
- 39 -

144. Andrew B. White, Los AlamosNational Laboratory, P. O. Box 1663, MS-265, Los Alamos,

NM87545

145. DavidL. Williamson, National Center for Atmospheric Research, P. O. Box3000, Boulder,

CO80307

146. Samuel Yee, Air Force Geophysics Lab, Department LYP, HancomAFB, Bedford, MA

01731

147. O�ce of Assistant Manager for Energy ResearchandDevelopment, U.S. Department of

Energy, Oak Ridge Operations O�ce, P. O. Box2001, OakRidge, TN37831-8600

148-157. O�ce of Scienti�c & Technical Information, P. O. Box62, OakRidge, TN37830

- 38 -

127. Daniel A. Reed, Computer Science Department, Universityof Illinois, Urbana, IL61801

128. LeeRiedinger, Director, TheScienceAllianceProgram, Universityof Tennessee, Knoxville,

TN37996

129. GarryRodrigue, Numerical Mathematics Group, Lawrence Livermore National Labora-

tory, Livermore, CA94550

130. Ahmed Sameh, University of Illinois at Urbana-Champaign, Center for Supercomputer

R&D, 469CSRL, 1308West MainSt., Urbana, IL61801

131. Dave Schneider Universityof Illinois at Urbana-Champaign, Center for Supercomputing

ResearchandDevelopment, 319ETalbot - 104 S. Wright Street Urbana, IL61801

132. DavidS. Scott, Intel Scienti�c Computers, 15201N.W. Greenbrier Parkway, Beaverton,

OR97006

133. Robert Schreiber, RIACS, MS 230-5, NASAAmes Research Center, Mo�et Field, CA

94035

134. WilliamC. Skamarock, 3973Escuela Court, Boulder, CO80301

135. Richard Smith, Los Alamos National Laboratory, Group T-3, Mail Stop B2316, Los

Alamos, NM87545

136. Peter Smolarkiewicz, National Center for AtmosphericResearch, MMMGroup, P. O. Box

3000, Boulder, CO80307

137. JurgenSteppeler, DWD, Frankfurterstr 135, 6050O�enbach, WESTGERMANY

138. Rick Stevens, Mathematics andComputer Science Division, Argonne National Labora-

tory, 9700SouthCass Avenue, Argonne, IL60439

139. Paul N. Swarztrauber, National Center for Atmospheric Research, P. O. Box3000, Boul-

der, CO80307

140. Wei Pai Tang, Department of Computer Science, Universityof Waterloo, Waterloo, On-

tario, CanadaN2L3G1

141. HaroldTrease, Los Alamos National Laboratory, Mail StopB257, Los Alamos, NM87545

142. Robert G. Voigt, ICASE, MS 132-C, NASALangley Research Center, Hampton, VA

23665

143. MaryF. Wheeler, RiceUniversity, Department of Mathematical Sciences, P. O. Box1892,

Houston, TX 77251

- 37 -

111. Robert Malone, Los Alamos National Laboratory, C-3, Mail StopB265, Los Alamos, NM

87545

112. LenMargolin, Los Alamos National Laboratory, Los Alamos, NM87545

113. FrankMcCabe, Department of Computing, Imperial College of Science andTechnology,

180Queens Gate, LondonSW72BZ, ENGLAND

114. James McGraw, Lawrence Livermore National Laboratory, L-306, P. O. Box808, Liver-

more, CA94550

115. Paul C. Messina, Mail Code 158-79, CaliforniaInstitute of Technology, 1201E. California

Blvd. Pasadena, CA91125

116. Neville Moray, Department of Mechanical and Industrial Engineering, Universityof Illi-

nois, 1206West GreenStreet, Urbana, IL61801

117. V. E. Oberacker, Department of Physics, Vanderbilt University, Box 1807, Station B,

Nashville, TN37235

118. JosephOliger, Computer Science Department, StanfordUniversity, Stanford, CA94305

119. Robert O'Malley, Departmentof Mathematical Sciences, Rensselaer PolytechnicInstitute,

Troy, NY12180-3590

120. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University of

Virginia, Charlottesville, VA22901

121. RonPeierls, AppliedMathematical Department, BrookhavenNational Laboratory, Up-

ton, NY11973

122. RichardPelz, Dept. of Mechanical andAerospace Engineering, Rutgers University, Pis-

cataway, NJ 08855-0909

123. Paul Pierce, Intel Scienti�c Computers, 15201N.W. Greenbrier Parkway, Beaverton, OR

97006

124. Robert J. Plemmons, Departments of Mathematics andComputer Science, North Car-

olinaState University, Raleigh, NC27650

125. Jesse Poore, Computer Science Department, University of Tennessee, Knoxville, TN

37996-1300

126. AndrewPriestley, Institute forComputational FluidDynamics, ReadingUniversity, Read-

ingRG62AX, ENGLAND

- 36 -

94. Phil Gresho, Lawrence LivermoreNational Laboratory, L-262, P. O. Box808, Livermore,

CA94550

95. WilliamD. Gropp, Mathematics andComputer Science Division, Argonne National Lab-

oratory, 9700SouthCass Avenue, Argonne, IL60439

96. Eric Grosse, AT&TBell Labs 2T-504, MurrayHill, NJ 07974

97. James J. Hack, National Center for Atmospheric Research, P. O. Box3000, Boulder, CO

80307

98. Robert M. Haralick, Department of Electrical Engineering, Director, Intelligent Systems

Lab, Universityof Washington, 402Electrical EngineeringBuilding, FT-10, Seattle, WA

