. solve the triangular system L0U1 = C to get the next row of blocks of U .

3. do a rank-r update on the trailing submatrix E, replacing it with E0 = E � L1U1.

The LAPACK implementation of this form of LU factorization uses the Level 3 BLAS routines
xTRSM and xGEMM to perform the triangular solve and rank-r update. We can regard the
algorithm as acting on matrices that have been partitioned into blocks of r� r elements, as shown
in Figure 7.

5 Data Distribution

The fundamental data object in the LU factorization algorithm presented in Section 4.2 is a block-
partitioned matrix. In this section, we describe the block-cyclic method for distributing such a
matrix over a two-dimensional mesh of processes, or template. In general, each process has an
independent thread of control, and with each process is associated some local memory directly
accessible only by that process. The assignment of these processes to physical processors is a
machine-dependent optimization issue, and will be considered later in Section 7.

An important property of the class of data distribution we shall use is that independent de-
compositions are applied over rows and columns. We shall, therefore, begin by considering the
distribution of a vector of M data objects over P processes. This can be described by a mapping
of the global index, m, of a data object to an index pair (p; i), where p speci�es the process to
which the data object is assigned, and i speci�es the location in the local memory of p at which it
is stored. We shall assume 0 � m < M and 0 � p < P .
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A0,0 A0,1 A0,2 A0,3 A0,4 A0,5

A1,0 A1,1 A1,2 A1,3 A1,4 A1,5

A2,0 A2,1 A2,2 A2,3 A2,4 A2,5

A3,0 A3,1 A3,2 A3,3 A3,4 A3,5

A4,0 A4,1 A4,2 A4,3 A4,4 A4,5

A5,0 A5,1 A5,2 A5,3 A5,4 A5,5

Figure 7: Block-partitioned matrix A. Each block Ai;j consists of r � r matrix elements.

Two common decompositions are the block and the cyclic decompositions [55, 32]. The block
decomposition, that is often used when the computational load is distributed homogeneously over
a regular data structure such as a Cartesian grid, assigns contiguous entries in the global vector to
the processes in blocks.

m 7! ( bm=Lc ; m mod L ) ; (9)

where L = dM=Pe. The cyclic decomposition (also known as the wrapped or scattered decom-
position) is commonly used to improve load balance when the computational load is distributed
inhomogeneously over a regular data structure. The cyclic decomposition assigns consecutive en-
tries in the global vector to successive di�erent processes,

m 7! (m mod P; bm=Pc ) (10)

Examples of the block and cyclic decompositions are shown in Figure 8.

m 0 1 2 3 4 5 6 7 8 9

p 0 0 0 0 1 1 1 1 2 2

i 0 1 2 3 0 1 2 3 0 1

(a) Block

m 0 1 2 3 4 5 6 7 8 9

p 0 1 2 0 1 2 0 1 2 0

i 0 0 0 1 1 1 2 2 2 3

(b) Cyclic

Figure 8: Examples of block and cyclic decompositions of M = 10 data objects over P = 3
processes.

The block cyclic decomposition is a generalization of the block and cyclic decompositions in
which blocks of consecutive data objects are distributed cyclically over the processes. In the block
cyclic decomposition the mapping of the global index, m, can be expressed as m 7! (p; b; i), where p
is the process number, b is the block number in process p, and i is the index within block b to which
m is mapped. Thus, if the number of data objects in a block is r, the block cyclic decomposition
may be written,

m 7!

��
m mod T

r

�
;

�
m

T

�
; m mod r

�
(11)
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m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

p 0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2

b 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3

i 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

(a) m 7! (p; b; i)

p 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

b 0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3 0 0 1 1 2 2 3

i 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

m 0 1 6 7 12 13 18 19 2 3 8 9 14 15 20 21 4 5 10 11 16 17 22

(b) (p; b; i) 7! m

Figure 9: An example of the block cyclic decomposition of M = 23 data objects over P = 3
processes for a block size of r = 2. (a) shows the mapping from global index, m, to the triplet
(p; b; i), and (b) shows the inverse mapping.

where T = rP . It should be noted that this reverts to the cyclic decomposition when r = 1, with
local index i = 0 for all blocks. A block decomposition is recovered when r = L, in which case
there is a single block in each process with block number b = 0. The inverse mapping of the triplet
(p; b; i) to a global index is given by,

(p; b; i) 7! Br + i = pr+ bT + i (12)

where B = p + bP is the global block number. The block cyclic decomposition is one of the data
distributions supported by High Performance Fortran (HPF) [42], and has been previously used,
in one form or another, by several researchers (see [1, 4, 5, 9, 23, 27, 50, 52, 54] for examples of its
use). The block cyclic decomposition is illustrated with an example in Figure 9.

The form of the block cyclic decomposition given by Eq. 11 ensures that the block with global
index 0 is placed in process 0, the next block is placed in process 1, and so on. However, it is
sometimes necessary to o�set the processes relative to the global block index so that, in general,
the �rst block is placed in process p0, the next in process p0+1, and so on. We, therefore, generalize
the block cyclic decomposition by replacing m on the righthand side of Eq. 11 by m0 = m+ rp0 to
give,

m 7!

