
LAPACK Working Note 43
A Look at Scalable Dense Linear Algebra Libraries∗

Jack Dongarra†‡

Robert van de Geijn§

David Walker‡

†Dept. of Computer Science
University of Tennessee
Knoxville, TN 37996

‡Mathematical Sciences Section
Oak Ridge National Laboratory

Oak Ridge, TN 37831

§Department of Computer Sciences
University of Texas
Austin, TX 78712

May 5, 1992

Abstract

We discuss the essential design features of a library of scalable software for performing dense linear
algebra computations on distributed memory concurrent computers. The square block scattered decomposition
is proposed as a flexible and general-purpose way of decomposing most, if not all, dense matrix problems.
An object-oriented interface to the library permits more portable applications to be written, and is easy to
learn and use, since details of the parallel implementationare hidden from the user. Experiments on the Intel
Touchstone Delta system with a prototype code that uses the square block scattered decomposition to perform
LU factorization are presented and analyzed. It was found that the code was both scalable and efficient,
performing at about 14 GFLOPS (double precision) for the largest problem considered.

∗This work was supported by DARPA and ARO under contract number DAAL03-91-C-0047, by the National Science Foundation
Science and Technology Center Cooperative Agreement No. CCR-8809615, and by Intel Supercomputing Systems Division. This paper
is a corrected version of a paper that appeared in the Proceedings of the Scalable High Performance Computing Conference (SHPCC-92),
Williamsburg, VA, April 26-29, 1992. To receive a postscript copy, send email tonetlib@ornl.gov and in the mail message type:send
lawn43.ps from lapack/lawns.

1

1 Introduction

Advanced parallelizing compilers may one day be capable of generating efficient parallel code for MIMD dis-
tributed memory concurrent computers (ormulticomputers) from sequential code. However, in the interim, the
development of scalable libraries is a key component in the development of asoftware environment that will
allow the computational power of multicomputers to be exploited, and made availableto a broader community
of users. Over the next few years we envisage such libraries being developed in a number of areas, and that they
will be accessible through a variety of interfaces. This paper focuses on issues impacting the design of scalable
libraries for performing dense linear algebra on multicomputers. However,we believe that many of the issues
discussed here are applicable to scalable libraries in other areas, and, indeed, it is important to impose some
uniformity upon the design of different libraries.

In the next section we discuss data allocation, that is, how the data items in a parallel program are laid out
in the hierarchical memory of the concurrent computer. The block scattered decomposition will be shown to
encompass a large class of decompositions, and to provide sufficient flexibility for essentially all dense linear
algebra computations. In Section 3 we use the right-looking variant of the LUfactorization algorithm for dense
matrices to demonstrate the block scattered decomposition for a specific well-known example. A brief discussion
of the run-time analysis of the algorithm is given, together with results of experiments running at up to 14
GFLOPS on the Intel Touchstone Delta system. Section 4 deals with programmability and implementation
issues, and will discuss an objected-oriented approach to scalable libraries. Conclusions are presented in Section
5.

2 Data Allocation

The layout of an application’s data within the hierarchical memory of a concurrent computer is critical in de-
termining the performance and scalability of the parallel code. On shared memory concurrent computers (or
multiprocessors) there are at least three levels to the memory hierarchy: the shared memory,and each proces-
sor’s cache and registers. On such machines efficient codes seek to maximize the cache hit ratio, i.e., to avoid
having to reload the cache too frequently. The software package LAPACK [1, 8] does this by casting linear
algebra computations in terms of block-oriented, matrix-matrix operations known as the Level 3 BLAS [10, 11]
whenever possible. This approach generally results in high cache hit ratios, without requiring any explicit cache
manipulation by the application programmer. One of the aims of our work is to investigate a distributed memory
version of LAPACK.

