References [10]J. J. Tongarra, J. Du Ctoz, S. Hammarling, and
I. Duff. Aset of level 3 basic linear al gebra sub-

[1] E. Anderson, Z. Bai, C. Bischof, J. Demnel, prograns. AMTransactions on Mthenatical
J. Dongarra, J. DuCroz, A Greenbaum S. Ham Software, 16(1): 1-17, 1990.

marling, A McKenney, and D Sorensen. La'[ll]J. J. Dongarra, R van de Geijn, and D W
pack: Aportable linear algebra library for high-"yy ey Alook at scalable dense linear al gebra
performance conputers. In Proceedings of Super- libraries. InJ. H Saltz, editor, Proceedings of
computing '90, pages 1-10. TFEE Press, 1990. the 1992 Scal able High Ferformance Conputing

. Conference. 1EEE Press, 1992.
[2]E. Anderson, Z. Bai, J. Demmel, J. Dbngarra,

J. DuCroz, A Greenbaum S. Hammarling, [12]J.J. Dongarra. Wrkshop on the BLACS. LA
A MEenney, S. Ostrouchov, and D Sorensen. PACK Wrking Note 34, Technical Report CS-

LAPACK Users’ Guide. SIAMPress, Philadel- 91-134, University of Tennessee, 1991.
phia, PA 1992, [13]J.J. Tongarra and R A van de Geijn. Reduc-

tionto condensed formfor the ei genval ue probl em
on distributed memory architectures. LAPACK
Wrking Note 30, Technical Report (S-91-130,
Uni versity of Tennessee, 1991. Tb appear in Far-
al lel Conputing.

[3]E. Anderson, A Benzoni, J. Dongarra, S. Mul-
ton, S. trouchov, B. Tourancheau, and
R. van de Geijn. LAPACKfor distributed nem
ory architectures: Progress report. In Farallel
Processing for Scientific Computing, Fifth SIAM
Conference. STAM 1991. [14]G Fox, S. Hiranandani, K Kennedy, C Koel bel,
U Kenmer, GW Tseng, and MY. W. For-
[4]C C Ashcraft. The distributed solution of lin-tran Dlanguage specification. Technical Report
ear systens using the torus wrap data mapping. CRPG TRY0079, Center for Research on Parallel
Engineering Conputing and Anal ysis Technical Conputation, Rice University, Decenber 1990.

Report ECA TR 147, Boeing Conputer Services,
[15]G C. Fox, M A Johnson, G A Lyzenga, S. W

1990.
Oto, J. K Salmon, and D W Wl ker. Solving
[5]R Brent. The LINPACKbenchmark on the AP H”oble?m on Concurrent H”ocessm.”s, vol une 1.
1000: Prelimnary report. In Proceedings of the Prentice Hall, Englewood (iffs, N.J., 1988.
Znd CAP Workshop, NOV 1991. [16]A. Gapta and V. Kunar. On the scalability of

) FFT on parallel conputers. 1In PFroceedings of

[6]J. Choi, J. J. Ibngarra, and DO W. Wilker. The the Frontiers 90 Conference on Mssively Par al -
designof distributedlevel 3 BLASroutines, 1992. ;. Comput ation, (ctober 1990. Also available
1n preparation. as a technical report TR 90-20 fromthe Com

]]] puter Science Ikpartment, University of Mn-
[7T]E. F. Van de Wlde. TData redistribution and nesota, Mnneapolis, MN55455.

concurrency. Farallel Computing, 16, Decenber

1990. [17]Y. Saad and M H Schultz. Parallel direct neth-
ods for sol ving banded linear systens. Techni-
[8]J. Dermel, J. J. Ibngarra, J. Du Croz, cal Report YALEU/DCS/RR- 387, Tkpartnent
A Greenbaum S. Hammarling, and D Sorensen. of Conputer Science, Yale University, 1985.