��
m0 mod T

r

�
;

�
m0

T

�
; m0 mod r

�

=

���
m mod T

r

�
+ p0

�
mod P;

�
m+ rp0

T

�
; m mod r

�
: (13)

Equation 12 may also be generalized to,

(p; b; i) 7! Br + i = (p� p0)r+ bT + i (14)

where now the global block number is given by B = (p � p0) + bP . It should be noted that in
processes with p < p0, block 0 is not within the range of the block cyclic mapping and it is, therefore,
an error to reference it in any way.

In decomposing anM �N matrix we apply independent block cyclic decompositions in the row
and column directions. Thus, suppose the matrix rows are distributed with block size r and o�set
p0 over P processes by the block cyclic mapping �r;p0;P , and the matrix columns are distributed
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with block size s and o�set q0 over Q processes by the block cyclic mapping �s;q0;Q. Then the
matrix element indexed globally by (m;n) is mapped as follows,

m
�

7�! (p; b; i)

n
�

7�! (q; d; j): (15)

The decomposition of the matrix can be regarded as the tensor product of the row and column
decompositions, and we can write,

(m;n) 7! ( (p; q); (b; d); (i; j) ): (16)

The block cyclic matrix decomposition given by Eqs. 15 and 16 distributes blocks of size r � s

to a mesh of P � Q processes. We shall refer to this mesh as the process template, and refer to
processes by their position in the template. Equation 16 says that global index (m;n) is mapped
to process (p; q), where it is stored in the block at location (b; d) in a two-dimensional array of
blocks. Within this block it is stored at location (i; j). The decomposition is completely speci�ed
by the parameters r, s, p0, q0, P , and Q. In Figure 10 an example is given of the block cyclic
decomposition of a 36 � 80 matrix for block size 4� 5, a process template 3 � 4, and a template
o�set (p0; q0) = (0; 0). Figure 11 shows the same example but for a template o�set of (1; 2).

The block cyclic decomposition can reproduce most of the data distributions commonly used
in linear algebra computations on parallel computers. For example, if Q = 1 and r = dM=Pe

the block row decomposition is obtained. Similarly, P = 1 and s = dN=Qe gives a block column
decomposition. These decompositions, together with row and column cyclic decompositions, are
shown in Figure 12. Other commonly used block cyclic matrix decompositions are shown in Figure
13.

6 Parallel Implementation

In this section we describe the parallel implementation of LU factorization, with partial pivoting
over rows, for a block-partitioned matrix. The matrix, A, to be factored is assumed to have a
block cyclic decomposition, and at the end of the computation is overwritten by the lower and
upper triangular factors, L and U . This implicitly determines the decomposition of L and U .
Quite a high-level description is given here since the details of the parallel implementation involve
optimization issues that will be addressed in Section 7.

The sequential LU factorization algorithm described in Section 4.2 uses square blocks. Although
in the parallel algorithm we could choose to decompose the matrix using nonsquare blocks, this
would result in a more complicated code, and additional sources of concurrent overhead. For LU
factorization we, therefore, restrict the decomposition to use only square blocks, so that the blocks
used to decompose the matrix are the same as those used to partition the computation. If the
block size is r � r, then an M � N matrix consists of Mb � Nb blocks, where Mb = dM=re and
Nb = dN=re.

As discussed in Section 4.2, LU factorization proceeds in a series of sequential steps indexed by
k = 0;min (Mb; Nb)� 1, in each of which the following three tasks are performed,

1. factor the kth column of blocks, performing pivoting if necessary. This evaluates the matrices
L0, L1, and U0 in Figure 6.

2. evaluate the kth block row of U by solving the lower triangular system L0U1 = C.

3. do a rank-r update on the trailing submatrix E, replacing it with E0 = E � L1U1.
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0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3

0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0

p,q D

B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9

10

11

(a) Assignment of global block indices, (B;D), to processes, (p; q).

0,0 0,4 0,8 0,12 0,1 0,5 0,9 0,13 0,2 0,6 0,10 0,14 0,3 0,7 0,11 0,15

3,0 3,4 3,8 3,12 3,1 3,5 3,9 3,13 3,2 3,6 3,10 3,14 3,3 3,7 3,11 3,15

6,0 6,4 6,8 6,12 6,1 6,5 6,9 6,13 6,2 6,6 6,10 6,14 6,3 6,7 6,11 6,15

9,0 9,4 9,8 9,12 9,1 9,5 9,9 9,13 9,2 9,6 9,10 9,14 9,3 9,7 9,11 9,15

1,0 1,4 1,8 1,12 1,1 1,5 1,9 1,13 1,2 1,6 1,10 1,14 1,3 1,7 1,11 1,15

4,0 4,4 4,8 4,12 4,1 4,5 4,9 4,13 4,2 4,6 4,10 4,14 4,3 4,7 4,11 4,15

7,0 7,4 7,8 7,12 7,1 7,5 7,9 7,13 7,2 7,6 7,10 7,14 7,3 7,7 7,11 7,15

10,0 10,4 10,8 10,12 10,1 10,5 10,9 10,13 10,2 10,6 10,10 10,14 10,3 10,7 10,11 10,15

2,0 2,4 2,8 2,12 2,1 2,5 2,9 2,13 2,2 2,6 2,10 2,14 2,3 2,7 2,11 2,15

5,0 5,4 5,8 5,12 5,1 5,5 5,9 5,13 5,2 5,6 5,10 5,14 5,3 5,7 5,11 5,15

8,0 8,4 8,8 8,12 8,1 8,5 8,9 8,13 8,2 8,6 8,10 8,14 8,3 8,7 8,11 8,15

11,0 11,4 11,8 11,12 11,1 11,5 11,9 11,13 11,2 11,6 11,10 11,14 11,3 11,7 11,11 11,15

0,0 0,4 0,8 0,12

3,0 3,4 3,8 3,12

6,0 6,4 6,8 6,12

9,0 9,4 9,8 9,12

B,D
q

p

0 1 2 3

0

1

2

(b) Global blocks, (B;D), in each process, (p; q).