98195

99. Michael T. Heath, Center for Supercomputing Research andDevelopment, 305 Talbot

Laboratory, Universityof Illinois, 104SouthWright Street, Urbana, IL61801-2932

100. Michael Henderson, Los AlamosNational Laboratory, GroupT-3, Los Alamos, NM87545

101. Lennart Johnsson, ThinkingMachines Inc., 245First Street, Cambridge, MA02142-1214

102. MalvynKalos, Cornell Theory Center, Engineering and Theory Center Bldg., Cornell

University, Ithaca, NY14853-3901

103. Hans Kaper, Mathematics andComputer Science Division, ArgonneNational Laboratory,

9700S. Cass Avenue, Bldg. 221Argonne, IL60439

104. AlanH. Karp, IBMScienti�c Center, 1530Page Mill Road, PaloAlto, CA94304

105. Kenneth Kennedy, Department of Computer Science, Rice University, P. O. Box 1892,

Houston, Texas 77001

106. TomKitchens, ER-7, AppliedMathematical Sciences, Scienti�c ComputingSta�, O�ce

of EnergyResearch, O�ce G-437Germantown, Washington, DC20585

107. Peter D. Lax, Courant Institute of Mathematical Sciences, NewYork University, 251

Mercer Street, NewYork, NY10012

108. James E. Leiss, Rt. 2, Box142C, Broadway, VA22815

109. RichLoft, National Center for AtmosphericResearch, P. O. Box3000, Boulder, CO80307

110. Michael C. MacCracken, Lawrence LivermoreNational Laboratory, L-262, P. O. Box808,

Livermore, CA94550

- 35 -

76. RayCline, SandiaNational Laboratories, Livermore, CA94550

77. Alexandre Chorin, Mathematics Department, Lawrence Berkeley Laboratory, Berkeley,

CA94720

78. James Corones, Ames Laboratory, IowaState University, Ames, IA50011

79. JeanCot�e, RPN, 2121TranscanadaHighway, Suite 508, Dorval, QuebecH9P1J3, CANADA

80. JohnJ. Dorning, Department of Nuclear EngineeringPhysics, ThorntonHall, McCormick

Road, Universityof Virginia, Charlottesville, VA22901

81. LarryDowdy, Computer Science Department, Vanderbilt University, Nashville, TN37235

82. IainS. Du�, Atlas Centre, RutherfordAppletonLaboratory, Didcot, OxonOX11 0QX,

England

83. JohnDukowicz, Los Alamos National Laboratory, GroupT-3, Los Alamos, NM87545

84. RichardE. Ewing, Department of Mathematics, University of Wyoming, Laramie, WY

82071

85. IanFoster, Mathematics andComputer Science Division, Argonne National Laboratory,

9700SouthCass Avenue, Argonne, IL60439

86. Geo�reyC. Fox, Northeast Parallel Architectures Center, Syracuse University, Syracuse,

NY13244-4100

87. Chris Fraley, Statistical Sciences, Inc., 1700 Westlake Ave. N, Suite 500, Seattle, WA

98119

88. Paul O. Frederickson, RIACS, MS230-5, NASAAmes ResearchCenter, Mo�et Field, CA

94035

89. Dennis B. Gannon, Computer Science Department, IndianaUniversity, Bloomington, IN

47401

90. J. AlanGeorge, Vice President, Academic andProvost, Needles Hall, Universityof Wa-

terloo, Waterloo, Ontario, CANADAN2L3G1

91. James Glimm, Department of Mathematics, State Universityof NewYork, StonyBrook,

NY11794

92. Gene Golub, Computer Science Department, StanfordUniversity, Stanford, CA94305

93. JohnGustafson, 236Wilhelm, Ames Laboratory, IowaState University, Ames, IA50011

- 34 -

61. DavidH. Bailey, NASAAmes, Mail Stop 258-5, NASAAmes Research Center, Mo�et

Field, CA94035

62. EdwardH. Barsis, Computer Science andMathematics, P. O. Box5800, SandiaNational

Laboratory, Albuquerque, NM87185

63. ColinBennett, Department of Mathematics, Universityof SouthCarolina, Columbia, SC

29208

64. Dominique Bennett, CERFACS, 42 Avenue Gustave Coriolis, 31057 Toulouse Cedex,

FRANCE

65. Marsha J. Berger, Courant Institute of Mathematical Sciences, 251Mercer Street, New

York, NY10012

66. Mike Berry, Department of Computer Science, Universityof Tennessee, 107Ayres Hall,

Knoxville, TN37996-1301

67. AkeBjorck, Department of Mathematics, LinkopingUniversity, S-58183Linkoping, Swe-

den

68. JohnH. Bolstad, Lawrence Livermore National Laboratory, L-16, P. O. Box808, Liver-

more, CA94550

69. George Bouriano�, Superconducting Super Collider Laboratory, 2550Beckleymeade Av-

enue, Suite 260, Dallas, TX75237-3946

70. RogerW. Brockett, WangProfessor of EEandCS, Pierce Hall, 29OxfordStreet, Harvard

University, Cambridge, MA02138

71. Donald J. Dudziak, Department of Nuclear Engineering, 110BBurlington Engineering

Labs, NorthCarolinaState University, Raleigh, NC27695-7909

72. Bill L. Buzbee, National Center for Atmospheric Research, P. O. Box3000, Boulder, CO

80307

73. CaptainEdwardA. Carmona, Parallel ComputingResearchGroup, U.S. Air ForceWeapons

Laboratory, KirtlandAFB, NM87117

74. JohnCavallini, Acting Director, Scienti�c Computing Sta�, AppliedMathematical Sci-

ences, O�ce of EnergyResearch, U.S. Department of Energy, Washington, DC20585

75. I-liangChern, Mathematics andComputer Science Division, Argonne National Labora-

tory, 9700SouthCass Avenue, Argonne, IL60439

- 33 -

ORNL/TM-12252

INTERNAL DISTRIBUTION

1. B. R. Appleton 24-28. S. A. Raby

2. C. Bottcher 29-33. R. F. Sincovec
3. B. A. Carreras 34. G. M. Stocks

4-8. J. Choi 35. M. R. Strayer
9-10. T. S. Darland 36-40. D. W. Walker
11-15. J. J. Dongarra 41-45. R. C. Ward

16. J. B. Drake 46. P. H. Worley
17. T. H. Dunigan 47. Central ResearchLibrary

18. W. R. Emanuel 48. ORNLPatent O�ce
19. R. E. Flanery 49. K-25AppliedTechnologyLibrary

20. W. F. Lawkins 50. Y-12Technical Library
21. M. R. Leuze 51. LaboratoryRecords Department - RC
22. R. Mann 52-53. LaboratoryRecords Department
23. C. E. Oliver

EXTERNAL DISTRIBUTION

54. DavidNelson, Director of Scienti�c Computing, ER-7, AppliedMathematical Sciences,

O�ce of EnergyResearch, U. S. Department of Energy, Washington, DC20585

55. FredHowes, O�ce of Scienti�c Computing, ER-7, AppliedMathematical Sciences, O�ce

of EnergyResearch, U. S. Department of Energy, Washington, DC20585

56. Gary Johnson, O�ce of Scienti�c Computing, ER-7, Applied Mathematical Sciences,

O�ce of EnergyResearch, U. S. Department of Energy, Washington, DC20585

57. ThomasA. Callcott, Director, TheScienceAllianceProgram, 53TurnerHouse, University

of Tennessee, Knoxville, TN37996

58. A. W. BojanczykSchool of Electrical Engineering, Cornell University, ETCBuilding, Rm

337, Ithaca, NY14853-6367

59. Christopher R. Anderson, Department of Mathematics, Universityof California, Los An-

geles, CA90024

60. DavidC. Bader, Atmospheric andClimate ResearchDivision, O�ce of HealthandEn-

vironmental Research, O�ce of Energy Research, ER-76, U.S. Department of Energy,

Washington, DC20585

- 31 -

[20] G. C. Fox, S. W. Otto, andA. J. G. Hey. Matrix algorithms on a hypercube I: Matrix

multiplication. Parall el Computing, 4:17{31, 1987.

[21] S. Huss-Lederman, E. M. Jacobson, A. Tsao, and G. Zhang. Matrix multiplication on

the Intel Touchstone Delta. Technical report, SupercomputingResearchCenter, 1993. in

preparation.

[22] Intel Corporation. Touchst one Del t a Fort ran Cal l s Reference Manual , April 1991.

[23] Intel Corporation. Touchst one Del t a Syst emUser's Gui de, October 1991.

[24] C. LinandL. Snyder. Amatrixproduct algorithmand its comparative performance on

hypercubes. InProceedi ngs of t he 1992 Scal abl e Hi gh Perf ormance Comput i ng Conf erence,

pages 190{194. IEEEPress, 1992.

[25] R. Little�eld. Characterizing and tuning communications performance for real applica-

tions. In Proceedi ngs, Fi rst Int el Del t a Appl i cat i on Workshop, CCSF-14- 92, Pasadena,

Cal i f orni a, pages 179{190, February1992. presentationoverheads.

- 30 -

[9] J. Choi, J. J. Dongarra, andD. W. Walker. Level 3BLASfor distributedmemoryconcur-

rent computers. InProceedi ngs of Envi ronment and Tool s f or Paral l el Sci ent i �c Comput i ng

Workshop, (Sai nt Hi l ai re du Touvet , France). Elsevier Science Publishers, September 7-8,

1992.

[10] J. Choi, J. J. Dongarra, andD. W. Walker. Parallel matrixtranspose algorithms ondis-

tributedmemoryconcurrent computers. Technical Report TM-12309, OakRidgeNational

Laboratory, Mathematical Sciences Section, April 1993.

[11] J. Demmel, J. J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, andD. Sorensen.

Prospectus for the development of alinear algebralibraryfor highperformance computers.

Technical Report 97, Argonne National Laboratory, Mathematics andComputer Science

Division, September 1987.

[12] J. J. Dongarra. Workshoponthe BLACS. LAPACKWorkingNote 34, Technical Report

CS-91-134, Universityof Tennessee, 1991.

[13] J. J. Dongarra, I. Du�, J. Du Croz, and S. Hammarling. Aset of level 3 basic linear

algebra subprograms. ACMTOMS, 16:1{17, March1990.

[14] J. J. Dongarra, I. S. Du�, D. C. Sorensen, andH. A. vander Vorst. Sol vi ng Li near Syst ems

on Vect or and Shared Memory Comput ers . SIAM, Philadelphia, PA, 1990.

[15] J. J. Dongarra, R. Hempel, A. J. G. Hey, and D. W. Walker. Aproposal for a user-

level, message passing interface in a distributedmemory environment. Technical Report

TM-12231, OakRidge National Laboratory, March1993.

[16] J. J. Dongarra, R. vande Geijn, andD. Walker. Alookat scalable linear algebra libraries.

InProceedi ngs of t he 1992 Scal abl e Hi gh Perf ormance Comput i ng Conf erence, pages 372{

379. IEEEPress, 1992.

[17] J. J. Dongarra andR. A. vande Geijn. Twodimensional basic linear algebra communi-

cationsubprograms. LAPACKWorkingNote 37, Technical Report CS-91-138, University

of Tennessee, 1991.

[18] A. C. Elster. Basic matrixsubprograms for distributedmemorysystems. InD. W. Walker

andQ. F. Stout, editors, Proceedi ngs of t he Fi f t h Di st ri but ed Memory Comput i ng Conf er-

ence, pages 311{316. IEEEPress, 1990.

[19] R. D. Falgout, A. Skjellum, S. G. Smith, and C. H. Still. The multicomputer toolbox

approachto concurrent BLAS andLACS. InProceedi ngs of t he 1992 Scal abl e Hi gh Per-

f ormance Comput i ng Conf erence, pages 121{128. IEEEPress, 1992.

- 29 -

Access to this facilitywas providedthroughthe Center for ResearchonParallel Computing.

6. References

[1] P. R. Amestoy, M. J. Dayde, I. S. Du�, andP. Morere. Linear algebra calculations onthe

BBNTC2000. InG. Goos andJ. Hartmanis, editors, Proceedi ngs of Second Joi nt Int er-

nat i onal Conf erence on Vect or and Paral l el Processi ng, pages 319{330. Springer-Verlag,

1992.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum,

S. Hammarling, A. McKenney, and D. Sorensen. LAPACK: Aportable linear algebra

library for high-performance computers. InProceedi ngs of Supercomput i ng ' 90, pages 1{

10. IEEEPress, 1990.

[3] E. Anderson, Z. Bai, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling,

A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Gui de. SIAMPress,

Philadelphia, PA, 1992.

[4] E. Anderson, A. Benzoni, J. Dongarra, S. Moulton, S. Ostrouchov, B. Tourancheau, and

R. van de Geijn. Basic Linear Algebra Communication Subprograms. In Si xt h Di s-

t ri but ed Memory Comput i ng Conf erence Proceedi ngs , pages 287{290. IEEEComputer So-

cietyPress, 1991.

[5] M. Barnett, D. G. Payne, andR. vande Geijn. Optimal minimumspanning tree broad-

casting inmesh-connected architecture. Technical Report TM-91-38, The University of

Texas at Austin, December 1991.

[6] P. Berger, M. J. Dayde, andP. Morere. Implementationanduse of Level 3BLASkernels

on a transputer T800 ring network. Technical Report TR/PA/91/54, CERFACS, June

1991.

[7] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: Ascalable linear

algebra library for distributed memory concurrent computers. InProceedi ngs of Fourt h

Symposi umon t he Front i ers of Massi vel y Paral l el Comput at i on (McLean, Vi rgi ni a) . IEEE

Computer SocietyPress, Los Alamitos, California, October 19-21, 1992.