Prospec.tus for the Flevelopmant of a linear Tll_S]A Skjellumand A Leung. LUfactorization of
gebra library for high perfornance conputers. sparse, unsymmetric, Jacobianmatrices onmul ti-

Technical Report 97, Argonne National Labora- conputers. InD W Vil ker and Q. F. Stout, edi-

tpr Y, é\/htthegt 1 c1598a;1d Conputer Science Divi- tors, Proceedings of the Fifth Distributed Mnory
s1o0m, oseptenber . Concurrent Computing (dnference, pages 328-

[9]J. Dongarra and S. strouchov. LAPACKDbl ock 337. IEEE Press, 1990.
factorization al gorithms on the Intel i PSC/8P09]R A van de Geijn. Massively parallel LINPACK
Technical Report (S-90-115, University of Ten- benchmark on the Intel Touchstone Iklta and
nessee at Knoxville, Conputer Science Depart- 1PSC/860systens. Conputer Science report TR
ment, October 1990. 91-28, Univ. of Texas, 1991.

12 | | | | | | 12 | | | | |
1.221
10 — — 10 — 0500
8 — 8 —
0.195
L% L%
o o
O 6+ — 9 6 -
Y— Y—
O O 0.096
4 — 4 -
2 - 2 -
[——2x16
0 I I I I I I 0 I I I I I
0 4000 8000 12000 16000 20000 24000 28000 0 100 200 300 400 500 600
Matrix Size, M Number of Processors

Figure 4: Perfornmnce in gigaflop/s as a functionkfgure 5: Isogranularity curves in the (lrane.

matrix size for different nunbers of processors. 'The curves are labeled by the granularity ginunits of
108,
this corresponds toamatrixsize of M =100000on512
processors. the data decomposition has been specified the
user does not needtorefer toit againwhencalling
ScaLAPACKr outines.

6 Conclusions
Adistributed LUfactorization al gorithmthat uses
Indevel oping the ScalLAPACK] i brary for performthe distributed Level 3 BLAS routines and an SBS de-
ing dense and banded matrix conputations on dis-conpositionhas beeninplemented onthe Intel Iklta
tributed nenory concurrent conputers three key desystem The perfornance attainedis conparable with
sign decisions have been nade. that obtained with hand-optimzed code. Further-
more, our LU factorization algorithmexhibits good

1. Distributed versions of the Level 3 BLAS ars,ecalability on the Iklta systemif nore than about

used as building blocks, and all interproceﬁ%%of each processor’s nemory is utilized.
commni cation is hidden within these routines. . .)
Future workwill include further optimzationof the

Above the level of the Level 3 BLAS nost of distributed LU factorizati d I tieul .
the ScaLLAPACK code is identical to that of the > ' tPute actorization code. I oparticuial, 1h

correspondi ng LAPACK code for sequential andtie panell factforlzatl(?n ltt, nny ‘.b:hposwbltett.o 1n][():rease
shared nenory nachines. By formul ating com ¢ overiap ob colmnication w coniputation by

putations in terns of Level 3 BLAS routines th]ie)ipelining col umms of L across the processor tenpl ate
nunber of messases. and hence the commmi ca. & SO0 as they are evaluated, rather than pipelining
tionlatency ifre’duced all of the panel across after factoring it. W shall

also focus on conpleting the inplenentation of the
2. The square bl ockscattered deconpositionschermdistributed Level 5 BLAS routines, and devel opingthe
is used to distribute the data. This is sinpbgect-basedinterface to the ScaLAPACKroutines.
but suffici ently general - purpose for most applica-
tions. An SBS deconpositionis paraneterized bAcknowledgments
the block size, r, and the nunber of processors,

Pand @, ineach direction of the processor tem _ . . .
plate. If desired, the user can experiment witIblS research was performedin part usnlgt.he In.tel
these parameters to optim ze an application OnT%uchstone Delta Systemoperated by the California
particul ar machine. Institute of Technol ogy on behal f of the.(bnculjrént
Superconputing Consortium Access to this facility
3. An object-based interface to the ScalLAPACKwas provided through the Center for Research on Par-

routines will nake the library easier touse. @ldel Conputing.