There are also levels to the memory hierarchy on multicomputers: the local and nonlocal (remote) memory.
In addition, each processor may have a hierarchical memory. Each processor has its own local memory, and the
nonlocal memory for a given processor is simply the local memory of the otherprocessors. A processor plus
its local memory and other closely coupled hardware is refered to as anode. The nodes of a multicomputer
are connected via a communication network; there is no physical shared memory. There are two important
differences between multiprocessors and multicomputers. The first is that multiprocessors are generally faster
than multicomputers in transfering data between two layers of the memory hierarchy. In particular, MIMD
multicomputers typically incur a high communication latency. The second difference is that while bus-based
multiprocessors usually have no more than 20 or 30 processors, multicomputers typically have several hundred
to a few thousand processors. Thus the processors of a multiprocessor are large grain size and closely coupled,
whereas those of a multicomputer are of smaller grain size and are less closelycoupled. This means that the
programming techniques and algorithms that are successful on multiprocessors may not result in scalable codes
on multicomputers.

On a multicomputer the application programmer is responsible for distributing (ordecomposing) the data

2

over the nodes of the concurrent computer. A vector of lengthM may be decomposed over some set ofNp nodes
by first arranging the nodes in a linear sequence, and then assigning thevector entry with global indexm (where
0 ≤ m< M) to the pth node in the sequence (0≤ p < Np), where it is stored as theith entry in a local array.
Thus the decomposition of a vector can be regarded as a mapping of the global index,m, to an index pair,(p, i),
specifying the node location and the local index.

For matrix problems one can think of arranging the nodes as aP by Q grid. Thus the grid consists ofP rows
of nodes andQ columns of nodes, andNp = PQ. Each node can be uniquely identified by its position,(p,q),
on the node grid. The decomposition of anM ×N matrix can be regarded as the tensor product of two vector
decompositions,µ andν. The mappingµ decomposes theM rows of the matrix over theP rows of nodes, andν
decomposes theN columns of the matrix over theQ columns of nodes. Thus, ifµ(m) = (p, i) andν(n) = (q, j)
then the matrix entry with global index(m,n) is assigned to the node at position(p,q) on the node grid, where it
is stored in a local array with index(i, j).

Two common decompositions are theblockand thescattereddecompositions [7, 18]. The block decomposi-
tion, λ, assigns contiguous entries in the global vector to the nodes in blocks.

λ(m) = (⌊m/L⌋ ,m modL) , (1)

whereL = ⌊(M−1)/P⌋+1. The scattered decomposition,σ, assigns consecutive entries in the global vector to
different nodes,

σ(m) = (m modP,⌊m/P⌋) (2)

Figure 1 shows examples of these two types of decomposition for a 10×10 matrix.
Two features that are desirable in a parallel subroutine library are;

1. a large degree of decomposition independence, so that a subroutine will work correctly for a large class of
decompositions of the input data,

2. a set of communication routines for transforming between different decompositions.

These components give the application programmer the option of changing thedecomposition, if necessary,
so that a given phase of the computation can be performed optimally, i.e., with theleast concurrent overhead.
Alternatively, the programmer may choose to leave the decomposition unchanged and perform the computation
suboptimally, thereby avoiding the overhead associated with changing the decomposition. The important point
here is that the software should be sufficiently flexible to permit the programmer to make the choice, rather than
imposing a particular method.

Decomposition-independence could be achieved by having the subroutinecontain a conditional statement,
with each clause corresponding to a different type of decomposition. A more elegant and, we believe, better
approach is to use a block scattered decomposition that is able to reproduceall the decompositions in Fig. 1,
except for those shown in Figs. 1(f) and (g). In the block scattered approach blocks ofr elements are scattered
over the nodes instead of single elements. The mapping of the global index,m, can be expressed as a triplet of
values,µ(m) = (p, t, i), wherep is the node position,t the block number, andi the local index within the block.
For the block scattered decomposition we may write,

ζr(m) =

(⌊

m modT
r

⌋

,
⌊m

T

⌋

,
(

m modT
)

mod r

)