[8] J. Choi, J. J. Dongarra, and D. W. Walker. The design of scalable software libraries

for distributedmemory concurrent computers. InProceedi ngs of Envi ronment and Tool s

f or Paral l el Sci ent i �c Comput i ng Workshop, (Sai nt Hi l ai re du Touvet , France) . Elsevier

Science Publishers, September 7-8, 1992.

- 28 -

view, andgivenimplementationdetails fromaprocessor point-of-view. Finallywe have shown

howto adapt the communications for a speci�c target machine, the Intel Touchstone Delta

computer, byexploiting its communicationcharacteristics. The general purpose matrixmulti-

plicationroutines developedare universal algorithms that canbe used for arbitrary processor

con�gurationandblocksize.

In general, the �rst dimension of the data matrix may be di�erent fromthe number of

rows of the matrix in a processor. That means, when shiftingA in the MDB2 routine, A

needs to be copiedbefore it is sent out. Instead of a direct copy, the blockcolumns of Aare

presorted so that each processor performs a block version of matrix-matrixmultiplication in

each step. Without this presorting, processors compute multiplications as a block version of

the outer product operation, i.e., a column of blocks is multiplied by a rowof blocks. The

outer product operationperforms well and its performance is almost the same as the routine

with presorting for blocks larger than 5� 5 elements. But for the case of small block sizes,

presorting improves performance. If the �rst dimensionof matrixAis the same as the number

of rows, the presorting is not necessary, andAcan be sent out directly, since after Q shifts

of Aprocessors have their original blocks, andA is unchanged. This scheme may also save

communicationbu�er space. For the transposed matrixmultiplication routines (A T � Band

A�B T), the presorting process improves the performance more than 10% for a block size of

5�5.

Insome cases, the transposedmatrixmultiplicationalgorithmmaybe slower thanthe two

combinedroutines, matrixtranspositionandmatrixmultiplication. That is, C (A T �Bcan

be implementedwith two steps, (T(A T , C(T�B), where extra memory space for T is

necessary. Users canchoose the best routine accordingtotheir machine speci�cations andtheir

application. The performance of the routines not onlydepends onthe machine characteristics,

but also the processor con�gurationandthe problemsize.

The performance of the PUMMApackage canbe improvedwithoptimizedassembly-coded

routines, if available, suchas atwodimensional bu�er copyroutine (T(op (A), where op (A) =

Aor AT), anda twodimensional additionroutine (T(�A+ �T).

The PUMMApackage is currentlyavailable onlyfor double precisionreal data, but will be

implementedinthe near future for other datatypes, i.e., single precisionreal andcomplex, and

double precisioncomplex. Toobtaina copyof the software anda descriptionof howtouse it,

send the followingmessage \send pumma from misc" to netlib@ornl.gov.

Acknowledgments

This researchwas performedinpart using the Intel Touchstone DeltaSystemoperatedbythe

California Institute of Technologyon behalf of the Concurrent Supercomputing Consortium.

- 27 -

A�B AT �B

P �Q MatrixSize RING TREE RING TREE

4�4 2000�2000 0:515 0: 530 0: 488 0: 496
6�6 3000�3000 1: 130 1: 159 1: 081 1: 073
8�8 4000�4000 1: 985 2: 056 1: 908 1: 901
12�12 6000�6000 4: 438 4: 507 4: 260 4: 150
16�16 8000�8000 7: 844 8: 001 7: 542 7: 325

8�9 3960�3960 2: 326 2: 326 2: 321 2: 321
8�10 4400�4400 2: 561 2: 641 2: 493 2: 486
8�12 4800�4800 2: 965 3: 091 2: 956 2: 918
8�16 5600�5600 3: 858 4: 022 3: 707 3: 622

Table 4: Performance inGops withoptimizedcommunicationroutines ontwostructures, ring
andspanningtree. Blocksize is �xedto5�5. The routine forA�Bis faster for atree structure,
but the routine for A T �Bhas better performance for a ring structure.

the products of other group(s) in the same column. After P =GCD � 1 communications and

additions, the partial products in eachgroup of GCD processors are e�ectively added to the

root nodes.

TheA�BandA T �Broutines have been implementedwiththe optimizedcommunications

for the Deltabasedonboththe ringandthe minimumspanning tree structure for broadcasts.

Performance results are shown inTable 4. The non-transposedmatrixmultiplicationroutine

for 8000�8000matrices on16�16nodes performs at about 8.00Gops for the tree structure,

andthe transposedmultiplicationroutine executes at about 7.54Gops for the ring structure.

Theyobtainabout 31.25Mops and29.46Mops per processor, respectively, whichcorrespond

to concurrent e�ciencies of 86%and83%, respectively.

If P andQ are relativelyprime, there is no performance di�erence between tree and ring

versions. The A� B algorithmperforms well for the tree structure. Though broadcasting a

message to the entire column of the processors on the ring is slow, the overall performance

is not inuenced since the stages of the algorithmare pipelined. That is, processors directly

proceed to the next stage as soonas they �nishtheir multiplicationat the current stage.

In a single stage of the A T �B routine, collecting the partial products in a columnof the

processor template is faster for the tree algorithm. However, overall the ring algorithmis

preferred for the A T �Broutine, since stages of the algorithmcanbe pipelined.

5. Conclusions and Remarks

We have presenteda parallel matrixmultiplicationroutine andits variants for the blockscat-

tered decomposition over a two dimensional processor template. We have described howto

developthe algorithms for distributedmemory concurrent computers fromamatrixpoint-of-

- 26 -

0
1
2
3
4
5
6
step 1 step 2 step 3

0
1
2
3
4
5
6
step 1 step 2 step 3

(b) send from other half(a) send from LSB to MSB

Figure 22: Broadcasting on linear arrayof p =7, where nodes are numbered0 through6. P 2

is a root node.

0
1
2
3
4
5
6
step 1 step 2 step 3

0
1
2
3
4
5
6
step 1 step 2 step 3

(b) receive from near nodes(a) receive from MSB to LSB

Figure 23: Collectingonlinear array. P 2 is a root node.

Inthe hypercube scheme, the root node P 2, whichhas the message tobe broadcast, �rst sends

the message toP 3, whose least signi�cant bit (LSB) is di�erent fromthe root node. Thenthe

message is delivered by toggling successive bits fromLSBto the most signi�cant bit (MSB).

Onameshtopologysuchas the Delta, the networktra�c becomes congestedas the broadcast

proceeds, as showninFigure 22 (a).

In order to avoidnetworkcontention, the root node sends the message to the �rst node in

the other half of the processors. Byrecursing for dlog
2
P e similar steps, themessage is delivered

to all nodes without anycontentionas showninFigure 22 (b). Ingeneral, eachcolumnof the

template has P = GCD root nodes in a stage, which broadcast their blocks of B over GCD

processors of the column, whereGCD denotes the greatest commondivisor of P andQ. These

operations are a formof group communi cat i on [15].

For A T � B in Section 3.3, the partial products in the same columnof the processors are

combined and the sumis stored in the root (destination) node. Aspecial collecting scheme

has beendevelopedfor the Delta toavoidnetworkcontention. The newcollecting scheme ona

linear arrayshowninFigure 23(b) is basedonthe broadcasting scheme inFigure 22(b). The

partial products are sent andadded innodes whichare nearer to the root node. Generally, in

each stage of the algorithm, each columnof the template has P = GCD root nodes to collect

the partial products. Partial products of a group of GCD processors are added �rst with

- 25 -

step 1

step 2

(a) Simultaneous rotating scheme

(b) Odd−even rotating scheme

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Figure 21: Two rotating schemes. (a) Nodes �rst send to the left and then receive fromthe
right. (b) In the �rst step, odd-numbered processors send data blocks and even-numbered
processors receive them. In the next step, even-numberedprocessors send andodd-numbered
processors receive. Odd-evenrotating is faster onDelta, but simultaneous rotating is faster on
iPSC/860hypercube.

4.3. Resul ts with Opti mi zed Communi cati on Routi nes for the Intel Del ta

For the implementation of the PUMMApackage, blocking and nonblocking communication

schemes were used. In this section, we modifythe algorithms withoptimizedcommunication

schemes speci�cally for the Intel Touchstone Delta.

First, f orce type communications [22] are incorporated for faster communications. Aforce

type message bypasses the normal owcontrol mechanism, and is not delayed by clogged

message bu�ers onaprocessor. Aforce typemessage is discardedif noreceive has beenposted

on the destinationprocessor prior to its arrival. If force types are not used on the Delta, the

routines canaccommodatematrices upto400�400elements per processor without encounting

problems arisingfromsystembu�er overow[23]. Withforce type communication, the routines

canhandle larger matrices, upto500�500per processor, where themaximumsize is determined

bythe available memoryper processor rather thanbysystembu�er constraints.

Ablockrotatingschemeis usedtoshiftArowwise intheMDB2algorithmof Section3.2and

inthe A T �Broutine of Section3.3. Asimultaneous rotating scheme, showninFigure 21 (a),

may be used on the Intel iPSC/860 hypercube. However, an odd-even rotating scheme is

preferable onthe Delta [25]. This scheme performs the communicationintwo steps as shown

inFigure 21 (b). In the �rst step, odd-numbered processors send their owndata blocks and

even-numberedprocessors receive them. Inthe next step, even-numberedprocessors sendand

odd-numberedprocessors receive.

Inthe original MDB2algorithm, blocks of Bare broadcast ineachcolumnof the template

based ona ring communicationscheme. In the Delta-speci�c MDB2 algorithm, messages are

broadcast based onaminimumspanning tree. Aspecial broadcasting routine is desirable for

the Delta, whichdi�ers fromthat usedonhypercubes [5]. Consider broadcastingamessage on

alinear arrayof p =7processors as showninFigure 22,where nodes are numbered0through6.