5 Results for the Distributed LU Fac- 6
torization Al gorithm

Inthis section we present performance results for
an inplementation of the distributed LU factoriza—m
tion al gorithmdescribed above on the Intel Touch-&
stone Ikltasystem The Dkltasystemis adistribute
mermory M MD conputer containing 520 1860- based
conpute nodes connected via a tw-dinensional com
mini cation network. Initial experinents investigated
the optinal blocksize, r, and showed that over a wi de
range of problemsize and processor tenpl ate configu-
rations a value of r =51is close tooptinal. Thisis in O
agreenent with the earlier work of van de Geijn [19
In all of our subsequent experinents a block size of
r =b was used.

2_

14

I I I I I
0 3000 6000 9000 12000 15000 18000
Matrix Size, M

Figure 3: Performance in gigaflop/s as a function of

W next consider how performnce depends on natrix size for different processor tenplates contain
the configuration of the processor tenplate. For a P P

given nunber of processors an increase in the nui & APPTox nately equal nunbers of processors.

ber of rows, P, in the processor tenplate decreases

the anount of conputationper processor inthe panel The results in Fig. 4 can be used to assess the scal -
factorization, but increases that inthe triangul aghidlive of our distributed block LUfactorization al go-
phase. Thus, if the conmunicationtine were negligithm In general one would expect the concurrent
ble the optimal aspect ratio, F/Q of the procesgfftiency of a given al gori thmon a gi ven nachine to
tenpl ate woul d equal the ratio of the sequential cdepend on the problemsize, N, and the number of
putation tines of the panel factorization and trpadcessors used,. NThus,

gul ar sol ve phases. The actual optinal aspect ratio

depends on the conmmunication characteristics of the (N N,) :i Ti(N (3)
hardware, and the extent to whi ch commni cation can P N, T(N N,)

be overl apped with conputation. W neasured the
performance for a nunber of different processor te) -
pl ate configurations and probl emsizes and f ound th%]eyprpcessorsl(%) is the t.lIIB tOI“UI.l onone proces-

an aspect ratio, P/Q of between 1/4 and 1/8 to be Ot using the best seque.ntl al al gorithm Anal.gorlthm
optimal, and that performance depends rather weakll perfectly scal abl.e 1.f t he concurrept efftiency de-
upon the aspect ratio, particularly at large grai nRGHds onl y on the grainsize, g, and.not 1ndependently
Sone typical results are showninFig. 3 for 256 procoens—]\]a.nd NP' 'Ihe. effei ency CO‘%ld be investigated by
sors, whichshows a variationof less than QO%ian]rgttlpglsoechlency curves i pheV)(plane [16
formnce as P/Qvaries between 1/16 and 1, for t hefor a.hl ghl.y scal able al gorithmthese curves woul d be
largest problem Masured tines were converted phraight lines. Amore useful approachis to look at

gi gaflop/s by assuning an operation count ot/2M how the performance per processor degrades as the
where Mis the size of the matrix. nunber of processors increases for a fixed grain size,

Oif.e., by plotting isgmudaity curves in the,(§
g{ pne, where Gis the performance in gi gaflop/s. Since

where T(x, y) is the tine for a problemof size ztorun

Figure 4 shows the performance as a function
problemsize for differing nunbers of nodes. In
cases the block size is » =5, and we plot results for Ty N
the processor tenpl ate that gave the best performance Gox W =Ny e(NN,) (4)
for a gi ven nunber of processors. The hi ghest perfor- b
mance of 11.8 ({lop/s was attained for a 8 X 64 pro-scalability can readily be assessed by the extent to
cessor tenplate and a matrixsize of M=26000. Thishich the isogranul arity curves differ fromlinearity.
is close to the value of 14 lop/s reached by van dhe datainFig. 4 can be used to generate the isogran-
CGeijn’s inplementationfor aslightlysnaller prohllesm ty curves shownin Fig. 5 which showthat on the
(M=25000). W expect to be able to optinmize our Deltasystemthe scalabilitystarts to degrade for gran-
inpl enentation further. ularity g < 0.195 x40 Since ¢ = NN, =M 2/N,,