(3)

whereT = rP. It should be noted that this reverts to the scattered decomposition whenr = 1, with local block
index i = 0. A block decomposition is recovered whenr = L, with block numbert = 0. The block scattered
decomposition in one form or another has previously been used by Saad and Schultz [20], Skjellum and Leung

3

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0

(a) µ block, P=4, Q=1

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

(b) µ scattered, P=4, Q=1

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

(c) ν block, P=1, Q=4

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

(d) ν scattered, P=1, Q=4

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

3,0 3,0 3,0 3,1 3,1 3,1 3,2 3,2 3,2 3,3

(e) µ block, ν block, P=Q=4

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1

(f) µ block, ν scattered, P=Q=4

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

3,0 3,0 3,0 3,1 3,1 3,1 3,2 3,2 3,2 3,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

3,0 3,0 3,0 3,1 3,1 3,1 3,2 3,2 3,2 3,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

(g) µ scattered, ν block, P=Q=4

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

(h) µ scattered, ν scattered, P=Q=4

Figure 1: These 8 figures show different ways of decomposing a 10×10 matrix. Each cell represents a matrix
entry, and is labeled by the position,(p,q), in the node grid of the node to which it is assigned. To emphasize
the pattern of decomposition the matrix entries assigned to the node in the first row and column of the node
grid are shown shaded. Figures (a) and (b) show block and scatteredrow-oriented decompositions, respectively,
for 4 nodes arranged as a 4×1 grid (P = 4, Q = 1). In figures (c) and (d) the corresponding column-oriented
decompositions are shown (P= 1, Q= 4). Figures (e)-(h) show block and scattered decompositions for 16 nodes
arranged as a 4×4 grid (P = Q = 4).

4

Figure P Q r s r = s

(a) 4 1 3 10 3

(b) 4 1 1 10 1

(c) 1 4 10 3 3

(d) 1 4 10 1 1

(e) 4 4 3 3 3

(f) 4 4 3 1 –

(g) 4 4 1 3 –

(h) 4 4 1 1 1

Table 1: Block-scattered decomposition parameters needed to reproducethe block and scattered decompositions
in Fig. 1. The last column gives the block size when only square blocks areused. Decompositions (f) and (g)
cannot be generated with square blocks.

[21], Dongarra and Ostrouchov [9], Anderson et al. [2], Ashcraft [4, 5], Dongarra and van de Geijn [15], van
de Geijn [22], and Brent [6], to name a few. The block scattered decomposition is one of the decompositions
provided in the Fortran D programming style [17].

As discussed above, the block scattered decomposition of a matrix can be regarded as the tensor product of
two block scattered decompositions,µr andνs. This results in scattered blocks of sizer × s. We can view the
block scattered decomposition as stamping aP×Q processor grid, or template, over the matrix, where each cell
of the grid coversr ×s data items, and is labeled by its position in the template. In Table 1 we give the valuesof
the block sizer ×s that give the same results as the block and scattered decompositions in Fig. 1.The block and
scattered decompositions may be regarded as special cases of the block scattered decomposition. In general, the
scattered blocks are rectangular, however, the use of nonsquare blocks can lead to complications. For example,
in the LU factorization algorithm, described in the next section, a triangular solve is needed to update submatrix
C. If nonsquare blocks are used either the triangular matrix will extend overmore than one column of blocks
(if r > s), or the submatrixC will extend over more than one row of blocks (ifr < s). Thus, nonsquare blocks
will result in additional software and communication overhead. We, therefore, propose to restrict ourselves to the
square block scattered (SBS) class of decompositions. The column and row decompositions can still be recovered
by settingP = 1 or Q = 1, as shown in Table 1, however, the decompositions shown in Figs. 1(f) and (g) cannot
be generated with an SBS decomposition.

