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Abstract

The standard formulation of the conjugate gradient algorithm involves

two inner product computations. The results of these two inner products

are needed to update the search direction and the computed solution.

Since these inner products are mutually interdependent, in a distributed

memory parallel environment their computation and subsequent distribu-

tion requires two separate communication and synchronization phases. In

this paper, we present three related mathematically equivalent rearrange-

ments of the standard algorithm that reduce the number of communication

phases. We present empirical evidence that two of these rearrangements

are numerically stable. This claim is further substantiated by a proof

that one of the empirically stable rearrangements arises naturally in the

symmetric Lanczos method for linear systems, which is equivalent to the

conjugate gradient method.

1 Introduction

The conjugate gradient (CG) method is an e�ective iterative method for solving
large sparse symmetric positive de�nite systems of linear equations. It is robust
and, coupled with an e�ective preconditioner [18], is generally able to achieve
rapid convergence to an accurate solution.
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One drawback of the standard formulation of the conjugate gradient algo-
rithm on distributed memory parallel machines is that it involves the computa-
tion of two separate inner products of distributed vectors. Moreover, the �rst
inner product must be completed before the data are available for computing
the second inner product. Hence, a distributed memory implementation of the
standard conjugate gradient method has two separate communication phases for
these two inner products. Since communication is quite expensive on the current
generation of distributed memory multiprocessors, it is desirable to reduce the
communication overhead by combining these two communication phases into
one.

Saad [15, 16] has shown one rearrangement of the computation that elimi-
nates a communication phase by computing krkk2 based on the relationship

krk+1k
2
2 = �2kkApkk

2
2 � krkk

2
2 (1)

to be numerically unstable. Meurant [10] proposed using (1) as a predictor for
krk+1k and reevaluate the actual norm on the next iteration with an extra inner
product. Van Rosendale [19] has proposed without numerical results an m-step
conjugate gradient algorithm to increase parallelism.

The conjugate gradient algorithm is known to be closely related to the Lanc-
zos algorithm for tridiagonalizing a matrix [4]. Paige [11, 12, 13] has done
detailed analysis to show some variants of the Lanczos algorithm are unstable.
Strakos [17] and Greenbaum [5, 6] have considered the close connection between
the Lanczos and CG algorithm in the analysis of stability of CG computations
under perturbations in �nite arithmetic.

In x2, we present a rearrangement of the conjugate gradient computation
that eliminates one communication phase by computing both inner products
at once. We show a natural association between this rearrangement and the
Lanczos algorithm in x3. A discussion of how this rearrangement of the compu-
tation a�ects the stability properties of the conjugate gradient algorithm and
some MATLAB numerical experiments on the e�ectiveness of the rearrangement
are included in x4.

2 The conjugate gradient algorithm

In this section we will present several variants of the conjugate gradient algo-
rithm, based on elimination of the A-inner product of the search directions.

2.1 The standard formulation

We begin by reviewing the standard conjugate gradient procedure [2, 8] for
solving the linear system

Ax = b : (2)
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For simplicity, we assume a zero initial guess, and residual vector r1 = b, with
hx; yi = xty as the usual inner product.

For k = 1; 2; : : :

k = hrk; rki

�k = k=k�1 (�1 = 0)

pk = rk + �kpk�1 (p1 = r1) (3)

vk = Apk

�k = hpk; vki

�k = k=�k

xk+1 = xk + �kpk

rk+1 = rk � �kvk : (4)

Saad [15, 16] and Meurant [10] have considered eliminating the �rst inner
product for k = hrk; rki. We propose eliminating the second communication
phase by �nding alternative expressions for �k

We will rely on the following intrinsic properties of the CG procedure: the
orthogonality of residual vectors (and equivalently the conjugacy of search di-
rections [8, page 420])

hrk; rk+1i

hrk; rki
�

hpk; Apk+1i

hpk; Apki
= 0 (5)

and the fact that
rtiArj = 0 for ji� jj > 1: (6)

2.2 Rearranged method 1

We derive the �rst rearrangement by expanding ptkApk by substituting pk =
rk + �kpk�1 for both occurrences of pk:

�k = hpk; vki = hpk; Apki

= hrk + �kpk�1; Ark + �kvk�1i

= hrk; Arki + �k hrk; vk�1i+

�k hpk�1; Arki + �2k hpk�1; vk�1i

�k = hrk; Arki + 2�k hrk; vk�1i + �2k�k�1 : (7)

From (4) and (5):

rk = rk�1� �k�1vk�1

hrk; rki = hrk; rk�1i � �k�1 hrk; vk�1i

k = 0� �k�1 hrk; vk�1i : (8)
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Therefore by (7), (8) and �k = k=k�1,

�k = hrk; Arki+ 2�k(�k=�k�1) + �2k�k�1

�k = �k � �2k�k�1; where �k = hrk; Arki : (9)

2.3 Rearranged methods 2 and 3

If we expand the occurrences of pk in ptkApk one at a time we �nd di�erent
arrangements of the algorithm.