BLAS, (2) the LACS, and (3) assenbly coded routines
for perform ng commnsequential Level 3 BLAS oper- U U
ations, and tasks such as buffer copying. All conmmmu- ereeeegeaneenennanneen
nicationina ScalLAPACKlibraryroutine is perforned| L i C |:> L
withinthe distributed Level 3 BLAS, and so the user S P
is isolated fromthe details of the parallel inplenen- E |_1 E
tation. An inportant consequence of this is that the N P

source code of the hi gher level routines, for exanpl efor

.the LU, @& and Chol esky factf)riza.tions, is identif('f%]llre 2: Schematic di agramshow ng howt he col urm
in the ScaLAPACKand LAPACK1ibraries. LUfac- of blocks B the rowof blocks ¢ and the trailing

torizationinvolves calls t.o the Lével. 3 BLAS TOut LRfSatrix E are updated in one step of the bl ocked
DGEMM for perf(.)rmng.natrlx mil tiplication, .andversion of LUfactorization.
DIRSM for solving triangular systens. Iktails of
the distributedinpl ementationof these Level 3 BLAS
routines is giveniln [bn the LAPACK version of
the right-1ooking LUfactorization al gorithmDGEMM
and DIRSMare used to appl y a rank-» update to the
trailing submatrix, and to performthe lower triangu-
lar sol ve necessary to formthe block rows of U, pheot is found by first having each processor locate a
upper triangul ar matrixobtained by the factorizatRloyet candidate. V¥ canregard the relenments inthe
W have inpl enented a distributed LUfactorizatiopanel rowcontaining the pivot candidate and the in-
routine that makes use of the SBS data distributidax labeling that rowas conprising a data structure,
and the distributed Level 3 BLAS routines, and are Pa of r+ 1 nunbers. FKach processor’s version of D
the process of incorporating a object-based inteifaédput to a logarithmc algorithmthat selects the
The distributed LU factorization algorithmis sipmivot. After this each of the Pprocessors involvedin
lar to that inplenented on the Intel i PSC/860 andelecting the pivot knows the index of the pivot row,
Delta nulticonputers by vande Geiji [1G vena Ipw, and the values of the r elements 1n the panel
square matrix, A, of #M; bl ocks, each consistingrowcontainingthe pivot (thisis the first gowof U
of rxrelements, the al gorithmgenerates the facthdg- 2). The index of the pivot rowis pipelinedacross
ization A=I/in M steps, where Uis an upper the processor tenplate, and the other processors per-
triangular natrix and Lis a lower triangul ar natifiogmthe pivoting. Wile this is goingon, the Ppanel
with 1’s on the diagonal. The algorithmis readpfgcessors complete the pivoting within the panel by
extended to the case of nonsquare matrices. Aftepverwriting rowf of Bby the first row Since all
steps the first kr col umms of Land the first kr rows he panel processors already containthe pivot row, the
of Uhave been eval uated, and the matrix Ahas beentrailing submatrix part of Bcan be updated with no
updated to the formshown in Fig. 2 in which panelfurther commmication. Note howthe communication
Bis (M—k) x1blocks, and Cis 1 xy Mk — 1) of the pivot location to the other processors, and the
blocks. The next step proceeds as follows, pivoting by these processors, is perforned while the
panel processors are working on the panel factoriza-
L. factor Bto formthe next panel of I performion. Thus, it is not true tosay that the other proces-
ing partial pivoting over rows 1f necessary. dJbi§ are conpletelyidle duringthe panel factorization.
evaluates the matrices I, and (yinFig. 2. Finally the panel processors pivot the blocks that they
containlying outside the panel.