- 24 -

P �Q MatrixSize BlockSize A�B AT �B AT �BT

1 � 1 1: 640 1: 529 1: 607
8�8 2400�2400 5 � 5 1: 641 1: 530 1: 619

300�300 1: 643 1: 531 1: 618
1 � 1 1: 902 1: 904 1: 732

8�9 2520�2520 5 � 5 1: 924 1: 939 1: 850
35�35 1: 926 1: 946 1: 860
1 � 1 2: 085 2: 067 1: 961

8�10 2400�2400 5 � 5 2: 107 2: 110 2: 033
60�60 2: 096 2: 123 2: 028
1 � 1 2: 374 2: 121 2: 265

8�12 2400�2400 5 � 5 2: 389 2: 310 2: 306
100�100 2: 397 2: 338 2: 317

Table 2: Dependence of performance onblocksize (Unit: Gops)

P �Q MatrixSize A�B AT �B AT �BT

1�1 400� 400 36: 21 (100: 0) 35: 54 (100: 0) 34: 58 (100: 0)
8�8 3200�3200 27: 77 (76: 7) 25: 86 (72: 8) 27: 36 (79: 1)
8�9 3240�3240 29: 00 (80: 1) 28: 56 (80: 4) 28: 10 (81: 3)
8�10 3200�3200 28: 25 (78: 0) 27: 74 (78: 1) 27: 47 (79: 4)
8�12 3200�3200 28: 44 (78: 5) 27: 55 (77: 5) 27: 48 (79: 5)

Table 3: Performance per node inMops. Block size is �xed at 5�5 elements. Entries for
the 1�1 template case give the performance of the assembly-coded Level 3 BLAS matrix
multiplicationroutine. Numbers inparenthesis are concurrent e�ciency.

a long time to receive the partial products if P =Q.

Table 2 shows howthe block size has an e�ect on the performance of the algorithms. It

includes three cases of the block size, two extreme cases { the smallest and largest possible

block sizes { and 5�5 block of elements. The algorithms depend only weakly on the block

size. Even for the case of the smallest block size (1�1 element), the algorithms showgood

performance.

Performance per node is showninTable 3. The 1�1 template gives the performance of the

assembly-codedLevel 3BLASmatrixmultiplicationroutine. The numbers inparentheses are

concurrent e�ciency, whichis the relative performance of nodes comparedwiththe maximum

performance of the assembly-coded Level 3 BLAS routine. Approximately 77%e�ciency is

achievedforA�B, 73%forA T �B, and79%forA T �BT if P =Q. The routines performbetter

on templates for whichP 6=Q. More than80%e�ciency is achievedfor all cases if P andQ

are relativelyprime.

- 23 -

0 400 800 1200 1600 2000 2400 2800 3200 3600
0.0

0.5

1.0

1.5

2.0

2.5

Α × Β
Α × Β
Α × Β

Τ

Τ Τ

Matrix Size, M

G
fl

op
s

Figure 19: Performance comparison of three routines on an 8�10 template. P =8; Q =
10; LCM =40; and GCD =2

0 480 960 1440 1920 2400 2880 3360 3840 4320
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Α × Β
Α × Β
Α × Β

Τ

Τ Τ

Matrix Size, M

G
fl

op
s

Figure 20: Performance comparison of three routines on an 8�12 template. P =8; Q =
12; LCM=24; and GCD =4

- 22 -

0 400 800 1200 1600 2000 2400 2800 3200 3600
0.0

0.5

1.0

1.5

2.0

Α × Β
Α × Β
Α × Β

Τ

Τ Τ

Matrix Size, M

G
fl

op
s

Figure 17: Performance comparisonof three routines onan8�8 template. P =Q =LCM =
8; andGCD =8

0 720 1440 2160 2880 3600
0.0

0.5

1.0

1.5

2.0

2.5

Α × Β
Α × Β
Α × Β

Τ

Τ Τ

Matrix Size, M

G
fl

op
s

Figure 18: Performance comparison of three routines on an 8�9 template. P =8; Q =
9; LCM=72; and GCD =1

- 21 -

communicationbandwidthbetweenprocessors, and the size of the matrices. However, for the

MDB2 algorithm, the performance is independent of the block size. We adopted a block size

of 5�5 inall subsequent runs of the matrixmultiplicationroutines.

We next considered how, for a �xed number of processors N p =P �Q, performance de-

pended on the con�gurationof the processor template. Some typical results are presented in

Table 1 fromwhichit maybe seen that the template con�gurationdoes have a small e�ect on

performance, withsquarer templates givingbetter performance thanlong, thintemplates. For

a�xednumber for processors, alarger valueof Q increases the number of outer loops performed,

but reduces the time to broadcast blocks of B across the template. The relative importance

of these twofactors determines the optimal template con�guration. For rectangular templates

withdi�erent aspect ratios, those withsmall Q showbetter performance thanthose withsmall

P . For a�xedprocessor template withsmall P , anMDB2algorithm, inwhichAis broadcast

rowwise andB is shifted columnwise, is preferable to the versiondescribed in Section 3.2, in

whichB is broadcast columnwise andAis shiftedrowwise.

Figure 16(a) shows the performance of the MDB2algorithmonthe Intel TouchstoneDelta

as a functionof problemsize for di�erent numbers of processors for up to 256 processors. In

all cases a square processor template was used, i.e. P =Q, the block size was �xed at 5�5

elements, andthe test matrices were of size upto 400�400 elements per processor.

In Figure 16 (b) we showhowperformance depends on the number of processors for a

�xed grain size. The fact that these isogranularityplots are almost linear indicates that the

distributedmatrixmultiplicationroutine scales well onthe Delta, evenfor small granularity.

4. 2.Compari son wi th TransposedMatri x Mul ti pl i cati on Al gori thms

We comparedthe performance of the MDB2versionof the matrixmultiplicationroutineC=

A�Bwiththat of the transposedmatrixmultiplicationroutines, C=A T �B, andC=A T �BT .

ForC=A�B, we adopteda routine withrowwise broadcastingof Aandcolumnwise shifting

of B. C=A T �B is implementedas described inSection3.3. ForC=A T �BT , B is directly

multipliedwithAto formB�A, whichis then transposed to giveC.

Figures 17, 18, 19, and20showthe performance of the algorithms on8�8, 8�9, 8�10, and

8�12 templates, respectively. Inall cases the blocksize is �xedat 5�5 elements. The solid

andthe dashed lines showthe performance of A�BandA T �BT , respectively. The di�erence

of the two lines is due to the matrix transpose routine used in evaluatingA T �BT . Inmost

cases, the performance of theA T �Balgorithm, whichis drawnwiththe dot-dashed lines, lies

betweenthat of the A�BandA T �BT algorithms, but for the square template inFigure 17,

its performance is worse than that of A T �BT . In the A T �B routine, processors in the same

columnof the template sequentiallyupdate their ownC. Some of the processors have towait

- 20 -

0 1000 2000 3000 4000 5000 6000 7000
0

1

2

3

4

5

6

7

8

4 × 4
6 × 6

8 × 8

12 × 12

16 × 16

Matrix Size, M

G
fl

op
s

(a) Performance of MDB2

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

g = 7.5

g = 30

g = 120

g = 270

g = 480

Number of Processors

G
fl

op
s

(b) IsogranularityPlot

Figure 16: Performance of MDB2 algorithm. (a) Performance in gigaops as a function of
matrixsize for di�erent numbers of processors. (b) Isogranularitycurves inthe (G; N p) plane.
The curves are labeledbythe granularityg inunits of 10 3 matrixelements per processor.

- 19 -

96processors 64 processors 48processors
P �Q Gops P �Q Gops P �Q Gops
6�16 1: 972 4�16 1: 373 4�12 1: 101
8�12 2: 007 8�8 1: 447 6�8 1: 181
12�8 2: 008 16�4 1: 444 8�6 1: 200
16�6 2: 002 12�4 1: 130

Table 1: Dependence of performance ontemplate con�guration(M=N =L =1600).

the existing algorithmfor �ndingB�A, as described inSection3.2, without anymodi�cation

being necessary. Parallel matrix transpose algorithms are described in [10], and are used to

computeC=� A T �BT+� Cas describedabove intwosteps: T=� B�A, thenC=T T+� C.

4. Results

In this section we present performance results for the PUMMApackage on the Intel Touch-

stone Delta system. Matrixelements are generateduniformlyonthe interval [�1; 1] indouble

precision. Conversions betweenmeasured runtimes andperformance ingigaops (Gops) are

made assuming an operation count of 2MNL for the multiplicationof aM�L bya L �N

matrix. Inour test examples, all processors have the same number of blocks sothere is no load

imbalance.

4. 1.Compari son of Three Matri x Mul ti pl i cati on Al gori thms

We �rst compared the three matrixmultiplication algorithms, SDB, MDB1, andMDB2 on

two�xed processor templates. Figures 14 and15 showthe performance of the algorithms on

a square processor template (8�8; P =Q) and a nonsquare template (9�8, P andQ are

relativelyprime), respectively. Two di�erent block sizes are considered to see howblock size

a�ects the performance of the algorithms for a number of di�erent sizedmatrices.

The performance of the SDBandMDB1algorithms improves as the blocksize is increased

from5 to 10, but this change of the block size has almost no e�ect on the performance of

the MDB2 algorithm, since inMDB2 the size of the submatrices multipliedin eachprocessor

(using the assembly-codedLevel 3BLAS) is independent of blocksize. For a square template,

the number of communication steps is the same in the MDB1 andMDB2 algorithms since

LCM =Q, but there is a big di�erence in their performance. This di�erence arises because

the basic operation of the MDB1 algorithmis a multiplicationof a block column of Awith

a single block of B, where as, in the MDB2 algorithm, larger matrices are multiplied in each

step, as explained inSection3.2.