So far we have only considered how to map matrix elements onto the node grid. In decomposing a problem
we must also specify how locations in the node grid are mapped to physical nodes. Common mapping functions
are the natural mapping,

A(i, j) = i + j ·Q (4)

and the binary-reflected Gray code mapping,

A(i, j) = G(i)+G(j) ·Q (5)

whereG(x) denotes the Gray code ofx, andi = 0,1, . . . ,Q−1, j = 0,1, . . . ,P−1. On most current multicom-
puters the cost of communicating between any two nodes is weakly dependent of their separation in the topology
of the communication network. Hence the choice of mapping should not impact performance very much. The
subroutine library should support the natural and Gray code mappings,as well as any function,A, supplied by
the application programmer.

5

3 An Example

In this section, we discuss the scalability of the LU factorization algorithm whenit is implemented using the block
scattered decomposition. First, we describe the algorithm. Next, we summarize the results from an analysis of
the time complexity. Data from experiments on the Intel Touchstone Delta system are used to further demonstrate
the scalability.

3.1 LU factorization

To obtain our parallel implementation of the LU factorization, we started with a variant of the right-looking
LAPACK LU factorization routine. It can be briefly described as follows:Assume the LU factorization has
proceeded so that all but the labeled portions of the matrix have been updated:

@
@

@
C

B
E

whereB∈ RM×r , C∈ Rr×(M−r), andE ∈ R(M−r)×(M−r). During the next step, the right-looking algorithm factors
panelB, pivoting if necessary. Next, the pivots are applied to the remainder of thematrix. BlocksC andE now
become blocks̄C andĒ, a triangular solve updates submatrixC̄, and a ranknb update updates submatrix̄E. This
process continues recursively with the updated matrix [12].

Turning now to the distributed memory implementation, assume the matrix is distributed among aP×Q
grid on nodes using a block scattered decomposition, with block sizer × r. For our analysis, we assume that
communicating a block ofk floating point numbers between any two nodes requires timeα + kβ, whereα and
β represent the communication latency and the inverse of the bandwidth, respectively. In addition, the time for
a floating point operation is given byγ. Finally, in our formulas,⌈k⌉ indicates the smallest integermultiple of r
greater thank.

The above described process proceeds as follows:

• (fB) The column of nodes that holdsB collaborates to factor this panel. Since there is relatively little to
compute (the panel is typically narrow), and communication is restricted to short messages, the contribution
of this operation to the run-time is almost entirely due to communication latency. We willignore the other
costs. For each column, this consists of log(P)α for determining the pivot row,α for swapping pivot rows
of this panel, and another log(P)α for broadcasting the pivot row. (Possible optimization: since this is
latency bound, a clever implementation would combine the messages for determining the pivot row, and
distributing it within the column of nodes that hold the panel.)

• (bp) Pivot information is distributed to all other columns of nodes. Approximate contribution to run-time:
α per panel.

• (p) Columns of nodes collaborate to pivot the remainders of the matrix rows.Approximate contribution
to run-time:r(α+ ⌈(N− r)/Q⌉β) for each of theN/r panels.

• (bB̄) Factored panelB is distributed within rows of nodes. Approximate contribution to run-time: 2(α +
⌈(N− (k−1)r)/P⌉rβ) for panelk = 1, . . . ,N/r. (Since this operation can be pipelined around the ring,
overlapping with computation, there is no log(Q) term here.)

6

• (bC̄) The row that holdsC̄ performs the triangular solve, the results of which are distributed within
columns of nodes. Approximate contribution:⌈(N−kr)/Q⌉r2γ + log(P)(α + ⌈N−kr)/Q⌉rβ) for panel
k = 1, . . . ,N/r.

• (uĒ) Most parallelism is derived from updatinḡE. Approximate contribution:

2⌈(N−kr)/P⌉⌈(N−kr)/Q⌉rγ

for panelk = 1, . . . ,N/r.