2. solve the triangular systdimECto get the
next rowof blocks of U

3. do a rank-r update on the trailing submatrix E, After factoring B the panel i1s pipelined across the

replacing it with=F— L 0. processor tenpl ate. The Qprocessors contal I.li ng the
horizontal panel Ccan then sol ve the lower triangul ar

In general, each of these three phases invol ves 1sgstrem bU; = C'to find U which is then broad-
processor commnication. Wen factoring Bonly theast down the col urms of the tenpl ate using a span-
Pprocessors inasingle column of the processor tamagtree al gorithm FEachprocessor then perforns the
plate are 1nvolved in the conputation, giving riseabk-r update with no further commnication being

l oad imbal ance. For each of the r columms in turn thequired.

MATRIX {
MATRIX_DATA_PART_PTR {
type xmatrix_elements;

% pointer to the matrix element values

int MG_elements; % total number of rows in matrix
int NG_elements; % total number of columns in matrix
int MG_blocks; % total number of rows of r by r blocks in matrix
int NG_blocks; % total number of columns of r by r blocks in matrix
int M_blocks; % number of rows of r by r blocks in each processor
int N_blocks; % number of columns of r by r blocks in each processor
int row_temp_offset; % the template row containing the first matrix block
int col_temp_offset; % the template column containing the first matrix block
char xuser_data; % pointer to user-supplied buffer
}
DECOMPOSITION_PART_PTR{
int r; % the block size
int P; % the number of rows of processors in the template
int Q; % the number of columns of processors in the template
int left_proc; % the ID number of the processor to the left in the template
int right_proc; % the ID number of the processor to the right in the template
int below_proc; % the ID number of the processor below in the template
int above_proc: % the ID number of the processor above in the template
}
STORAGE_PART_PTR {
int elements_by_col; % indicates if blocks are stored by column or row
int blocks_by_col; % indicates if elements in block are stored by column or row
int row_e_offset; % offset between successive elements in same row
int col_e_offset; % offset between successive elements in same column
int row_b_offset; % offset between start of successive blocks in same row
int col_b_offset; % offset between start of successive blocks in same column
}

Figure 1: The matrix object data structure ina Glike pseudocode. The matrix object consists of three poin
one to each of the matrix data, deconposition, and storage parts, the contents of which are as shown. The da
type of the matrixelenents nay be real, conplex, double precisionreal, or double precision conplex.

alignmatrix Bwiththe deconposition, as before. TheThe subroutines that specifythe deconpositionand
second nethodis used to create a submatrix of anextorage only assign values in these data structures.
isting matrix. In this case, we specify the starflheyddo not change the deconposition. W call these
extent of the submatrix, which then inherits the degmmt subroutines. Another set of murysub-
compositionand storage parts fromits parent matrrautines nay be used to extract information fromthe
In the discussion so far it has been assuned that thérix data structure. These inquiry routines m ght
matrix el enents have been assigned val ues, eitheiba mised by an application programmer wishing to
some previous conputational phase, or by reading parformsone task for which there is no appropri-
val ues fromdisk. As a convenience, we supply a thiatd 1ibrary routine, or by soneone wanting to extend
matrix creation nethod that generates a randomma-ScalLAPACK A set of Linear Algebra Commnica-

trix. This is done by a subroutine that takes astiiwon Subroutines (LACS) nay be used to transform
put a randomnunber seed, the size of the matrixthe deconpositionof amatrid][12

and pointers to previously created deconposition and

storage part datastructures. The subroutine allocates

stgrage for the randommatrix, andreturns the Imtrilx Parallel LUFactorization

object. Aleap-frognethod fdbused to generate the

randomnunbers, so for a given matrix size and seed

the matrixis the sane for all processor tenplates. The ScaLAPACKlibraryis built using three types
of routine; (1) distributed versions of the Level 3