The blocksize is selected by the user. Inmost cases, the optimal block size is determined

by the size and shape of the processor template, oating-point performance of the processor,

- 18 -

0 720 1440 2160 2880 3600
0.0

0.5

1.0

1.5

2.0

2.5

SDB

MDB1

MDB2

Matrix Size, M

G
fl

op
s

(a) blocksize =5

0 720 1440 2160 2880 3600
0.0

0.5

1.0

1.5

2.0

2.5

SDB

MDB1

MDB2

Matrix Size, M

G
fl

op
s

(b) blocksize =10

Figure 15: Performance comparison of the three matrix multiplication routines on a 9�8
processor template.

- 17 -

0 400 800 1200 1600 2000 2400 2800 3200 3600
0.0

0.5

1.0

1.5

2.0

SDB

MDB1

MDB2

Matrix Size, M

G
fl

op
s

(a) blocksize =5

0 400 800 1200 1600 2000 2400 2800 3200 3600
0.0

0.5

1.0

1.5

2.0

SDB

MDB1

MDB2

Matrix Size, M

G
fl

op
s

(b) blocksize =10

Figure 14: Performance comparison of the three matrixmultiplication routines on an 8�8
processor template.

- 16 -

3�2processor template. P 0 computes two(dM b= LCMe) transposedmatrixmultiplications of

blockcolumns of A(A(0 : 11 : 3; 0) andA(0 : 11 : 3; 6)) with its ownsubmatrixB (B(0 : 11 :

3; 0: 11: 2)), andgenerates twoblockrows of C(C (0; 0: 11: 2) andC (6; 0: 11: 2)). The two

rows of Care condensed for fast communications as inthe MDB2 algorithminSection3.2. If

blockcolumns of Aare presortedwithradixLCM (or radixLCM= Q for eachprocessor) at the

beginning of the algorithm, processors compute one transposedmatrixmultiplicationin each

step insteadof dL b= LCMemultiplications as showninFigure 13 (b). Again, the computation

is like a bl ock versionof (transposed) matri x-matri x multiplication.

The case C=A�B T is similar to the C=A T �Balgorithm, but the partial result blocks

of C rotate horizontallyineachstep, andB T shifts upwards after eachstage.

3. 4.Mul ti pl i cati on of TransposedMatri ces , C=AT �BT

Suppose we need to computeC=A T �BT , where Ais L b �M b blocks, B is N b �L b blocks,

andC isM b �N b blocks. One approachis to evaluate the product

C (I; J) =
Lb�1

K=0

[A(K; I)]T � [B(J ; K)]T ; (4)

directlyusingavariant of the matrixmultiplicationroutine inSection3.2, but inwhichblocks

of Aare columncast ineachstep, andblocks of Bare rotated leftwards. The resultant matrix

then has to be blockwise transposed, i.e., blockC (I ; J) must be swappedwithblockC (J ; I),

inorder to obtainC. Thus, for this approachthe algorithmis as follows,

1. locallytranspose eachblockof AandB,

2. multiplyAandBusing variant of parallel algorithm,

3. doa blockwise transpose of the result to get C.

In an actual implementation, the local transpose in (1) can be performedwithin the calls to

the assembly-codedsequential xGEMMroutine.

Another approach is to evaluate C T =B�Aand then transpose the resulting matrix to

obtainC. Inthis case the algorithmis as follows,

1. multiplyBandAusing the parallel algorithminSection3.2,

2. locallytranspose eachblockof result,

3. doa blockwise transpose to get C.

These last twosteps together transposeC T , andmaybedone inanyorder. Theperformance

of bothapproaches is verynearlythe same, but the secondapproachhas the advantageof using

- 15 -

0

3

6

9

 0 2 4 6 8 10

A ⋅

0

3

6

9

 0 2 4 6 8 10

B =

0

3

6

9

 0 2 4 6 8 10

C

(a) C = A B in P from processor point-of-viewT
0⋅

0

3

6

9

 0 6 2 8 4 10

presorted A ⋅

0

3

6

9

 0 2 4 6 8 10

B =

0

6

 0 2 4 6 8 10

condensed C

(b) computation in P with presorted A0
T

Figure 13: C=A T � B inP 0 fromprocessor point-of-view, where P =3, Q =2 andM b =
Nb =L b =12. The shaded area of AandB represents blocks to be multiplied. And that of
C stands for the result blocks to be placedafter multiplicationandsummationprocesses over
the columnof the template.

processors thencomputeC (2; 0: 5 : 2),whichis placedinP 4, and�nallycomputeC (4; 0: 5: 2),

whichis placedinP 2. After this stageAis shiftedtothe left. Withthis scheme, the processors

require three steps to compute C (0 : 5 : 2; 0 : 5 : 2) for the �rst stage of the algorithm. This

procedure is less e�cient, but needs less memoryto holdpartial products.

The loss of e�ciency canbe o�set byoverlapping computationandcommunication. Con-

sider a modi�ed algorithmin which the blocks of C rotate downwards over the processor

template after eachstage. Eachprocessor computes its ownproducts andupdates the received

blocks. The processors receive their owndesiredblocks of Cafter P �1 communications. If P

andQ are relativelyprime as showninFigure 12, all processors have their ownblocks of C in

eachstage. They receive partial products fromthe processor above, addtheir contributions to

the partial products, andthen send themto the processor below. If processors are waitingto

receive the products before multiplyingsome processors have towait a long time whenP =Q

as in Figure 11 (or P andQ are not relatively prime). For these cases, processors compute

their ownmultiplications �rst, and then add themafter they receive the products. This can

be implementede�ectivelywithasynchronous message passi ng tominimize processors' waiting

time to receive the products.

As anexample, consider Figure 13 (a), where 12�12blockmatrices are distributedover a

- 14 -

0

1

2

3

4

5

0 1 2 3 4 5

I1 = 0

0 1

2 3

4 5

0 1

2 3

4 5

0 1

2 3

4 5

0 1

2 3

4 5

0 1

2 3

4 5

0 1

2 3

4 5

(a) Computed blocks of C from matrix point-of-view

0

1

2

3

4

5

0 1 2 3 4 5

I1 = 1

0 1

2 3

4 5

0 1

2 3

4 5

0 1

2 3

4 5

0 1

2 3

4 5

0 1

2 3

4 5

0 1

2 3

4 5

0

3

1

4

2

5

0 2 4 1 3 5

P0 P1

P2 P3

P4 P5

A ⋅

0

3

1

4

2

5

0 2 4 1 3 5

P0 P1

P2 P3

P4 P5

B =
(b) Snapshot of the first stage from processor point-of-view

0

3

1

4

2

5

0 2 4 1 3 5

P0 P1

P2 P3

P4 P5

C

Figure 12: Snapshot of C =A T � Bwhen P =3, Q =2, andM b =N b =L b =6. (a)
Frommatrix point-of-view, the computed blocks of the matrixC in the �rst two stages of
the transposed matrixmultiplication algorithmare shaded. (b) Snapshot of the �rst stage
fromprocessor point-of-view. If P andQ are relativelyprime, the computedblocks of Care
scattered over all processors ineachstage.

columnof processors, P 0, P2, andP 4, compute 3�3 blocks of C (C (0 : 5 : 2; 0 : 5 : 2)), by

multiplyingthe zeroth, secondandfourthblockcolumns of A(A(:; 0 : 5 : 2)) withthe zeroth,

secondandfourthblockcolumns of B(B(:; 0: 5: 2)). After summingover columns theyhave

computedtheir ownrowblocks of C.

WhenQ is smaller thanP , processors needmore memoryto store the partial products, if

they compute their ownproducts �rst and then add themtogether. Imagine the case when

P =4; Q =1andM b =N b =L b =4. Eachprocessor has 1�4blocks of AandB, andit has

1�4 blocks of Cafter the computation. But processors need 4�4 blocks to store their own

partial products. Thus, memoryrequirements do not scale well.

Processors canmultiplyone blockcolumnof Awithwhole blocks of Bineachsteptoavoid

nonscalable memoryuse. Inthe �rst step of Figure 12, P 0, P2, andP 4 compute C (0; 0: 5 : 2)

bymultiplyingA(:; 0) withB(:; 0 : 5 : 2). The computedblocks of Care placed inP 0. These

- 13 -

0

1

2

3

4

5

0 1 2 3 4 5

I1 = 0

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

(a) Computed blocks of C from matrix point-of-view

0

1

2

3

4

5

0 1 2 3 4 5

I1 = 1

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0

3

1

4

2

5

0 3 1 4 2 5

P0 P1 P2

P3 P4 P5

P6 P7 P8

A ⋅

0

3

1

4

2

5

0 3 1 4 2 5

P0 P1 P2

P3 P4 P5

P6 P7 P8

B =
(b) Snapshot of the first stage from processor point-of-view

0

3

1

4

2

5

0 3 1 4 2 5

P0

P4

P8

C

Figure 11: Snapshot of C=A T � Bwhen P =Q =3 andM b =N b =L b =6. (a) From
the matrixpoint-of-view, the computed blocks of the matrixC in the �rst two stages of the
transposed matrixmultiplicationalgorithmare shaded. (b) Snapshot of the �rst stage from
the processor point-of-view. The shaded area of AandB represents blocks to be multiplied,
andthat of Cdenotes blocks computedfromthemultiplication. Onlydiagonal processors have
results inthe �rst stage. After eachstage, Ais shifted to the left.

each consisting of 6�6 blocks, are distributed over a 3�3 processor template as shown in

Figure 11. In each stage, everyQ-thwrapped block diagonal of C is computed. In the �rst

stage, as shown in Figure 11 (b), the processors in the �rst columnof the template, P 0, P3,

andP 6, multiplythe zerothandthirdblockcolumns of A(A(:; 0 : 5 : 3)) withthe zerothand

thirdblock columns of B (B(:; 0 : 5 : 3)). They compute their ownportionof multiplications

andadd themto obtain2�2 blocks of C (C (0 : 5 : 2; 0 : 5 : 2)), whichare placed inP 0. In

this example, where the template is square, only the diagonal processors P 0, P4, andP 8 have

the computed blocks of C for each columnof the template. After the �rst stage, Ashifts to

the left. The next wrappeddiagonal processors P 2, P3, andP 7 have the computedblocks of C

inthe second stage.