Figure 10: Block cyclic decomposition of a 36� 80 matrix with a block size of 4� 5, onto a 3 � 4
process template. Each small rectangle represents one matrix block { individual matrix elements
are not shown. In (a), shading is used to emphasize the process template that is periodically
stamped over the matrix, and each block is labeled with the process to which it is assigned. In (b),
each shaded region shows the blocks in one process, and is labeled with the corresponding global
block indices. In both �gures, the black rectangles indicate the blocks assigned to process (0; 0).
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1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,10,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0
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0,0 0,0 0,0 0,0
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(a) Assignment of global block indices, (B;D), to processes, (p; q).

— — — — — — — — — — — — — — — — — — — —

— 2,2 2,6 2,10 2,14 — 2,3 2,7 2,11 2,15 2,0 2,4 2,8 2,12 — 2,1 2,5 2,9 2,13 —

— 5,2 5,6 5,10 2,14 — 5,3 5,7 5,11 5,15 5,0 5,4 5,8 5,12 — 5,1 5,5 5,9 5,13 —

— 8,2 8,6 8,10 8,14 — 8,3 8,7 8,11 8,15 8,0 8,4 8,8 8,12 — 8,1 8,5 8,9 8,13 —

— 11,2 11,6 11,10 11,14 — 11,3 11,7 11,11 11,15 11,0 11,4 11,8 11,12 — 11,1 11,5 11,9 11,13 —

— 0,2 0,6 0,10 0,14 — 0,3 0,7 0,11 0,15 0,0 0,4 0,8 0,12 — 0,1 0,5 0,9 0,13 —

— 3,2 3,6 3,10 3,14 — 3,3 3,7 3,11 3,15 3,0 3,4 3,8 3,12 — 3,1 3,5 3,9 3,13 —

— 6,2 6,6 6,10 6,14 — 6,3 6,7 6,11 6,15 6,0 6,4 6,8 6,12 — 6,1 6,5 6,9 6,13 —

— 9,2 9,6 9,10 9,14 — 9,3 9,7 9,11 9,15 9,0 9,4 9,8 9,12 — 9,1 9,5 9,9 9,13 —

— — — — — — — — — — — — — — — — — — — —

— 1,2 1,6 1,10 1,14 — 1,3 1,7 1,11 1,15 1,0 1,4 1,8 1,12 — 1,1 1,5 1,9 1,13 —

— 4,2 4,6 4,10 4,14 — 4,3 4,7 4,11 4,15 4,0 4,4 4,8 4,12 — 4,1 4,5 4,9 4,13 —

— 7,2 7,6 7,10 7,14 — 7,3 7,7 7,11 7,15 7,0 7,4 7,8 7,12 — 7,1 7,5 7,9 7,13 —

— 10,2 10,6 10,10 10,14 — 10,3 10,7 10,11 10,15 10,0 10,4 10,8 10,12 — 10,1 10,5 10,9 10,13 —

— — — — — — — — — — — — — — — — — — — —

2,2 2,6 2,10 2,14

5,2 5,6 5,10 5,14

8,2 8,6 8,10 8,14

11,2 11,6 11,10 11,14
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p
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(b) Global blocks, (B;D), in each process, (p; q).

Figure 11: The same matrix decomposition as shown in Figure 10, but for a template o�set of
(p0; q0) = (1; 2). Dashed entries in (b) indicate that the block does not contain any data. In both
�gures, the black rectangles indicate the blocks assigned to process (0; 0).
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0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0

(a) r = 3, s = 10, P = 4, Q = 1

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

(b) r = 1, s = 10, P = 4, Q = 1

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

(c) r = 10, s = 3, P = 1, Q = 4

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

(d) r = 10, s = 1, P = 1, Q = 4

Figure 12: These 4 �gures show di�erent ways of decomposing a 10 � 10 matrix. Each cell rep-
resents a matrix element, and is labeled by the position, (p; q), in the template of the process
to which it is assigned. To emphasize the pattern of decomposition, the matrix entries assigned
to the process in the �rst row and column of the template are shown shaded, and each separate
shaded region represents a matrix block. Figures (a) and (b) show block and cyclic row-oriented
decompositions, respectively, for 4 nodes. In �gures (c) and (d) the corresponding column-oriented
decompositions are shown. Below each �gure we give the values of r, s, P , and Q corresponding
to the decomposition. In all cases p0 = q0 = 0.
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0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

3,0 3,0 3,0 3,1 3,1 3,1 3,2 3,2 3,2 3,3

(a) r = 3, s = 3, P = 4, Q = 4

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1

(b) r = 3, s = 1, P = 4, Q = 4

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

3,0 3,0 3,0 3,1 3,1 3,1 3,2 3,2 3,2 3,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

3,0 3,0 3,0 3,1 3,1 3,1 3,2 3,2 3,2 3,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

(c) r = 1, s = 3, P = 4, Q = 4

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

(d) r = 1, s = 1, P = 4, Q = 4

Figure 13: These 4 �gures show di�erent ways of decomposing a 10� 10 matrix over 16 processes
arranged as a 4� 4 template. Below each �gure we give the values of r, s, P , and Q corresponding
to the decomposition. In all cases p0 = q0 = 0.
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Figure 14: This �gure shows pivoting for step i of the kth stage of LU factorization. The element
with largest absolute value in the gray shaded part of column kr+i is found, and the row containing
it is exchanged with row kr + i. If the rows exchanged lie in di�erent processes, communication
may be necessary.