This results inscattered blocks of size r x s. WHmmnatrix data part is a pointer to a data structure
viewthe block scattered deconpositionas stanpi nghat contains a pointer to the start of the matrixele-
Px Qprocessor grid, or tenplate, over the matriment val ues for a processor, together with data about
where each cell of the grid covers r x s data itetthe size of the matrix, and the position in the pro-
and 1s labeled by its position in the tenplate. fdmsor nesh of the first block in the distributed nma-
block and scattered deconpositions nay be regardedix. Another pointer specifies work space supplied by
as special cases of the block scattered deconposithempplicationprogramer for storing data generated
In general, the scattered blocks are rectangul ar,dhowng a library call, such as the pivot sequence gen-
ever, the use of nonsquare blocks can lead to coamated by partial pivoting in LUfactorization. The
plications, and additional concurrent overhead. d#ponposition part is a pointer to a data structure
therefore, propose to restrict oursel ves to the gqwang the square block size, r, and the nunber of
block scattered (SBS) class of decompositions. flhwes, P, and columms, @ in the processor nesh (or
col umm and rowdeconpositions canstill be recovertaae). In addition, the deconposition part data
by setting P=1or =1. However, nore general structure contains the IDnunbers of the four nei gh-
deconpositions for which r #s, and neither Pnor (boring processors in the processor nesh. The storage
i1s 1, cannot be reproduced by a SBS deconpositiomart is a pointer to astructure that specifies howthe
These types of decomnposition are not often used mmtrixdataare storedineachprocessor. For exanple,
matrix conputations. whet her the data ineach block are stored by col unms
The SBS deconpositionscheneis practical andsufor rows, and whether the blocks ineach processor are
ficiently general-purpose for nost, if not all, sltased by columms or rows. 'The nemory offsets in
linear al gebra conputations. TFurthernore, in probtrixelenents between an el enent and the next el-
lens, such as LUfactorization, in which rows and/ment in the sane row, and the next elenent in the
colums are elimnated in successive steps, the $8% colummare also containedinthis datastructure,
deconpositionenhances scalability by ensuring sthogether withthe nenory offsets between correspond-
tical 1oad bal ance. ing elenents in adjacent blocks. The specifications of
So far we have On]y considered howto nap Hatrixthe HRtI'iXObjeCt are gl VeninFig. 1. As our research
elements onto the processor tenplate. In deconpcRrogresses we expect to make further changes in the
ing a problemwe nust also specify howlocations centent of the nmatrixobject datastructure. Wintend
t he processor tenpl ate are Happed to physica] prbO use Fortran 90 to 1leenent this object—based 1n-
cessors. Onnost current multicomputers the costtefrface, and are investigating the use of preprocessors
Conmlnicating bet ween anytvvo processors is weakl yhat will allowus to develop a tI’Uly object—oriented
dependent on their separation in the topol ogy of bhbraryinterface.

conmmicati.onnetvmrk. Hence the choice of mapping m cpeate amatrixthe deconposi tionmst first be
shoul'd not impact performnce very mich. ScalA specified. Aroutine is called that returns a pointer

PACKs upports the n&}t ural and Gray cod.e MAPPI NS, ¢ o DECOMPOSITIONPART data structure. The val ues
as well as any mapping function supplied by the apg {he block size

L ; the size of the processor tenplate,
plication programer.

and the I Dnunbers of the neighboring processors in
the tenpl ate are then filled in by a series of subrou-
tine calls. Asimlar procedure is followed to create
3 An Object-Oriented Li brary Inter-he STORAGEPART data structure. Once the decom
face position part has been created a subroutine is called
to align the matrix with the deconposition. This in-

In ScalAPACK matrices are objects In Othervolves specifying the locationinthe tenpl ate that con-

words, a matrixis a data structure containing in%%%ps the first block in the mtrix. Another subrou-

mation that conpletely describes the matrix, and fhRe call is used to associate the previously created
decorposition. Thus, when calling a ScaLAPACK STORAGE PART data structure with the matrix. Afinal

routine only the nanes of the matrices involvednese%lbroutlne call instantiates the nmatrix, andfills inthe

be supplied in the subroutine argunent list. ethePh of the MATRDATA PART data structure.

such as the matrix size and deconposition need not There are currently three other ways of creating

be givenexplicitly as subroutine argunents. matrices. In the first nethod, we specify that sone
The matrix object consists of three parts; a mdrmatrix, B has the sane deconposition and storage

dita part, a decoqpsition pot, and a storage port. parts as sone previously created matrix, A and then

be extended to the Paragon and CM 5 once we have deconposes the Ncolumms of the matrix over the @

access tostable systens. columms of processors. Thus, if gm =(p, i) and
v(n) =(q,j) then the matrixentry with global index
(mn) is assignedtothe processor at position(p, ¢) on