Figure 12 shows the case of P =3, Q =2, where C is computed in two stages. The �rst

- 12 -

DOI 1=0; Q�1
DOI 2=0; M b= Q�1

I =I 1+I 2�Q
PARDOJ =0; N b �1

I P =MOD (I +MOD (J ; Q); Mb)
PARDOK1=0; P �1

T (K1) =0: 0
DOK2=0; L b= P �1

K =K1+K2�P
T(K1) =T(K1)+[A(K; I P)] T � B(K; J)

ENDDO
ENDPARDO
DOK1=0; P �1

C(I P ; J) =C(I P ; J)+T(K1)
ENDDO

ENDPARDO
ENDDO
[Roll Aleftwards]

ENDDO

Figure 10: The transposedmatrixmultiplicationalgorithm, C=A T �B. The outer loophas
beensplit intoloops over I 1andI 2 so that the communicationfor several steps canbe sent in
a single message.

are evaluated. Each step consists of block matrixmultiplication to formcontributions to a

wrappeddiagonal blockof C, followedbysummationover columns. Finally, a communication

phase shifts Ato the left byone block.

As intheMDB1matrixmultiplicationalgorithmof Section3.2, the communicationlatency

is reduced by simultaneously performingmultiple instances of the outer I loop separated by

LCM. Againthe communicationlatency is reduced further when instances of the outer loop

separatedbyQ are executedtogether as intheMDB2algorithm. The blocks of Areturntothe

same processor fromwhichthey startedafter theyhave beenrolledQ times. So the algorithm

proceeds inQ stages, in each of which dL b= Qe wrapped diagonal blocks of C are computed.

The pseudocode of the modi�edalgorithmis showninFigure 10.

The transposed matrix multiplication algorithmis conceptually simpler than the non-

transposedmatrixmultiplicationalgorithm. InC=A T �B, processors inthe same columnof

the template compute andaddtheir products, anddistribute the summations to the appropri-

ate positions. The most di�cult aspect when implementing the algorithmis howto addand

distribute the products e�ciently.

As an example, consider the matrixmultiplicationC=A T �Bwhere matrices AandB,

- 11 -

DOI =0; M b �1
PARDOJ =0; N b �1

I P =MOD (I +J ; Mb)
PARDOK =0; L b �1

T(K) =[A(K; I P)] T � B(K; J)
ENDPARDO
DOK =0; L b �1

C(I P ; J) =C(I P ; J) +T(K)
ENDDO

ENDPARDO
[Roll Aleftwards]

ENDDO

Figure 9: The basic transposed matrix multiplication algorithm, C =A T � B for a block
scattereddecomposition. [A(K; I P)] T is the transpose of blockA(K; I P). This algorithmneeds
a sequential DOloopto computeC (I P ; J) byaddingthe temporaryresults T (K) columnwise.

computationis like a bl ock versionof matri x-matri x multiplication.

The communicationschemeof theMDB2algorithmcanbe changedtorowwisebroadcasting

of dL b= P e blocks of Aand columnwise shifting of presortedBwithout decreasing its perfor-

mance. The twoschemes have the same number of steps andthe same amount of computation

per processor ineachstep, but theyhave di�erent communicationstrategies.

3. 3.TransposedMatri x Mul ti pl i cati on Al gori thm, C=AT �B

Wenowdescribe the multiplicationof transposedmatrices, that is, multiplications of the form,

C =A T � B and C =A� B T . The multiplication algorithmof two transposed matrices,

C=A T �BT , is presentedinSection3.4. LinandSnyder [24] has givenanalgorithmcomputing

C=A�B based on a block distribution, that �rst transposes one of the matrices and then

uses a series of blockmultiplicationandreductionsteps to evaluateC.

Consider �rst C=A T �B, where AandBare L b �M b andL b �N b blocks, respectively,

andtheyare distributedwitha blockscattered decomposition. C (I ; J) is thencomputedby

C (I ; J) =

Lb�1

K=0

[A(K; I)]T �B(K; J) (3)

where I =0; 1; : : :; Mb �1, J =0; 1; : : :; Nb �1 and [A(K; I)] T is the transposed block of

A(K; I). As inEquation2, block indices are used, andthe order of summationis arbitrary.

Figure 9gives the pseudocode of the basic transposedmatrixmultiplicationalgorithm. The

algorithmproceeds inL b steps, in eachof whichblocks of C lying along a wrapped diagonal

- 10 -

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

 0 1 2 3 4 5 6 7 8 9 10 11

K = 0

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

K = 1

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

Figure 7: Snapshot of MDB2algorithm. Ineachstage, four (L b= Q =12= 3) wrappeddiagonals
are columncast. The total number of stages is Q.

 0

 2

 4

 6

 8

10

 0 3 6 9

A ⋅

 0

 2

 4

 6

 8

10

 0 3 6 9

B =

 0

 2

 4

 6

 8

10

 0 3 6 9

C

(a) C = A B in P from processor point-of-view⋅ 0

 0

 2

 4

 6

 8

10

 0 6 3 9

presorted A ⋅

 0

 6

 0 3 6 9

condensed B =

 0

 2

 4

 6

 8

10

 0 3 6 9

C

(b) computation in P with presorted A0

Figure 8: C=A�B inP 0 fromprocessor point-of-view, where P =2, Q =3andM b =N b =
Lb =12. Columns of Aare presorted in(b). The shadedareaof AandBrepresents blocks to
be multiplied, andthat of Crepresents blocks to be updatedbythe multiplication.

- 9 -

K = 0

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

K = 1

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

Figure 6: Snapshot of MDB1algorithm. Inthis case P =2, Q =3, andso the LCM of P and
Q is 6. Ineachstage, two(dL b= LCMe=12= 6) wrappeddiagonals are columncast. The total
number of stages is LCM.

phase in the outer loop. Figure 7 shows the four (dL b= Qe =12= 3) wrapped diagonal blocks

of Bbroadcast ineachstage. The pseudocode for this versionof the algorithmis the same as

that shown inFigure 5, except that \LCM" is replaced by \Q." This is called the \MDB2

(Multiple Diagonal Broadcast 2)"algorithm.

Inimplementingthe MDB2algorithm, the granularityof the algorithmis increased. Inthe

�rst stage shown in Figure 7 (K1 =0), the �rst processor P 0 multiplies a columnblockA

(A(0 : 11 : 2; 0)) withB(0; 0); B(0; 3); B(0; 6) andB(0; 9). These blocks of Bare horizontally

adjacent in the 2-dimensional submatrix in P 0, and forma long block rowB(0; 0 : 11 : 3).

These operations are replaced byone multiplication. P 0 multiplies a long block columnof A

(A(0 : 11 : 2; 0)) with a long block rowof B (B(0; 0 : 11 : 3)). The combinedmultiplication

looks like a bl ock versionof the outer product operation. Since dL b= LCMe =2, P 0 needs to

do another outer product operationat the same step, A(0 : 11 : 2; 6) withB(6; 0 : 11 : 3), as

showninFigure 8 (a).

InMDB2 algorithm, the granularityof the algorithmis maximized. P 0 has twoblockrows

of Bto broadcast (B(0; 0 : 11: 3) andB(6; : 11 : 3)), whichare condensed to one large matrix

(B(0 : 11 : 6; 0 : 11 : 3)) for economical communications. If blockcolumns of Aare presorted

with radixLCM in the beginning of the algorithm(or radixLCM= Q in each processor) as

showninFigure 8(b), twoblockcolumns of A(A(0 : 11: 2; 0) andA(0 : 11: 2; 6)) are accessed

as one large matrix (A(0 : 11 : 2; 0 : 11 : 6)). Now, P 0 can complete its operation with one

large matrixmultiplicationof A(0 : 11 : 2; 0: 11: 6) andB(0 : 11: 6; 0: 11 : 3). All processors

compute one matrixmultiplication in each step instead of dL b= LCMe multiplications. The

- 8 -

DOK1=0; LCM�1
[Columncast L b= LCM blocks of B(B(I ; J : Nb : LCM); I =0: Lb;
J =MOD (I +K1; LCM)) along eachcolumnof template]
DOK2=0; L b= LCM�1

K =K1+K2�LCM
PARDOI =0; M b �1

KP =MOD (K +MOD (I ; LCM); Lb)
PARDOJ =0; N b �1

C(I ; J) =C(I ; J) +A(I ; KP) � B(KP ; J)
ENDPARDO

ENDPARDO
ENDDO
[Roll Aleftwards]

ENDDO

Figure 5: MDB1algorithm, whichis adistributedmatrixmultiplicationalgorithmsuitable for
a blockscattered decomposition. The outer K loophas been split into loops over K1 andK2
so that the communicationfor several steps canbe sent ina single message.

LCM blocks as anLCM block. Blocks belong to the same processor if their relative locations

are the same ineachsquareLCM block. The concept of theLCM blockis veryuseful, since an

algorithmmaybe developedfor the �rst LCM block, and thenbe appliedto the other LCM

blocks, whichall have the same structure anddatadistributionas the �rst LCM block. That

is, whenanoperation is executed ona blockof the �rst LCM block, the same operation can

be done simultaneously onother blocks, whichhave the same relative location in eachLCM

block.