We now consider the parallel implementation of each of these tasks. The computation in the
factorization step involves a single column of blocks, and these lie in a single column of the process
template. In the kth factorization step, each of the r columns in block column k is processed in
turn. Consider the ith column in block column k. The pivot is selected by �nding the element with
largest absolute value in this column between row kr+ i and the last row, inclusive. The elements
involved in the pivot search at this stage are shown shaded in Figure 14. Having selected the pivot,
the value of the pivot and its row are broadcast to all other processors. Next, pivoting is performed
by exchanging the entire row kr + i with the row containing the pivot. We exchange entire rows,
rather than just the part to the right of the columns already factored, in order to simplify the
application of the pivots to the righthand side in any subsequent solve phase. Finally, each value in
the column below the pivot is divided by the pivot. If a cyclic column decomposition is used, like
that shown in Figure 12(d), only one processor is involved in the factorization of the block column,
and no communication is necessary between the processes. However, in general P processes are
involved, and communication is necessary in selecting the pivot, and exchanging the pivot rows.

The solution of the lower triangular system L0U1 = C to evaluate the kth block row of U
involves a single row of blocks, and these lie in a single row of the process template. If a cyclic
row decomposition is used, like that shown in Figure 12(b), only one processor is involved in the
triangular solve, and no communication is necessary between the processes. However, in general Q
processes are involved, and communication is necessary to broadcast the lower triangular matrix,
L0, to all processes in the row. Once this has been done, each process in the row independently
performs a lower triangular solve for the blocks of C that it holds.

The communication necessary to update the trailing submatrix at step k takes place in two
steps. First, each process holding part of L1 broadcasts these blocks to the other processes in the
same row of the template. This may be done in conjunction with the broadcast of L0, mentioned
in the preceding paragraph, so that all of the factored panel is broadcast together. Next, each
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pcol= q0
prow= p0
do k= 0;min (Mb; Nb)� 1

do i= 0; r� 1
if (q =pcol) �nd pivot value and location
broadcast pivot value and location to all processes
exchange pivot rows
if (q =pcol) divide column r below diagonal by pivot

end do

if (p =prow) then
broadcast L0 to all process in same template row
solve L0U1 = C

end if

broadcast L1 to all processes in same template row
broadcast U1 to all processes in same template column
update E  E � L1U1

pcol= (pcol+ 1) mod Q
prow= (prow+ 1) mod P

end do

Figure 15: Pseudocode for the basic parallel block-partitioned LU factorization algorithm. This
code is executed by each process. The �rst box inside the k loop factors the kth column of blocks.
The second box solves a lower triangular system to evaluate the kth row of blocks of U , and the
third box updates the trailing submatrix. The template o�set is given by (p0; q0), and (p; q) is
position of a process in the template.

process holding part of U1 broadcasts these blocks to the other processes in the same column of the
template. Each process can then complete the update of the blocks that it holds with no further
communication.

A pseudocode outline of the parallel LU factorization algorithm is given in Figure 15. There
are two points worth noting in Figure 15. First, the triangular solve and update phases operate on
matrix blocks and may, therefore, be done with parallel versions of the Level 3 BLAS (speci�cally,
xTRSM and xGEMM, respectively). The factorization of the column of blocks, however, involves a
loop over matrix columns. Hence, is it not a block-oriented computation, and cannot be performed
using the Level 3 BLAS. The second point to note is that most of the parallelism in the code comes
from updating the trailing submatrix since this is the only phase in which all the processes are
busy.

Figure 15 also shows quite clearly where communication is required; namely, in �nding the
pivot, exchanging pivot rows, and performing various types of broadcast. The exact way in which
these communications are done and interleaved with computation generally has an important e�ect
on performance, and will be discussed in more detail in Section 7.

Figure 15 refers to broadcasting data to all processes in the same row or column of the template.
This is a common operation in parallel linear algebra algorithms, so the idea will be described here
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(a) Broadcast along rows.

(b) Broadcast along columns.
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Figure 16: Schematic representation of broadcast along rows and columns of a 4�6 process template.
In (a), each shaded process broadcasts to the processes in the same row of the process template. In
(b), each shaded process broadcasts to the processes in the same column of the process template.

in a little more detail. Consider, for example, the task of broadcasting the lower triangular block,
L0, to all processes in the same row of the template, as required before solving L0U1 = C. If L0

is in process (p; q), then it will be broadcast to all processes in row p of the process template.
As a second example, consider the broadcast of L1 to all processes in the same template row, as
required before updating the trailing submatrix. This type of \rowcast" is shown schematically in
Figure 16(a). If L1 is in column q of the template, then each process (p; q) broadcasts its blocks
of L1 to the other processes in row p of the template. Loosely speaking, we can say that L0 and
L1 are broadcast along the rows of the template. This type of data movement is the same as that
performed by the Fortran 90 routine SPREAD [7]. The broadcast of U1 to all processes in the
same template column is very similar. This type of communication is sometimes referred to as a
\colcast", and is shown in Figure 16(b).