2 Square Block Scattered Data De- the processor grid, where 1t 1s storedinalocal array

conposition withindex (4, j).
hp Two conmmon deconpositions are the dlakand the

saitteredde compositions [7 1§ . The bl ock deconposi -

'Ih.e layout of an application’s data With.}n th§ h.itqro'n, A, assigns contiguous entries inthe global vector
archical nenory of a concurrent conputer is critigcgl . processors in blocks.

in determning the performance and scal ability of the

parallel code. On shared nenory concurrent com Xm =([/ |, mod L), (1)

puters (or mitipaessas) the sof t ware package LA

PACK[1 , § seeks tomake effeient use of the hierarchvhere L=[MP|. The scattered deconposition, o,

cal nenory by naxi mzingdatareuse, i.e., onacachassigns consecutive entries in the global vector to dif-
based conputer by avoi di ng having torel oad the cacli@€rent processors,

too frequently. LAPACK does this by casting lin-

ear al gebra conputations in terns of block-oriented, o(np =(mood B | nfP|) (2)

matrix-matrix operations known as the Level 3 BLAS By applying the block and scattered decomposi-

[10 whenever possible. This approach generallytrleéns over rows and columms a variety of matrix de-

sults in maximzing the ratio of floating point Opecroarfpositions can be generated.

tions to nemory references, and reuses data as Hu(:h,Ihe otk scattered de composition scatters blocks
as possible while 1t is stored in the hi ghest levoefls Oif 1P

. . r elenents over the processors instead of single el-
the nemory hierarchy (for exanple, vector registers, . .
. ements, and if the blocks are rectangular, is able to
or high-speed cache).

. reproduce the deconpositions resulting fromall pos-
) An anal ogous approac.hha.s beenfollovxedln.the des_ible block and scattered deconpositions. Thus, by
signof ScaLAPACKfor distributed nenory nnchines. using the block scattered deconposition a large de-

dBy usnlllg ‘t;lock— partlFl(})ln‘eN}C}.alhg(c)lrlthms Webseek tngree_e of deconposition independence can be attained.
uce the frequency wit teh data must be transy, ¢pe plock scattered deconposition the mapping of

ferred between processors, thereby reducing the ﬁc)}leedglobal index, m can be expressed as a triplet of

§tartup cgst (or latency) incurred each tine aTESSALE i) =(p,t, i), where pis the processor posi-
1s commni cated.

~tion, t the bl ock nunber, and ¢ the local index within

Chan?ﬂticonputer the gpplicationprogramr 1Sthe block. For the block scattered deconposition we
responsible for deconposing the data over the progess it e

sors of the concurrent computer. A vector of lengt
i e deconponcdover son st of Spocensors (10T 1))
) r T

and then assigning the vector entry with global in- (3)
dex m (where 0 < m<M to the pth processor in where T =7P. It should be noted that this reverts
the sequence (0 < p <}y, where it is stored as theo the scattered deconpositionwhen r=1, withlocal
tthentryinalocal array. Thus the deconpositionbdbek index i =0. Ablock deconpositionis recov-
a vector can be regarded as a nmapping of the globalred when r = L, with block nunber ¢ = 0. 'The
index, m to an index pair, (p,¢), specifying the proek scattered deconpositioninone formor another
cessor location and the local 1ndex. has previously been used by Saad and Schuliz [17

For matrix probl ens one can think of arranging t h8kjell umand Leung []l8 Tongarra and strouchov
processors as a Pby Qgrid. Thus the grid consist§, Anderson et al.],[3shcraft]][4Dongarra and
of Prows of processors and Qcol umns of processorvan de Geijn [13 van de Geijn J19and Brent |5
and N, =FQ Fachprocessor can be uni quel yidenti-to nane a few. The block scattered deconpositionis
fied by its position, (p, q), onthe processor grid.offhef the deconpositions providedin the Fortran D
deconposition of an Mx Nmatrix can be regarded programmng style [[L4
as the tensor product of two vector deconpositionsAs discussed above, the block scattered deconpo-
¢ and v. The mapping u deconposes the Mrows sition of amatrix can be regarded as the tensor prod-
of the matrix over the Prows of processors, anduet of two block scattered deconpositi.camsd 5.