For ablockscattereddecompositionthe communicationlatencycanbe reducedbyperform-

ingmultiple instances of the outer K loop(see Figure 3) together. The communicationlatency

is reduced when instances of the outer K loop separated byLCM are grouped together, as

showninFigure 5. We call this the MDB1(Multiple Diagonal Broadcast 1) algorithm. Inthis

case the parallel algorithmproceeds inLCM stages, ineachof whichdL b= LCMe blocks of the

Bmatrixare broadcast downeachcolumnof the template bya single communicationphase in

the outer loop. InFigure 6we showthe two(dL b= LCMe=12= 6) wrappeddiagonal blocks of

Bbroadcast inthe �rst twostages of the algorithm. The size of the submatrices multipliedin

eachprocessor cannot be increasedandit is the same as inthe SDBalgorithm.

The communicationlatencycanbe reducedevenfurther bynotingthat the data for matrix

A returns to the processor in which it started after Ahas been rolledQ times. Thus, we

introduce a thirdvariant of the parallel algorithmthat proceeds inQ stages, ineachof which

dL b= Qe blocks of B are broadcast down each template column by a single communication

- 7 -

K = 0

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

K = 1

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

Figure 4: Snapshot of SDBalgorithm. The blocks of the matrixBcommunicatedin the �rst
two stages of the matrixmultiplicationalgorithmare shownshaded. In this case P =2 and
Q =3. Ineachstage, onlyone wrappeddiagonal is columncast. The total number of stages is
Lb.

3. 2.Matri x Mul ti pl i cati on Al gori thmwi th Bl ock Scattered Decomposi ti on

We nowconsider the multiplicationof matrices distributedwitha blockscattered decomposi-

tion. The blocksizes for matricesAandBare r�s ands �t, respectively, where r , s , andt are

arbitrary. Inthis case the summationinrowI starts at K =I , so the blocks of Bbroadcast in

each stage lie alongdiagonal stripes. The parallel algorithmproceeds inL b stages, in eachof

whichone blockof Bis broadcast alongeachcolumnof the template, andAis rolledleftwards.

We call this the SDB(Single Diagonal Broadcast) algorithm.

Figure 4shows, fromthe matrixpoint-of-view, the wrappeddiagonal blocks of Bbroadcast

in the �rst two stages of the SDBalgorithm, where Bwith12�12 blocks is distributed over

a 2�3 template. Only one wrapped diagonal is columncast in each stage. In implementing

the algorithm, the size of the submatrices multipliedineachprocessor shouldbe maximizedto

optimize the performance of the sequential xGEMMroutine. Fromthe processor point-of-view,

as shown in Figure 2 (b), the �rst processor P 0 has A(0 : 11 : 2; 0 : 11 : 3) andB(0 : 11 :

2; 0 : 11 : 3), and it will have C (0 : 11 : 2; 0 : 11 : 3) after the computation. In the �rst stage

of Figure 4 (K =0), P 0 multiplies A(0; 0); A(2; 0); � � �; A(10; 0) withB(0; 0). These operations

can be combinedas one matrixmultiplicationsince blocks of A(0; 0); A(2; 0); � � � ; A(10; 0) are

verticallyadjacent inP 0. The processor multiplies a long blockcolumnof A(A(0 : 11 : 2; 0))

withone blockB(0; 0). This is the reasonwhywe prefer a scheme of columnwise broadcasting

Btoa scheme of rowwise broadcastingAinour Fortranimplementation, where 2-dimensional

arrays are storedbycolumns.

Denoting the least commonmultiple of P andQ byLCM, we refer to a square of LCM�

- 6 -

DOK =0; L b �1
[Columncast one blockof B(B(I ; MOD (I +K; Nb)); I =0: Lb)
along eachcolumnacross template]
PARDOI =0; M b �1

KP =MOD (K +I ; Lb)
PARDOJ =0; N b �1

C(I ; J) =C(I ; J)+A(I ; KP) � B(KP ; J)
ENDPARDO

ENDPARDO
[Roll Aleftwards]

ENDDO

Figure 3: Adistributed block scattered matrixmultiplication algorithm. The PARDO's in-
dicate over which indices the data are decomposed. All indices refer to blocks of elements.
Communicationphases are indicated insquare brackets.

blockrows andN b blockcolumns. Block(I ; J) of C is thengivenby

C (I ; J) =

Lb�1

K=0

A(I ; K) �B(K; J) (2)

where I =0; 1; : : :; Mb �1, J =0; 1; : : :; Nb �1. In Equation 2 the order of summation is

arbitrary.

Fox et al. initially considered only the case of square matrices in which each processor

contains asingle rowor asingle columnof blocks. That is, the blocks that start the summation

lie along the diagonal. The summationis started at a di�erent point for eachblockrowof C

so that in the phase of the parallel algorithmcorresponding to summation indexK, A(I ; K)

andB(K; J) canbe multipliedinthe processor towhichC (I ; J) is assigned.

This requires eachprocessor containingablockof BtobemultipliedinstepK tobroadcast

that blockalong the columnof the processor template at the start of the step. AlsoAmust

be rolled leftwards at the endof the step so that eachcolumnis overwrittenbythe one to the

right, withthe �rst columnwrapping roundto overwrite the last column. The pseudocode for

this algorithmis shown inFigure 3. Another variant of this algorithminvolves broadcasting

blocks of Aover rows, androllingBupwards.

InFigure 3 andsubsequent �gures a \columncast" is a communicationphase inwhichone

data item(typically a block, or set of blocks) is taken fromeachblock columnof the matrix

and is broadcast to all the other processors in the same column of the processor template.

A\rowcast" is similar, but broadcasts a data itemfromeach block rowof the matrix to all

processors inthe same rowof the template.

- 5 -

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

 0 1 2 3 4 5 6 7 8 9 10 11

(a) matrix point-of-view

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

P0 P1 P2

P3 P4 P5

 0
 2
 4
 6
 8
10
 1
 3
 5
 7
 9
11

 0 3 6 9 1 4 7 10 2 5 8 11

(b) processor point-of-view

Figure 2: AmatrixAwith12�12 blocks is distributedover a 2�3 processor template. (a)
Fromthematrixpoint-of-view. Eachshadedandunshadedarearepresents adi�erent template.
The numberedsquares represent blocks of elements, andthe number indicates at whichlocation
in the processor template the block is stored { all blocks labeled with the same number are
stored inthe same processor. The slanted numbers, onthe left andon the topof the matrix,
represent global indices of block rowand block column, respectively. (b) Fromthe processor
point-of-view, eachprocessor has 6�4blocks.

3. lgorit ms

Toillustratethebasic parallel algorithmweconsider amatrixAdistributedover a2-dimensional

processor template as shown in Figure 2 (a), where Awith 12�12 blocks is distributed

over a 2�3 template. If the matrix distribution is seen fromthe processor point-of-view

as in Figure 2 (b), each processor has several blocks of the matrix and the scattered blocks,

A(0; 0); A(2; 0); A(4; 0); � � �; A(10; 0) are vertically adjacent in the 2-dimensional array in the

�rst processor P 0, and canbe accessed as one long blockcolumnA(0 : 11 : 2; 0). In the same

way, A(0; 0); A(0; 3); A(0; 6); A(0; 9) are horizontally adjacent in P 0, and can be accessed as

one long block rowA(0; 0 : 11 : 3). We exploit this property in implementing the algorithms

to deal with larger matrices instead of several small individual blocks. We assume data are

stored by column in both our Fortran 77 and message passing implementation. In general,

the algorithms are presented fromthe matrix point-of-view, which is simpler and easier to

understand. In dealing with the implementationdetails, we explain the algorithms fromthe

processor point-of-view.

3. 1.The Basi c Matri x Mul ti pl i cati on Al gori thm

Our matrixmultiplicationalgorithmis ablockscattered variant of that of Fox, Hey, andOtto

[20], that deals witharbitrary rectangular processor templates.

Suppose the matrixAhasM b blockrows andL b blockcolumns, andthe matrixBhas L b

- 4 -

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

Α(Μ × Μ) ⋅ Β (Μ × Μ)

Α(Μ × Μ/2) ⋅ Β (Μ/2 × Μ)

Α(Μ/2 × Μ) ⋅ Β (Μ × Μ/2)

Size of M

M
fl

op
s

(a) multiplicationof square matrices

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

Α (500 × Μ) ⋅ Β (Μ × 500)

Α (Μ × 500) ⋅ Β (500 × Μ)

Size of M

M
fl

op
s

(b) multiplicationof non-square matrices

Figure 1: Performanceof DGEMMonone i860processor of the Delta. (a) The routine is tested
withA M�M �BM�M , AM�M=2 �BM=2�M , andA M=2�M �BM�M=2 , where \�"denotes matrix
multiplication, and(b) testedwithA 500�M �BM�500 andA M�500 �B500�M.

- 3 -

anonscattereddistributedversionof xGEMM, andtransformingthe datadecompositiontothis

formif necessary eachtime xGEMMis called, or of providinga scattered versionandthereby

avoidinghavingtotransformthedatadecomposition. Weopt for the latter solutionbecause it is

more general, anddoes not impose onthe user the necessityof potentiallycostlydecomposition

transformations. Since the nonscattered decomposition is just a special case of the scattered

decomposition in which the block size is given by r =dM= P e and s =dN= Qe, where the

matrixsize is M�N , the user still has the optionof using a nonscattered decomposition for

the matrixmultiplication and transforming between decompositions if necessary. The Basic

Linear AlgebraCommunicationSubprograms (BLACS) are intendedtoperformdecomposition

transformations of this type [4 ,12,17].