7 Optimization, Tuning, and Trade-o�s

In this section, we shall examine techniques for optimizing the basic LU factorization code presented
in Section 4.2. Among the issues to be considered are the assignment of processes to physical pro-
cessors, the arrangement of the data in the local memory of each process, the trade-o� between load
imbalance and communication latency, the potential for overlapping communication and calcula-
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tion, and the type of algorithm used to broadcast data. Many of these issues are interdependent,
and in addition the portability and ease of code maintenance and use must be considered. For
further details of the optimization of parallel LU factorization algorithms for speci�c concurrent
machines, together with timing results, the reader is referred to the work of Chu and George [12],
Geist and Heath [34], Geist and Romine [35], Van de Velde [55], Brent [8], Hendrickson and Womble
[39], Lichtenstein and Johnsson [47], and Dongarra and co-workers [10, 25].

7.1 Mapping Logical Memory to Physical Memory

In Section 5, a logical (or virtual) matrix decomposition was described in which the global index
(m;n) is mapped to a position, (p; q), in a logical process template, a position, (b; d), in a logical
array of blocks local to the process, and a position, (i; j), in a logical array of matrix elements local
to the block. Thus, the block cyclic decomposition is hierarchical, and attempts to represent the
hierarchical memory of advanced-architecture computers. Although the parallel LU factorization
algorithm can be speci�ed solely in terms of this logical hierarchical memory, its performance
depends on how the logical memory is mapped to physical memory.

7.1.1 Assignment of Processes to Processors

Consider, �rst, the assignment of processes, (p; q), to physical processors. In general, more than
one process may be assigned to a processor, so the problem may be overdecomposed. To avoid load
imbalance the same number of processes should be assigned to each processor as nearly as possible.
If this condition is satis�ed, the assignment of processes to processors can still a�ect performance by
inuencing the communication overhead. On recent distributed memory machines, such as the Intel
Delta and CM-5, the time to send a single message between two processors is largely independent
of their physical location [29, 48, 49], and hence the assignment of processes to processors does
not have much direct e�ect on performance. However, when a collective communication task, such
as a broadcast, is being done, contention for physical resources can degrade performance. Thus,
the way in which processes are assigned to processors can a�ect performance if some assignments
result in di�ering amounts of contention. Logarithmic contention-free broadcast algorithms have
been developed for processors connected as a two-dimensional mesh [6, 51], so on such machines
process (p; q) is usually mapped to the processor at position (p; q) in the mesh of processors. Such
an assignment also ensures that the multiple one-dimensional broadcasts of L1 and U1 along the
rows and columns of the template, respectively, do not give rise to contention.

7.1.2 Layout of Local Process Memory

The layout of matrix blocks in the local memory of a process, and the arrangement of matrix
elements within each block, can also a�ect performance. Here, tradeo�s among several factors need
to be taken into account. When communicating matrix blocks, for example in the broadcasts of
L1 and U1, we would like the data in each block to be contiguous in physical memory so there
is no need to pack them into a communication bu�er before sending them. On the other hand,
when updating the trailing submatrix, E, each process multiplies a column of blocks by a row
of blocks, to do a rank-r update on the part of E that it contains. If this were done as a series
of separate block-block matrix multiplications, as shown in Figure 18(a), the performance would
be poor except for su�ciently large block sizes, r, since the vector and/or pipeline units on most
processors would not be fully utilized, as may be seen in Figure 17 for the i860 processor. Instead,
we arrange the loops of the computation as shown in Figure 18(b). Now, if the data are laid out
in physical memory �rst by running over the i index and then over the d index the inner two loops
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Figure 17: Performance of the assembly-coded Level 3 BLAS matrix multiplication routine
DGEMM on one i860 processor of the Intel Delta system. Results for square and rectangular
matrices are shown. Note that the peak performance of about 35 Mops is attained only for matri-
ces whose smallest dimension exceeds 100. Thus, performance is improved if a few large matrices
are multiplied by each process, rather than many small ones.

can be merged, so that the length of the inner loop is now rdmax. This generally results in much
better vector/pipeline performance. The b and j loops in Figure 18(b) can also be merged, giving
the algorithm shown in Figure 18(c). This is just the outer product form of the multiplication of an
rdmax� r by an r� rbmax matrix, and would usually be done by a call to the Level 3 BLAS routine
xGEMM of which an assembly coded sequential version is available on most machines. Note that
in Figure 18(c) the order of the inner two loops is appropriate for a Fortran implementation { for
the C language this order should be reversed, and the data should be stored in each process by
rows instead of by columns.

We have found in our work on the Intel iPSC/860 hypercube and the Delta system that it is
better to optimize for the sequential matrix multiplication with an (i; d; j; b) ordering of memory in
each process, rather than adopting an (i; j; d; b) ordering to avoid bu�er copies when communicating
blocks. However, there is another reason for doing this. On most distributed memory computers
the message startup cost is su�ciently large that it is preferable wherever possible to send data
as one large message rather than as several smaller messages. Thus, when communicating L1

and U1 the blocks to be broadcast would be amalgamated into a single message, which requires
a bu�er copy. The emerging Message Passing Interface (MPI) standard [21] provides support for
noncontiguous messages, so in the future the need to avoid bu�er copies will not be of such concern
to the application developer.