ScaLAPACK: A Scalabl e Linear Al gebra Li brary for Distri buted
Memory Concurrent Comput érs

Jaeyoung Choi§, Jack J. Dongarra§i, Roldan Pozoi, and David W. Walket

§0ak Ri dge National Laboratory Uni versity of Tennessee
Mathemati cal Sciences Section Depart ment of Computer Science
P. O. Box 2008, Bldg. 6012 107 Ayres Hall
Oak Ridge, TN 37831-6367 Knoxville, TN 37996-1301

Abstract

Tes paer describes Sal R a distribuled
marory version of the 1A Ksoftware package for
derse and banded matrix comitations, Ky design
features are the we of dstributed versions of the Ievel
3 BIA as buldng Hocks, ad an dbject-based inder-
face to the library routines. he square bl ock scat-
teral decopositionis described he irpl emntation
o a distribited marory version of the night-lodkeng
L factorizaion dgorithmon the kel Idlta mi-
ticoqmiter s discwssed ad performmce rests are
presented that deronstrate the scd ability of the dl go-
rithm

1 Introduction

designed as the nunber of processors increases, while
keeping the granul arity fixed. The intent is that for
large-scale problens the l1ibrary routines shoul d effec-
tively exploit the conputational hardware of nedi um
grain-size mil ticonputers with up to a fewthousand
processors, such as the Intel Paragon and Thinking
Machines Corporation’s CM5.

Scalabilityis largely determned by how the al go-
rithminteracts with the milticonputer hardware and
low level software, and so reduces to an al gorithmde-
signissue, fromour point of view. Issues such as load
bal ance, commnication volune, and whether com
mini cation and conputation can be overl apped, all
impact the scalability of an al gorithmand must be
carefully considered. The way in which the data are
distributed (or deconposed) over the processors of the
mil ticonputer is of fundanental 1nportance to these
factors.

This paper considers issues 1n the design and 1mW shall use the term“programmability” to refer
.plema.ntatlon of alibrary Of subrout}nes.for perfpsactors such as portability, flexibility, and ease-of-
ing linear al gebra conputations on distributed nejge. Programmability is largely determned by how

ory concurrent conputers (or miticomters). Wien

the user interacts with the software library. To en-

conpletedthe librarywill containsubroutines forppeke the programmbility of the library we would
formng dense, banded, and sparse matrix conputatjke details of the parallel inplenentation to be hid-
tions, with the latter being divided into the symglr as mich as possible fromthe user, and so have
ric, positive-definite, and nonsymmetric cases. Iﬂié@igned an object-basedinterface tothe library. This

paper we focus on ScalLAPACK a distributed nem

is described in Sec. 3. In addition, it 1s desirable

ory version of the LAPACK[§ software package for for the software to work correctly for a large class
dense and banded matrix problems. Among the im of data deconpositions. W have, therefore, adopted
portant design goals are scalability, portabilityhllesduare block scattered (SBS) decomnposition, de-
bility, and ease-of-use. In the context of the cwaqied in nore detail in Sec. 2, for use in all our dis-
work an al gorithmis regarded as “scalable” if it ¢eRbuted dense linear al gebra algorithns. In Sec. 4,
tinues to performeffeiently the task for whichit wasdescribe a distributed right-1ooking variant of the

LUfactorization al gorithm 'The scalability of the al-

*This work was supported in part by DARPA and ARO un- R . . R
der contract number DAALO03-91-C-0047, and in part by DOE gorit hmis denmonstrated in Sec. 5 by experinents on

under contract number DE-AC-05-840R21400 the Intel Deltamlticonputer. These experinents wll