The total run time is then given by

Ttot ≈ TfB +TfB +Tbp+Tp +TbB̄ +TfC̄ +TuĒ (1)

where the different terms come from summing over all panels the different contributions given above.
Since the total computation time of the algorithm on a single processor is given byT1 ≈ (2/3)N3γ, the

efficiency attained,E = T1/pTtot, as a function of the various parameters, can be shown to be of the form

E =

[

1+
p

N2 (c1 log(P)+c2)
α
γ

(2)

+
P
N

(

c3 log(P)
β
γ

+c4

)

+
Q
N

(

c5
β
γ

+c6

)]−1

(3)

wherec1−6 depend only onr.
Let us start by considering the block column scattered decomposition, i.e.,P×Q = 1× p. Then, for reason-

ably largeN,

E ≈
[

1+c2
p

N2

α
γ

+
p
N

(

c5
β
γ

+c6

)]−1

(4)

In the limit, N must grow withp to maintain efficiency. Notice that theN2 cannot be readily ignored, even
for N = O(103), sinceα is several orders of magnitude greater thanγ for many multicomputers. This kind of
scalability poses a problem: Memory requirements grow withN2 and hence eventuallyN cannot be increased to
maintain efficiency. A similar analysis can be done for row distributions.

By contrast, consider a generalP×Q grid of nodes. Assume the ratioQ/P is kept constant asp is increased,
i.e., P = u

√
p andQ = v

√
p, whereu andv are constants. ThenP/N andQ/N becomeu

√
p/N andv

√
p/N,

respectively. If log(P) is ignored, since it is a slowly growing function,N2 must grow withp in order to main-
tain efficiency. If log(P) is not ignored, it can be argued that onceP is sufficiently large (e.g. greater than 4)
performance will degrade slowly withp.

3.2 Experiments on the Intel Delta

In this section, we discuss results from experiments conducted on the IntelTouchstone Delta that illustrate the
scalability of the LU factorization.

The Intel Touchstone Delta system is a distributed-memory, message-passing multicomputer of the Multiple
Instruction Multiple Data (MIMD) class [19]. It consists of 520 i860-based nodes, interconnected via a com-
munications network having the topology of a two-dimensional rectangular grid. The interconnection network
employs a Mesh Routing Chip (MRC) at each system node. The peak interprocessor communications band-
width is ≈ 30 MBytes/s in each direction. The system supports explicit message-passing, with a latency of
≈ 75 microseconds via worm-hole routing using a packet-based protocol. Interconnect blocking is minimized by
interleaving packets associated with distinct messages that need to traversethe same interconnect path.

7

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2 2.5

x104

p=512=8x64

p=256=8x32

p=128=4x32

p=64=4x16

p=32=2x16

DELTA (predicted)

problem size n

G
F

L
O

P
S

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2 2.5

x104

p=512=8x64

p=256=8x32

p=128=4x32

p=64=4x16

p=32=2x16

DELTA

problem size n

G
F

L
O

P
S

N

Figure 2: Total predicted (left) and observed (right) performance forvariousp as a function of the problem size
N.

0

5

10

15

20

25

30

35

0 100 200 300 400 500

n/sqrt(p) = 250

n/sqrt(p) = 500

n/sqrt(p) = 750

n/sqrt(p) = 1000

DELTA

number of nodes p

M
F

L
O

P
S

 p
e

r
n

o
d

e

0

5

10

15

20

25

30

35

0 100 200 300 400 500

n/sqrt(p) = 250

n/sqrt(p) = 500

n/sqrt(p) = 750

n/sqrt(p) = 1000

DELTA (predicted)

number of nodes p

M
F

L
O

P
S

 p
e

r
n

o
d

e

Figure 3: Performance per node predicted (left) and observed (right)as the number of nodesp varies. Different
curves correspond to problem sizes increased so thatN2/p (or N/sqrt(p)) is constant.