The decompositions of all matrices involved in a call to a Level 3 BLAS routine must be

compatible with respect to the operation performed. To ensure compatibilitywe impose the

conditionthat all the matrices be decomposedover the same P �Q processor template. Most

distributed Level 3 BLAS routines will also require conditions on the block size to ensure

compatibility. For example, inperforming the matrixmultiplicationC=A�B, if the block

size of Ais r �s then that of BandCmust be s �t andr �t , respectively.

Another advantageous aspect of the distributed Level 3 BLAS is that often a distributed

routine will call sequential Level 3 BLAS routines. For example, the distributed version of

xGEMM, described inSection3.2, consists of a series of steps ineachof whicheachprocessor

multiplies twolocal matrices bya call to the sequential versionof xGEMM. Since highlyopti-

mizedassembly-codedversions of the sequential Level 3BLASalreadyexist onmost processors

we cantake advantage of these inthe distributed implementation.

Figure 1 (a) shows the performance of the DGEMMroutine for square matrices on one

i860processor of the Intel TouchstoneDelta. Ingeneral, performance improves withincreasing

matrixsize andsaturates for matrices of size greater thanM =150. Figure 1(b) shows that in

our Fortranimplementation, for nonsquare matrices, amultiplicationa columnshape of Aby

a rowshape of B is more e�cient than its opposite. Inboth the square andnonsquare cases,

the size of thematrices multipliedshouldbemaximizedinorder tooptimizeperformance of the

sequential assembly-codedversionof xGEMMroutines. Thus, inthePUMMAroutines, instead

of multiplying individual blocks successively on each processor, blocks are conglomerated to

formlarger matrices whichare thenmultiplied.

The distributedLevel 3BLASroutines have similar argument lists to the sequential Level

3BLASroutines. Inthe distributedxGEMMroutine, for example, original matricesAandB,

are preservedas inthe sequential routine. Users, whoare familiar withthe sequential routines,

shouldhave no di�cultyinusing the distributedroutines.

- 2 -

plementations of matrixmultiplicationalgorithms ondistributedmemorymachines [20 ,21,24].

Many of themare limited in their use since they are implemented with a pure block (non-

scattered) distribution, or speci�c (not general-purpose) data distribution, and/or on square

processor con�gurations witha speci�c number of processors (columnand/or rownumbers of

processors are powers of 2). The PUMMApackage eliminates all of these constraints.

The �rst part of this paper focuses onthe designandimplementationof the non-transposed

matrixmultiplicationroutine ondistributedmemoryconcurrent computers. We thendeal with

the other cases. Aparallel matrixtranspose algorithm, inwhichamatrixwithablockscattered

decompositionis transposedover a two-dimensional processor mesh, is presented ina separate

paper [10]. All routines are implementedinFortran77plus message passingandcomparedon

the Intel Touchstone Delta computer.

2. esignIssues

The way in which an algorithm's data are distributed over the processors of a concurrent

computer has a major impact on the load balance and communication characteristics of the

concurrent algorithm, andhence largelydetermines its performance andscalability. The block

scattered (or block cyclic) decomposition provides a simple, yet general-purpose, way of dis-

tributingablock-partitionedmatrixondistributedmemoryconcurrent computers. Inthe block

scattered decomposition, described in detail in [8], a matrix is partitioned into blocks of size

r �s , andblocks separatedbya�xedstride inthe columnandrowdirections are assignedtothe

same processor. If the stride inthe columnandrowdirections is P andQ blocks respectively,

then we require that P Q equals the number of processors, N p. Thus, it is useful to imagine

the processors arranged as aP �Q mesh, or template. Then the processor at position (p ; q)

(0 p < P , 0 q < Q) inthe template is assignedthe blocks indexedby,

(p +i P ; q +j Q); (1)

where i =0; : : :; b(Mb �p �1)= P c, j =0; : : :; b(Nb �q �1)= Qc, andM b �N b is the size of the

matrixinblocks.

Blocks are scattered inthis waysothat goodloadbalance canbemaintainedinalgorithms,

such as LUfactorization [7 ,16], inwhich rows and/or columns of blocks of a matrix become

eliminated as the algorithmprogresses. However, for some of the distributed Level 3 BLAS

routines a scattered decompositiondoes not improve load balance, andmay result in higher

concurrent overhead. The general matrix-matrixmultiplicationroutine xGEMMis anexample

of such a routine for which a pure block (i.e., nonscattered) decomposition is optimal when

considering the routine in isolation. However, xGEMMmay be used in an application for

which, overall, a scattereddecompositionis best. Weare facedwiththe choice of implementing

1. Introduction

Current advanced architecture computers possess hierarchical memories in which accesses to

data in the upper levels of the memoryhierarchy (registers, cache, and/or local memory) are

faster than those in lower levels (shared or o�-processor memory). One technique to more

e�ectively exploit the power of suchmachines is to developalgorithms that maximize reuse of

data held in the upper levels of the hierarchy, thereby reducing the need for more expensive

accesses to lower levels. For dense linear algebra computations this can be done by using

block-partitionedalgorithms, that is by recasting algorithms in forms that involve operations

on submatrices, rather than individual matrix elements. An example of a block-partitioned

algorithmfor LUfactorizationis givenin[7 ,16]. The Level 3Basic Linear AlgebraSubprograms

(BLAS) performa number of commonly-usedmatrix-matrix operations, and are available in

optimizedformonmost computingplatforms rangingfromworkstations uptosupercomputers

[13].

The Level 3BLAShave been successfullyusedas the buildingblocks of anumber of appli-

cations, includingLAPACK, a software librarythat uses block-partitionedalgorithms for per-

formingdense andbandedlinear algebracomputations onvector andsharedmemorycomputers

[2,3,9,11,14]. On sharedmemorymachines block-partitionedalgorithms reduce the number of

times that datamost be fetched fromsharedmemory, while ondistributedmemorymachines

they reduce the number of messages required to get data fromother processors. Thus, there

has been much interest recently in developing versions of the Level 3 BLAS for distributed

memoryconcurrent computers [1 ,6,18,19].

An important routine inthe Level 3BLAS is xGEMMfor performingmatrix-matrixmul-

tiplication. The general purpose routine performs the followingoperations:

C (� A � B +� C

C (� AT � B +� C

C (� A �BT +� C

C (� AT �BT +� C

where \�"denotes matrixmultiplication, A, BandCare matrices, and� and� are scalars.

Inthis paper, wepresent theParallel Universal MatrixMultiplicationAlgorithms(PUMMA)

for performing the above operations ondistributedmemoryconcurrent computers. Uni versal

means that the PUMMAinclude all the above multiplication routines and that their per-

formance depends weakly on processor con�guration and block size. Ablock scattered data

distributionis used, whichcanreproduce manyof the commondatadistributions usedindense

linear algebracomputations [8 ,16], as discussed inthe next section. There have beenmanyim-

PUMMA:

PARALLELUNI ERSALMATRIXMULTIPLICATIONALGORITHMS

ONDISTRIBUTEDMEMOR CONCURRENTCOMPUTERS

JaeyoungChoi

JackJ. Dongarra

DavidW. Walker

Abstract

his a er escri es the ara e ni ersa atri ti i cati on ori th s

on i stri te e or conc rrent co ters. he ac a e i nc es not on

the non-trans ose atri ti i cati on ro ti ne = A� , t a so trans ose ti -

i cati on ro ti nes =A � , =A� , an =A � , or a oc scattere ata

i stri ti on. he ro ti nes er or e ci ent or a i e ran e o rocessor con rati ons

an oc si es. he to ether ro i e the sa e ncti ona i t as the e e

ro ti ne . etai s o the ara e i e entati on o the ro ti nes are i en,

an res ts are resente or r ns on the nte o chstone e ta co ter.

- v -

Contents

1 Introduction : 1
2 DesignIssues : 2
3 Algorithms : 5

3.1 The Basic MatrixMultiplicationAlgorithm : 5
3.2 MatrixMultiplicationAlgorithmwithBlockScatteredDecomposition : : : : : 7
3.3 TransposedMatrixMultiplicationAlgorithm, C=A T �B : : : : : : : : : : : : 11
3.4 Multiplicationof TransposedMatrices, C=A T �BT : : : : : : : : : : : : : : : 16

4 Results : 19
4.1 Comparisonof Three MatrixMultiplicationAlgorithms : : : : : : : : : : : : : 19
4.2 ComparisonwithTransposedMatrixMultiplicationAlgorithms : : : : : : : : : 21
4.3 Results withOptimizedCommunicationRoutines for the Intel Delta : : : : : : 25

5 Conclusions andRemarks : 27
6 References : 29

- iii -

ORNL/TM- 12252

EngineeringPhysics andMathematics Division

Mathematical Sciences Section

PUMMA:

PARALLELUNI ERSALMATRIXMULTIPLICATIONALGORITHMS

ONDISTRIBUTEDMEMOR CONCURRENTCOMPUTERS

JaeyoungChoi

JackJ. Dongarra

DavidW. Walker

Mathematical Sciences Section
OakRidge National Laboratory
P.O. Box2008, Bldg. 6012
OakRidge, TN37831-6367

Department of Computer Science
Universityof Tennessee at Knoxville
107Ayres Hall
Knoxville, TN37996-1301

Date Published: May 1993

Researchwas supportedbythe AppliedMathematical Sciences Re-
searchProgramof the O�ce of EnergyResearch, U.S. Department
of Energy, bythe Defense AdvancedResearchProjects Agencyun-
der contract DAAL03-91-C-0047, administered by the ArmyRe-
searchO�ce, andbythe Center for ResearchonParallel Comput-
ing

Prepared bythe
OakRidge National Laboratory
OakRidge, Tennessee 37831

managedby
MartinMarietta Energy Systems, Inc.

for the
U.S. DEPARTMENTOFENERGY

under Contract No. DE-AC05-84OR21400