�k = hpk; Apki

= hrk + �kpk�1; Apki = hrk; Apki

= hrk; A(rk + �kpk�1)i

= hrk; Arki+ �k hrk; Apk�1i

�k = k + �k�
(1)
k where �

(1)
k = hrk; Apk�1i (10)

Thus we �nd a rearrangement of the conjugate gradient method where we
compute inner products rtkArk, r

t
krk, and rtkApk�1 simultaneously and com-

pute �k = ptkApk by recurrence formula (10).
Successive expansion of pk = rk + �kpk�1 gives

pk = rk + �krk�1 + �k�k�1rk�2+ � � � :

Using equation (6) we then �nd

�k = : : :

= hrk; A(rk + �krk�1 + �k�k�1rk�2 + � � �)i

= hrk; Arki+ �k hrk; Ark�1i (11)

This gives us a rearrangement of the conjugate gradient method where we
compute inner products rtkArk, r

t
krk, and rtkArk�1 simultaneously and com-

pute �k = ptkApk by recurrence formula (11).

2.4 The modi�ed conjugate gradient method

We propose the following rearrangement of the conjugate gradient procedure.
First initialize �1 and v1, by performing one step of the standard algorithm

r1 = b; 1 = hr1; r1i ; p1 = r1; v1 = Ap1

�1 = hp1; v1i ; x2 = (1=�1)p1

For k = 2; 3; : : :

sk = Ark
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Compute k = hrk; rki and �k = hrk; ski

and �
(1)
k = hrk; vk�1i for method 2 only

and �
(2)
k = hrk; sk�1i for method 3 only

�k = k=k�1

pk = rk + �kpk�1

vk = sk + �kvk�1 (vk � Apk) (12)

�k =

8<
:
�k � �2k�k�1 for method 1

�k + �k�
(1)
k for method 2

�k + �k�
(2)
k for method 3

�k = k=�k

xk+1 = xk + �kpk

rk+1 = rk � �kvk :

Note that the above procedure requires extra storage for the vector sk and extra
work in updating the vector vk for all three methods. Methods 2 and 3 require
an additional inner product and storage for vk�1 and sk�1 respectively.

3 Stability proof of method 1

In this section we present a proof of the stability of the �rst method, based on
an equivalence of (7) to a stable recurrence arising from the symmetric Lanczos
process. The outline of the proof is as follows.

First we recall the fact that the conjugate gradients method is a tridiag-
onalization procudure. Recurrence relation (7) in method 1 is then shown to
be equivalent to the pivot recurrence for the factorization of this tridiagonal
matrix. The cornerstone of the proof is that the symmetric tridiagonal matrix
produced by the symmetric Lanczos process gives the same pivot recurrence. If
the original coe�cient matrix is symmetric positive de�nite this recurrence is
stable, hence the scalar recurrence in rearranged method 1 is stable.

The two basic vector updates of the conjugate gradients method

rk+1 = rk �Apk�k; pk+1 = rk+1 + �k+1pk

can be summarized as

R(I � J) = APD; PU = R

where R and P are matrices containing the vector sequences frkg and fpkg as
columns, and

J = (�i;j+1); D = diag(�k); uij =

(
1 if i = j
��j if i+ 1 = j
0 otherwise

:
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With H = (I � J)D�1U (a tridiagonal matrix) we can write this as AR = RH.
For the elements of H we �nd:

hnn =
rtnArn
rtnrn

; hn+1n =
rtnrn

rtn+1rn+1
hnn+1; (13)

where we have used only orthogonality properties and the symmetry of A.
The pivots dkk in the factorization of H satisfy a recurrence

��1n+1 = hn+1n+1 � hn+1n�nnhnn+1;

or, using �k = rtkrk=p
t
kApk and equation (13)

ptn+1Apn+1

rtn+1rn+1
=

rtn+1Arn+1

rtn+1rn+1
� h2nn+1

rtnrn
rtn+1rn+1

�nn:

Divide by rtn+1rn+1 and use the fact that hnn+1 = ��1n �n:

ptn+1Apn+1 = rtn+1Arn+1 � h2nn+1r
t
nrn�n

= rtn+1Arn+1 � �2nr
t
nrn�

�1
n

= rtn+1Arn+1 � �2np
t
nApn:

This shows that the recursive computation of ptnApn in rearranged method 1
is equivalent by mere formula substitution to the pivot recursion for H. (We
gloss over the fact that formulas (13) are based on properties of the conju-
gate gradients method formulated as a three-term recurrence, instead of as the
usual coupled pair of two-term recurrences. We assume comparable numerical
stability properties for these two variants of the basic method.)

The Lanczos method for constructing an orthonormal matrix Q that re-
duces A to symmetric tridiagonal form T by QtAQ = T is easily constructed
from the conjugate gradients method by letting

qn = c�1nnrn where cnn = krnk:

Hence the orthonormal tridiagonalization can be written as

AQ = QT with Q = RC�1; T = C�1HC:

Using the fact that H is tridiagonal and that H = C�1TC with C diagonal,
we �nd that the factorization of T generates the same pivot sequence. If A, and
therefore T , is symmetric positive de�nite, this pivot recursion, and therefore
recurrence (7) is stable.

4 Numerical experiments on stability

The aim of the following experiments is to determine the stability and conver-
gence properties of the modi�ed conjugate gradient procedures.
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We performed a number of MATLAB experiments in solving Ax = b by the
conjugate gradient procedure to study the convergence behavior on di�erent
distributions of eigenvalues of the preconditioned matrix. In Eijkhout's re-
arrangement, hrk; vk�1i is computed by an extra inner product. Meurant's
rearrangement is taken from [10] and the Lanczos rearrangement is adapted
from [4, page 342] by evaluating the two inner products for ~�j together as
~�j = h~rj ; A~rji = h~rj ; ~rji.

Test 1

The matrices considered have the eigenspectrum used by Strakos [17] and Green-
baum and Strakos [6]

�i = �1 +
i � 1

n� 1
(�n � �1)�

n�i; i = 2; : : : ; n; � 2 (0; 1): (14)

We have used n = 100, �1 = 1E�3, � = �n=�1 = 1E5 and � = 0:6; 0:8; 0:9; 1:0
in the experiments. For � = 1, we have a uniformly distributed spectrum, and
� < 1 describes quantitatively the clustering at �1.

Test 2

The eigenspectrum has a gap, f1; : : : ; 50; 10051; : : :; 10100g.

Test 3

The eigenspectrum has double eigenvalues, f1; 1; 2; 2; : : :; 50; 50g.

Test 4

The eigenspectrum consists of the roots of the Chebyshev polynomial Tn(x)
shifted from [�1; 1] to the interval [a; b]

�i =
(b� a)

2
cos

�
�=2 + (i � 1)�

n

�
+

(b+ a)

2
; i = 1; : : : ; n: (15)

We have used n = 100, a = 1, b = 1E5.
As done in Hageman and Young [7], Greenbaum [5] and Strakos [17], we

operate on diagonal matrices. This procedure is equivalent to representing all
vectors over the basis of eigenvectors of matrix A. In all cases, a random1 right
hand side and zero initial guess are used.

We display the decrease of A-norm of the error at each iteration divided by
the A-norm of the initial error

h~x� xk; A(~x� xk)i
1=2

h~x� x0; A(~x� x0)i
1=2

; ~x = A�1b: (16)

1uniform over [�1;1]
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Figure 1: Classical CG on Test 1. Dashed curve: � = 0:6; dotted curve: � = 0:8;
dash-dot curve: � = 0:9; solid curve: � = 1.
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Figure 2: Modi�ed CG on Test 1. Dashed curve: � = 0:6; dotted curve: � = 0:8;
dash-dot curve: � = 0:9; solid curve: � = 1.
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Eijkhout Rearrangement, n=100, kappa=100000