8

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160 180 200

Massively parallel LINPACK benchmark

number of nodes p

M
F

LO
P

S
 p

er
 n

od
e

DELTA

Alliant Campus
Mieko

iPSC/860

Fujitsu AP1000

NCUBE2

Figure 4: Performance per node attained for the LINPACK benchmark byvarious parallel architectures as the
number of nodesp varies.

There are a number of issues that complicate a direct comparison of our analytical estimates and observed
performance. First, certain optimizations can be done to improve the algorithm given in Section 3 [22], details
of which go beyond the scope of this paper. Second, the parameterγ is affected by the size of the data being
manipulated: computation at different stages involves Level 1, 2, and 3 BLAS, which yield different performance
depending on the size of the data being manipulated. Finally, the blocksizer and grid sizeP×Q are chosen so
the performance of the BLAS is maximized without creating unreasonable idle timedue to load inbalance. This
leaves us to investigate if the predicted trends can be observed in practice.

In Fig. 2, we report the predicted and observed performance of the LUfactorization for different numbers of
nodes when the problem sizeN is varied. For the predicted performance,α = 100µsec,β = 1µsec (8 Mbytes/sec
bandwidth), andγ = 29nsec (34 MFLOPS per node) where used. (These correspond roughly to what we observed
in practice. Communication overhead is somewhat increased by our code.) The grid sizes were experimentally
determined to be optimal for large problem sizes. As the problem size increases, performance improves. The
results compare favorably with the peak performance that can be attained for this type of problem on the Delta.

The predicted degradation of performance whenN/
√

p is held constant is illustrated in Fig. 3. This trend
is also observed in practice, as illustrated in Fig. 3. In these figures, we report efficiency as performance (in
MFLOPS) per node.

The LU factorization is at the core of the LINPACK benchmark. This benchmark measures the performance
of a given computer while performing a dense linear solve. A typical implementation starts by factoring the
matrix, followed by triangular solves. Results from implementations on various parallel architectures are reported
in [13]. To illustrate that the predicted trends can be observed on other parallel computers as well, we report
performance per node in Fig. 4. While there is a clear incentive to fill the memory with the largest possible
problem, thereby automatically increasingN2 roughly with p, the data made available to us did not in all cases
include problem sizes that scaled as nicely as those used for Fig. 3. Although data was available for an NCUBE2
up to size 1024, and for the Fujitsu and Delta up to size 512, we concentrate on the more interesting range of
machine sizes in this figure.

Several observations can be made: Both the NCUBE2 and the Fujitsu are based on relatively slow processors.

9

This decreases the ratiosα/γ andα/β, thereby reducing the effects of communication overhead. Moreover, the
performance of the BLAS on these machines is less affected by the size of the problem. All other machines are
base on the same processor: the Intel i860. The curve for the Mieko follows the predicted trend, except that the
last data point (for 62 nodes) is for a much smaller problem size than is required to keepN2/p constant. At first
glance, the efficiency attained by the Alliant appears to improve with the number of nodes, defying the results
of our analysis. Moreover, when looking at the raw data, the problem sizes actually grow slower than required
by our analysis. This indicates that there is a lower order term that affectsperformance for small problem sizes.
Indeed, it is reportedly due to an inefficient triangular solve algorithm used in this implementation.

4 Programmability

Programmability will be used here to refer to a number of features of the software environment concerned with
software maintenance and usage. Programmability covers the flexibility, range of functionality, portablility, and
ease of use of some software component. From an application programmer’s point of view, the main factor
that will determine how easy it is to learn and use the proposed subroutine library will be the interface to the
subroutines. Clearly, this interface must pass the appropriate information about the decomposition and layout of
the data in memory to the subroutine. This could be done in three ways:

1. by only allowing one type of decomposition for each subroutine so that different subroutines must be called
for different decompositions. This avoids having to specify the decomposition in a lengthy argument list,
but makes maintaining and porting the subroutine library rather tedious.