7.2 Tradeo�s between Load Balance and Communication Latency

We have discussed the mapping of the logical hierarchical memory to physical memory. In addition,
we have pointed out the importance of maintaining long inner loops to get good sequential per-
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do b = 0; bmax � 1
do d = 0; dmax � 1
do i = 0; r� 1
do j = 0; r� 1
do k = 0; r� 1
E(b; d; i; j) = E(b; d; i; j)� L1(b; d; i; k)U1(b; d; k; j)

end all do loops

(a) Block-block multiplication

do k = 0; r� 1
do b = 0; bmax � 1
do j = 0; r� 1
do d = 0; dmax � 1
do i = 0; r� 1
E(b; d; i; j) = E(b; d; i; j)� L1(b; d; i; k)U1(b; d; k; j)

end all do loops

(b) Intermediate form of algorithm

do k = 0; r� 1
do x = 0; rbmax� 1
do y = 0; rdmax � 1
E(x; y) = E(x; y)� L1(x; k)U1(k; y)

end all do loops

(c) Outer product form of algorithm

Figure 18: Pseudocode for di�erent versions of the rank-r update, E  E �L1U1, for one process.
The number of row and column blocks per process is given by bmax and dmax, respectively; r is the
block size. Blocks are indexed by (b; d), and elements within a block by (i; j). In version (a) the
r � r blocks are multiplied one at a time, giving an inner loop of length r. (b) shows the loops
rearranged before merging the i and d loops, and the j and b loops. This leads to the outer product
form of the algorithm shown in (c) in which the inner loop is now of length rdmax.
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formance for each process, and the desirability of sending a few large messages rather than many
smaller ones. We next consider load balance issues. Assuming that equal numbers of processes have
been assigned to each processor, load imbalance arises in two phases of the parallel LU factorization
algorithm; namely, in factoring each column block, which involves only P processes, and in solving
the lower triangular system to evaluate each row block of U , which involves only Q processes. If
the time for data movement is negligible, the aspect ratio of the template that minimizes load
imbalance in step k of the algorithm is,

P

Q
=

Sequential time to factor column block

Sequential time for triangular solve

=
Mb � k � 1=3 +O(1=r2)

Nb � k � 1 + O(1=r2)
(17)

where Mb�Nb is the matrix size in blocks, and r the block size. Thus, the optimal aspect ratio of
the template should be the same as the aspect ratio of the matrix, i.e., Mb=Nb in blocks, or M=N

in elements. If the e�ect of communication time is included then we must take into account the
relative times taken to locate and broadcast the pivot information, and the time to broadcast the
lower triangular matrix, L0, along a row of the template. For both tasks the communication time
increases with the number of processes involved, and since the communication time associated with
the pivoting is greater than that associated with the triangular solve, we would expect the optimum
aspect ratio of the template to be less thanM=N . In fact, for our runs on the Intel Delta system we
found an aspect ratio, P=Q, of between 1/4 and 1/8 to be optimal for most problems with square
matrices, and that performance depends rather weakly on the aspect ratio, particularly for large
grain sizes. Some typical results are shown in Figure 19 for 256 processors, which show a variation
of less than 20% in performance as P=Q varies between 1/16 and 1 for the largest problem.

The block size, r, also a�ects load balance. Here the tradeo� is between the load imbalance
that arises as rows and columns of the matrix are eliminated as the algorithm progresses, and
communication startup costs. The block cyclic decomposition seeks to maintain good load balance
by cyclically assigning blocks to processes, and the load balance is best if the blocks are small. On
the other hand, cumulative communication startup costs are less if the block size is large since,
in this case, fewer messages must be sent (although the total volume of data sent is independent
of the block size). Thus, there is a block size that optimally balances the load imbalance and
communication startup costs.

7.3 Optimality and Pipelining Tradeo�s

The communication algorithms used also inuence performance. In the LU factorization algorithm,
all the communication can be done by moving data along rows and/or columns of the process
template. This type of communication can be done by passing from one process to the next along
the row or column. We shall call this a \ring" algorithm, although the ring may, or may not, be
closed. An alternative is to use a spanning tree algorithm, of which there are several varieties.
The complexity of the ring algorithm is linear in the number of processes involved, whereas that
of spanning tree algorithms is logarithmic (for example, see [6]). Thus, considered in isolation, the
spanning tree algorithms are preferable to a ring algorithm. However, in a spanning tree algorithm,
a process may take part in several of the logarithmic steps, and in some implementations these
algorithms act as a barrier. In a ring algorithm, each process needs to communicate only once,
and can then continue to compute, in e�ect overlapping the communication with computation.
An algorithm that interleaves communication and calculation in this way is often referred to as a
pipelined algorithm. In a pipelined LU factorization algorithm with no pivoting, communication
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Figure 19: Performance of LU factorization on the Intel Delta as a function of square matrix size
for di�erent processor templates containing approximately 256 processors. The best performance
is for an aspect ratio of 1/4, though the dependence on aspect ratio is rather weak.
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if (q =pcol) then
do i= 0; r� 1
�nd pivot value and location
exchange pivot rows lying within panel
divide column r below diagonal by pivot

end do
end if
broadcast pivot information for r pivots along template rows
exchange pivot rows lying outside the panel for each of r pivots

Figure 20: Pseudocode fragment for partial pivoting over rows. This may be regarded as replacing
the �rst box inside the k loop in Figure 15. In the above code pivot information is �rst disseminated
within the template column doing the panel factorization. The pivoting of the parts of the rows
lying outside the panel is deferred until the panel factorization has been completed.

and calculation would ow in waves across the matrix. Pivoting tends to inhibit this advantage of
pipelining.