Figure 3: Eijkhout Rearrangement on Test 1. Dashed curve: � = 0:6; dotted
curve: � = 0:8; dash-dot curve: � = 0:9; solid curve: � = 1.
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Figure 4: Meurant Rearrangement on Test 1. Dashed curve: � = 0:6; dotted
curve: � = 0:8; dash-dot curve: � = 0:9; solid curve: � = 1.
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Figure 5: Lanczos Rearrangement on Test 1. Dashed curve: � = 0:6; dotted
curve: � = 0:8; dash-dot curve: � = 0:9; solid curve: � = 1.
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Figure 6: Classical CG on Tests 2{4. Solid curve: Test 2; dashed curve: Test 3;
dotted curve Test 4.
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Figure 7: Modi�ed CG on Tests 2{4. Solid curve: Test 2; dashed curve: Test 3;
dotted curve Test 4.
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Figure 8: Eijkhout Rearrangement on Tests 2{4. Solid curve: Test 2; dashed
curve: Test 3; dotted curve Test 4.
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Figure 9: Meurant Rearrangement on Tests 2{4. Solid curve: Test 2; dashed
curve: Test 3; dotted curve Test 4.
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Figure 10: Lanczos Rearrangement on Tests 2{4. Solid curve: Test 2; dashed
curve: Test 3; dotted curve Test 4.
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Table 1: Description of test problems.

Problem Order Nonzeros Description
BCSSTK13 2003 11973 Fluid Flow Generalized Eigenvalues
BCSSTK14 1806 32630 Root of Omni Coliseum, Atlanta
BCSSTK15 3948 60882 Module of an O�shore Platform
BCSSTK18 11948 80519 R.E.Ginna Nuclear Power Station

Figures 1{5, display the convergence results from Test 1. Note that for
� = 0:8; 0:9 both the standard and modi�ed CG procedures exhibit similar
slow convergence behavior. Figures 6{10 display the convergence results on
Tests 2{4. For Test 1 with � = 0:6, the standard CG algorithm shows the best
convergence properties. Eijkhout's rearrangement has slightly better stability
properties than modi�ed CG. The other results are essentially the same.

All the results on Tests 2{4 again show similar convergence behavior among
the standard CG and the di�erent rearrangements of CG.

5 Parallel performance

To gauge the e�ectiveness of the modi�ed CG procedure, we performed a number
of experiments in comparing the run-time in standard CG and modi�ed CG.
The test matrices are chosen from the Harwell-Boeing Test Collection [3]. The
experiments are performed on 16 nodes of the iPSC/860 hypercube. Each matrix
is �rst reordered by the bandwidth reducing Reverse Cuthill-McKee ordering [9].
The matrix is then equally block partitioned by rows and distributed across the
processors in ELLPACK format [14]. In all cases, a random right hand side and
zero initial guess are used, and convergence is assumed when

krkk2 � 10�8kr0k2: (17)

The conjugate gradient procedure is rarely used without some form of pre-
conditioning to accelerate convergence. In the tests described below, we use
a block preconditioner derived as follows: Let Ai be the diagonal block of the
matrix A contained in processor i, and write Ai = Li + Di + Lt

i where Li is
strictly lower triangular and Di is diagonal. Then the preconditioning matrix
M is M = diag(M1;M2; : : : ;Mp), where Mi = (Li + Di)D

�1
i (Li + Di)t. As

shown in Axelsson and Barker [1], this corresponds to each processor doing a
single SSOR step (with ! = 1) on its diagonal block Ai. This preconditioner
requires no added communication among the processors when implemented in
parallel.

Table 1 is a brief description of the problems selected from the Harwell-
Boeing Test Collection. Table 2 shows the number of iterations and time (in
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Table 2: Timing results.

standard CG modi�ed CG
Problem Iterations Time Iterations Time

BCSSTK13 1007 19.56 1007 16.99
BCSSTK14 232 2.72 232 2.35
BCSSTK15 376 7.60 376 6.72
BCSSTK18 697 34.55 697 32.80

seconds) required to solve the corresponding problems. In all cases, the modi�ed
CG shows an improvement in the time required for solution, ranging from 5%
to 13%. Moreover, the modi�ed CG rearrangement shows no unstable behavior
since it takes almost exactly the same number of iterations as standard CG.

6 Conclusion

We have presented a rearrangement of the standard conjugate gradient proce-
dure that eliminates one synchronization point by performing two inner products
at once. The rearrangement has a natural connection with the Lanczos process
for solving linear equations. Although not a proof, MATLAB simulations indicate
that the rearrangement is stable. Moreover, computational experiments using
parallel versions of both the modi�ed and standard conjugate gradient algo-
rithms show that the modi�ed version reduces the execution time by as much
as 13% on an Intel iPSC/860 with 16 processors.
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