2. have a single subroutine handle all possible different decompositions and pass the decomposition informa-
tion via the argument list. This can result in long argument lists.

3. use an object-oriented approach in which a matrix is actually a data structure containing the data itself (or
pointers to it), plus all the information necessary to fully specify the decomposition. This allows a single
subroutine to handle all decompositions, and avoids a long argument list. Thisapproach is the most elegant
and conceptually simplest for the application programmer. It is rather more difficult to implement than the
other two approaches.

The object-oriented approach allows details of the parallel implementation to be hidden at a low level of the
software. Ideally, all communication would be hidden below the level of the BLAS routines. In the prototype
parallel dense linear algebra library currently under development all interprocessor communication takes place
explicitly at the level of the parallel linear algebra routines through calls to a communication library, the LACS
routines [3, 16, 14]. Thus, currently the sequential BLAS routines, together with the LACS, are the building
blocks used to build higher level library routines, such as LU and QR factorization.

In addition to a set of subroutines for performing matrix computations the proposed library will also contain
routines for performing communication tasks. Such tasks will include global changes to the decomposition,
such as performing a matrix transpose, and replicating parts of a matrix overgroups of nodes. This latter type of
communication is similar to the SPREAD routine in Fortran 90 [8], and will allow, forexample, row and columns
of a matrix to be communicated across across the machine. These LACS could also be given an object-oriented
style of interface. In fact, some of the array intrinsic functions of Fortran90, such as SPREAD, CSHIFT, and
EOSHIFT, could be included in the LACS.

Other utility routines will also be provided. One set of assignment routines willbe used to initially specify the
decomposition, and another set of inquiry routines will provide a means of extracting information about the cur-
rent decomposition. These inquiry routines will allow application programmersto develop modular subprograms
that are fully compatible with our linear algebra library.

10

5 Conclusions

The square block scattered decomposition (SBS) is a practical and general-purpose way of decomposing dense
linear algebra computations. In problems, such as LU factorization, in whichrows and/or columns become inac-
tive as the algorithm progresses, the SBS decomposition provides good load balance. At the same time it reduces
communication latency since fewer messages need to be sent than in the nonblocked case(r = 1). It is possible to
regard each of the blocks as a distinct process, so the SBS decomposition, in effect, overdecomposes the problem.
The resultant parallel slackness could then be exploited by overlapping communication and computation. This
might be a viable approach on future machines that support multithreading in the operating system kernel, or in
hardware. However, on currently available machines the communication latency is probably too high to make it
worthwhile, although our general approach should make it easy to exploitoverdecomposition in the future.

The LU factorization timings presented in Section 3 show that the SBS decomposition results in scalable
and efficient code, attaining a speed of about 14 GFLOPS on the Intel Touchstone Delta system for the largest
problem considered.

We propose an object-oriented interface to the library routines, in which theobjects are matrices that in-
clude pointers to both the matrix data and the decomposition. With this approach allinterprocessor communica-
tion takes place within the Level 3 BLAS routines, or within the Linear Algebra Communication Subprograms
(LACS), which are provided to perform common communication tasks. The user is largely insulated from the
details of the parallel implementation, making applications more readily portable, and easier to develop.

Acknowledgements

This research was performed in part using the Intel Touchstone Delta System operated by the California Institute
of Technology on behalf of the Concurrent Supercomputing Consortium.Access to this facility was provided by
the California Institute of Technology and Intel Supercomputer Systems Division.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen. Lapack: A portable linear algebra library for high-performance computers.
In Proceedings of Supercomputing ’90, pages 1–10. IEEE Press, 1990.

[2] E. Anderson, A. Benzoni, J. Dongarra, S. Moulton, S. Ostrouchov, B. Tourancheau, and R. van de Geijn.
LAPACK for distributed memory architectures: Progress report. InParallel Processing for Scientific Com-
puting, Fifth SIAM Conference. SIAM, 1991.