In the pseudocode in Figure 15, we do not specify how the pivot information should be broadcast.
In an optimized implementation, we need to �nish with the pivot phase, and the triangular solve
phase, as soon as possible in order to begin the update phase which is richest in parallelism.
Thus, it is not a good idea to broadcast the pivot information from a single source process using
a spanning tree algorithm, since this may occupy some of the processes involved in the panel
factorization for too long. It is important to get the pivot information to the other processes in
this template column as soon as possible, so the pivot information is �rst sent to these processes
which subsequently broadcast it along the template rows to the other processes not involved in the
panel factorization. In addition, the exchange of the parts of the pivot rows lying within the panel
is done separately from that of the parts outside the pivot panel. Another factor to consider here
is when the pivot information should be broadcast along the template columns. In Figure 15, the
information is broadcast, and rows exchanged, immediately after the pivot is found. An alternative
is to store up the sequence of r pivots for a panel and to broadcast them along the template rows
when panel factorization is complete. This defers the exchange of pivot rows for the parts outside
the panel until the panel factorization has been done, as shown in the pseudocode fragment in
Figure 20. An advantage of this second approach is that only one message is used to send the pivot
information for the panel along the template rows, instead of r messages.

In our implementation of LU factorization on the Intel Delta system, we used a spanning
tree algorithm to locate the pivot and to broadcast it within the column of the process template
performing the panel factorization. This ensures that pivoting, which involves only P processes, is
completed as quickly as possible. A ring broadcast is used to pipeline the pivot information and
the factored panel along the template rows. Finally, after the triangular solve phase has completed,
a spanning tree broadcast is used to send the newly-formed block row of U along the template
columns. Results for square matrices from runs on the Intel Delta system are shown in Figure 21.
For each curve the results for the best process template con�guration are shown. Recalling that
for a scalable algorithm the performance should depend linearly on the number of processors for
�xed granularity (see Eq. 2), it is apparent that scalability may be assessed by the extent to which
isogranularity curves di�er from linearity. An isogranularity curve is a plot of performance against
number of processors for a �xed granularity. The results in Figure 21 can be used to generate the
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isogranularity curves shown in Figure 22 which show that on the Delta system the LU factorization
routine starts to lose scalability when the granularity falls below about 0:2� 106. This corresponds
to a matrix size of about M = 10000 on 512 processors, or about 13% of the memory available
to applications on the Delta, indicating that LU factorization scales rather well on the Intel Delta
system.

8 Conclusions and Future Research Directions

Portability of programs has always been an important consideration. Portability was easy to
achieve when there was a single architectural paradigm (the serial von Neumann machine) and a
single programming language for scienti�c programming (Fortran) embodying that common model
of computation. Architectural and linguistic diversity have made portability much more di�cult,
but no less important, to attain. Users simply do not wish to invest signi�cant amounts of time
to create large-scale application codes for each new machine. Our answer is to develop portable
software libraries that hide machine-speci�c details.

8.1 Portability, Scalability, and Standards

In order to be truly portable, parallel software libraries must be standardized. In a parallel comput-
ing environment in which the higher-level routines and/or abstractions are built upon lower-level
computation and message-passing routines, the bene�ts of standardization are particularly appar-
ent. Furthermore, the de�nition of computational and message-passing standards provides vendors
with a clearly de�ned base set of routines that they can implement e�ciently.

From the user's point of view, portability means that, as new machines are developed, they are
simply added to the network, supplying cycles where they are most appropriate.

From the mathematical software developer's point of view, portability may require signi�cant
e�ort. Economy in development and maintenance of mathematical software demands that such
development e�ort be leveraged over as many di�erent computer systems as possible. Given the
great diversity of parallel architectures, this type of portability is attainable to only a limited degree,
but machine dependences can at least be isolated.

LAPACK is an example of a mathematical software package whose highest-level components
are portable, while machine dependences are hidden in lower-level modules. Such a hierarchical
approach is probably the closest one can come to software portability across diverse parallel archi-
tectures. And the BLAS that are used so heavily in LAPACK provide a portable, e�cient, and
exible standard for applications programmers.

Like portability, scalability demands that a program be reasonably e�ective over a wide range
of number of processors. The scalability of parallel algorithms, and software libraries based on
them, over a wide range of architectural designs and numbers of processors will likely require that
the fundamental granularity of computation be adjustable to suit the particular circumstances in
which the software may happen to execute. Our approach to this problem is block algorithms with
adjustable block size. In many cases, however, polyalgorithms� may be required to deal with the
full range of architectures and processor multiplicity likely to be available in the future.