[3] E. Anderson, A. Benzoni, J. Dongarra, S. Moulton, S. Ostroucho v, B. Tourancheau, and R. van de Geijn.
Basic Linear Algebra Communication Subprograms. InSixth Distributed Memory Computing Conference
Proceedings, pages 287–290. IEEE Computer Society Press, 1991.

[4] C. C. Ashcraft. The distributed solution of linear systems using the toruswrap data mapping. Engineering
Computing and Analysis Technical Report ECA-TR-147, Boeing ComputerServices, 1990.

[5] C. C. Ashcraft. A taxonamy of distributed dense LU factorization methods. Engineering Computing and
Analysis Technical Report ECA-TR-161, Boeing Computer Services, 1991.

[6] R. Brent. The LINPACK benchmark on the AP 1000: Preliminary report. In Proceedings of the 2nd CAP
Workshop, November 1991.

11

[7] E. F. Van de Velde. Data redistribution and concurrency.Parallel Computing, December 1990.

[8] J. Demmel, J. J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,and D. Sorensen. Prospectus for
the development of a linear algebra library for high performance computers. Technical Report 97, Argonne
National Laboratory, Mathematics and Computer Science Division, September 1987.

[9] J. Dongarra and S. Ostrouchov. LAPACK block factorization algorithms on the Intel iPSC/860. Technical
report, University of Tennessee at Knoxville, Computer Science Department, October 1990.

[10] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A set oflevel 3 basic linear algebra subprograms.
ACM Transactions on Mathematical Software, 16(1):1–17, 1990.

[11] J. J. Dongarra, I. S. Duff, J. Du Croz, and S. Hammarling. A setof level 3 basic linear algebra subprograms.
ACM TOMS, 16(1):1–17, March 1990.

[12] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Solving Linear Systems on Vector and
Shared Memory Computers.SIAM, Philadelphia, PA, 1990.

[13] Jack J. Dongarra. Performance of various computers using standard linear equations software. Technical
report.

[14] J.J. Dongarra. Workshop on the BLACS. LAPACK Working Note 34, Technical Report CS-91-134, Uni-
versity of Tennessee, 1991.

[15] J.J. Dongarra and R.A. van de Geijn. Reduction to condensed formfor the eigenvalue problem on distributed
memory architectures. LAPACK Working Note 30, Technical Report CS-91-130, University of Tennessee,
1991. To appear inParallel Computing.

[16] J.J. Dongarra and R.A. van de Geijn. Two dimensional basic linear algebra communication subprograms.
LAPACK Working Note 37, Technical Report CS-91-138, University of Tennessee, 1991.

[17] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C-W. Tseng, and M-Y. Wu. Fortran D lan-
guage specification. Technical Report CRPC-TR90079, Center for Research on Parallel Computation, Rice
University, December 1990.

[18] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W. Walker.Solving Problems
on Concurrent Processors, volume 1. Prentice Hall, Englewood Cliffs, N.J., 1988.

[19] S.L. Lillevik. The Touchstone 30 Gigaflop DELTA Prototype. InSixth Distributed Memory Computing
Conference Procedings, pages 671–677. IEEE Computer Society Press, 1991.

[20] Y. Saad and M. H. Schultz. Parallel direct methods for solving banded linear systems. Technical Report
YALEU/DCS/RR-387, Departmen t of Computer Science, Yale University, 1985.

[21] A. Skjellum and A. Leung. LU factorization of sparse, unsymmetric, Jacobian matrices on multicomput-
ers. In D. W. Walker and Q. F. Stout, editors,Proceedings of the Fifth Distributed Memory Concurrent
Computing Conference, pages 328–337. IEEE Press, 1990.

[22] R.A. van de Geijn. Massively parallel LINPACK benchmark on the Intel Touchstone Delta and iPSC/860
systems. In1991 Annual Users’ Conference Proceedings, Intel Supercomputer Users’ Group, Dallas, TX,
1991.

12