Scalable parallel architectures of the future are likely to be based on a distributed memory
architectural paradigm. In the longer term, progress in hardware development, operating systems,
languages, compilers, and communications may make it possible for users to view such distributed

�In a polyalgorithm the actual algorithm used depends on the computing environment and the input data. The

optimal algorithm in a particular instance is automatically selected at runtime.
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Figure 21: Performance of LU factorization on the Intel Delta as a function of square matrix size
for di�erent numbers of processors. For each curve, results are shown for the process template
con�guration that gave the best performance for that number of processors.
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Figure 22: Isogranularity curves in the (Np; G) plane for the LU factorization of square matrices on
the Intel Delta system. The curves are labeled by the granularity in units of 106 matrix elements
per processor. The linearity of the plots for granularities exceeding about 0:2� 106 indicates that
the LU factorization algorithm scales well on the Delta.
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architectures (without signi�cant loss of e�ciency) as having a shared memory with a global address
space. For the near term, however, the distributed nature of the underlying hardware will continue
to be visible at the programming level; therefore, e�cient procedures for explicit communication
will continue to be necessary. Given this fact, standards for basic message passing (send/receive),
as well as higher-level communication constructs (global summation, broadcast, etc.), become es-
sential to the development of scalable libraries that have any degree of portability. In addition to
standardizing general communication primitives, it may also be advantageous to establish standards
for problem-speci�c constructs in commonly occurring areas such as linear algebra.

The BLACS (Basic Linear Algebra Communication Subprograms) [16, 26] is a package that pro-
vides the same ease of use and portability for MIMD message-passing linear algebra communication
that the BLAS [17, 18, 45] provide for linear algebra computation. Therefore, we recommend that
future software for dense linear algebra on MIMD platforms consist of calls to the BLAS for com-
putation and calls to the BLACS for communication. Since both packages will have been optimized
for a particular platform, good performance should be achieved with relatively little e�ort. Also,
since both packages will be available on a wide variety of machines, code modi�cations required to
change platforms should be minimal.

8.2 Alternative Approaches

Traditionally, large, general-purpose mathematical software libraries have required users to write
their own programs that call library routines to solve speci�c subproblems that arise during a com-
putation. Adapted to a shared-memory parallel environment, this conventional interface still o�ers
some potential for hiding underlying complexity. For example, the LAPACK project incorporates
parallelism in the Level 3 BLAS, where it is not directly visible to the user.

But when going from shared-memory systems to the more readily scalable distributed memory
systems, the complexity of the distributed data structures required is more di�cult to hide from the
user. Not only must the problem decomposition and data layout be speci�ed, but di�erent phases
of the user's problem may require transformations between di�erent distributed data structures.

These de�ciencies in the conventional user interface have prompted extensive discussion of
alternative approaches for scalable parallel software libraries of the future. Possibilities include:

1. Traditional function library (i.e., minimum possible change to the status quo in going from
serial to parallel environment). This will allow one to protect the programming investment
that has been made.

2. Reactive servers on the network. A user would be able to send a computational problem to a
server that was specialized in dealing with the problem. This �ts well with the concepts of a
networked, heterogeneous computing environment with various specialized hardware resources
(or even the heterogeneous partitioning of a single homogeneous parallel machine).

3. General interactive environments like Matlab or Mathematica, perhaps with \expert" drivers
(i.e., knowledge-based systems). With the growing popularity of the many integrated pack-
ages based on this idea, this approach would provide an interactive, graphical interface for
specifying and solving scienti�c problems. Both the algorithms and data structures are hid-
den from the user, because the package itself is responsible for storing and retrieving the
problem data in an e�cient, distributed manner. In a heterogeneous networked environment,
such interfaces could provide seamless access to computational engines that would be invoked
selectively for di�erent parts of the user's computation according to which machine is most
appropriate for a particular subproblem.
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4. Domain-speci�c problem solving environments, such as those for structural analysis. En-
vironments like Matlab and Mathematica have proven to be especially attractive for rapid
prototyping of new algorithms and systems that may subsequently be implemented in a more
customized manner for higher performance.

5. Reusable templates (i.e., users adapt \source code" to their particular applications). A tem-
plate is a description of a general algorithm rather than the executable object code or the
source code more commonly found in a conventional software library. Nevertheless, although
templates are general descriptions of key data structures, they o�er whatever degree of cus-
tomization the user may desire.

Novel user interfaces that hide the complexity of scalable parallelism will require new concepts
and mechanisms for representing scienti�c computational problems and for specifying how those
problems relate to each other. Very high level languages and systems, perhaps graphically based,
not only would facilitate the use of mathematical software from the user's point of view, but
also would help to automate the determination of e�ective partitioning, mapping, granularity, data
structures, etc. However, new concepts in problem speci�cation and representation may also require
new mathematical research on the analytic, algebraic, and topological properties of problems (e.g.,
existence and uniqueness).

We have already begun work on developing such templates for sparse matrix computations.
Future work will focus on extending the use of templates to dense matrix computations.

We hope the insight we gained from our work will inuence future developers of hardware,
compilers and systems software so that they provide tools to facilitate development of high quality
portable numerical software.

The EISPACK, LINPACK, and LAPACK linear algebra libraries are in the public domain, and
are available from netlib. For example, for more information on how to obtain LAPACK, send the
following one-line email message to netlib@ornl.gov:

send index from lapack

Information for EISPACK and LINPACK can be similarly obtained. We expect to make a prelim-
inary version of the ScaLAPACK library available from netlib in 1993.
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