LAPACK Working Note 43
A Look at Scalable Dense Linear Algebra Libraries

Jack Dongarrdf
Robert van de Geijf
David Walker*

Dept. of Computer Science
University of Tennessee
Knoxville, TN 37996

Mathematical Sciences Section
Oak Ridge National Laboratory
Oak Ridge, TN 37831

Pepartment of Computer Sciences
University of Texas
Austin, TX 78712

May 5, 1992

Abstract

We discuss the essential design features of a library ofBlmakoftware for performing dense linear
algebra computations on distributed memory concurrenpeaens. The square block scattered decomposition
is proposed as a flexible and general-purpose way of decaongpowst, if not all, dense matrix problems.
An object-oriented interface to the library permits moretable applications to be written, and is easy to
learn and use, since details of the parallel implementatierhidden from the user. Experiments on the Intel
Touchstone Delta system with a prototype code that usegjttae block scattered decomposition to perform
LU factorization are presented and analyzed. It was fouad ttie code was both scalable and efficient,
performing at about 14 GFLOPS (double precision) for thgdat problem considered.

*This work was supported by DARPA and ARO under contract numbeAlD)8-91-C-0047, by the National Science Foundation
Science and Technology Center Cooperative Agreement No. COB6&8, and by Intel Supercomputing Systems Division. This paper
is a corrected version of a paper that appeared in the Proceedings3dfalable High Performance Computing Conference (SHPCC-92),
Williamsburg, VA, April 26-29, 1992. To receive a postscript comnd email taet | i b@r nl . gov and in the mail message typeend
| awn43. ps from | apack/ | awns.

1 Introduction

Advanced parallelizing compilers may one day be capable of generatinigeffparallel code for MIMD dis-
tributed memory concurrent computers (oulticomputersfrom sequential code. However, in the interim, the
development of scalable libraries is a key component in the developmensadfveare environment that will
allow the computational power of multicomputers to be exploited, and made avaiedleroader community
of users. Over the next few years we envisage such libraries bewgpged in a number of areas, and that they
will be accessible through a variety of interfaces. This paper focuséssaes impacting the design of scalable
libraries for performing dense linear algebra on multicomputers. Howexgehelieve that many of the issues
discussed here are applicable to scalable libraries in other areas, deeld,int is important to impose some
uniformity upon the design of different libraries.

In the next section we discuss data allocation, that is, how the data items ialklpatogram are laid out
in the hierarchical memory of the concurrent computer. The block scattereomposition will be shown to
encompass a large class of decompositions, and to provide sufficigbtliieXor essentially all dense linear
algebra computations. In Section 3 we use the right-looking variant of thiattdrization algorithm for dense
matrices to demonstrate the block scattered decomposition for a specific welitlexample. A brief discussion
of the run-time analysis of the algorithm is given, together with results ofrérpats running at up to 14
GFLOPS on the Intel Touchstone Delta system. Section 4 deals with progralitynafd implementation
issues, and will discuss an objected-oriented approach to scalablékbi@onclusions are presented in Section
5.

2 Data Allocation

The layout of an application’s data within the hierarchical memory of a aoesticomputer is critical in de-
termining the performance and scalability of the parallel code. On shared memiocurrent computers (or
multiprocessorsthere are at least three levels to the memory hierarchy: the shared memdnryach proces-
sor’s cache and registers. On such machines efficient codes seekitmimeathe cache hit ratio, i.e., to avoid
having to reload the cache too frequently. The software package LKHACS8] does this by casting linear
algebra computations in terms of block-oriented, matrix-matrix operationsrkaswhe Level 3 BLAS [10, 11]
whenever possible. This approach generally results in high cacheibg, naithout requiring any explicit cache
manipulation by the application programmer. One of the aims of our work is totigaesa distributed memory
version of LAPACK.

There are also levels to the memory hierarchy on multicomputers: the locabafwtal (remote) memory.
In addition, each processor may have a hierarchical memory. Eachgsarchas its own local memory, and the
nonlocal memory for a given processor is simply the local memory of the ptloeessors. A processor plus
its local memory and other closely coupled hardware is refered torel@ The nodes of a multicomputer
are connected via a communication network; there is no physical sharedryeifttere are two important
differences between multiprocessors and multicomputers. The first is thipnmcessors are generally faster
than multicomputers in transfering data between two layers of the memory tigrahe particular, MIMD
multicomputers typically incur a high communication latency. The second differenthat while bus-based
multiprocessors usually have no more than 20 or 30 processors, multicomfyyieally have several hundred
to a few thousand processors. Thus the processors of a multiproegesdarge grain size and closely coupled,
whereas those of a multicomputer are of smaller grain size and are less dosplgd. This means that the
programming techniques and algorithms that are successful on multippezesay not result in scalable codes
on multicomputers.

On a multicomputer the application programmer is responsible for distributinde@ymposingthe data

over the nodes of the concurrent computer. A vector of leMythay be decomposed over some sellphodes
by first arranging the nodes in a linear sequence, and then assignivectioe entry with global inder (where
0 < m< M) to the pth node in the sequence {Op < Np), where it is stored as thi¢h entry in a local array.
Thus the decomposition of a vector can be regarded as a mapping of tiaightdx, m, to an index pair(p,i),
specifying the node location and the local index.

For matrix problems one can think of arranging the nodesRbwQ grid. Thus the grid consists & rows
of nodes and) columns of nodes, and, = PQ. Each node can be uniquely identified by its position.q),
on the node grid. The decomposition of lsnx N matrix can be regarded as the tensor product of two vector
decompositiongt andv. The mappingu decomposes thigl rows of the matrix over th® rows of nodes, and
decomposes thi columns of the matrix over th@ columns of nodes. Thus, jfim) = (p,i) andv(n) = (q, j)
then the matrix entry with global indegxn, n) is assigned to the node at positigm g) on the node grid, where it
is stored in a local array with indéx, j).

Two common decompositions are thieckand thescattereddecompositions [7, 18]. The block decomposi-
tion, A, assigns contiguous entries in the global vector to the nodes in blocks.

A(m) = (|m/L],mmodL), (1)

whereL = | (M —1)/P| + 1. The scattered decompositian,assigns consecutive entries in the global vector to
different nodes,
o(m) = (mmodP, | m/P]) ()

Figure 1 shows examples of these two types of decomposition foxalDamatrix.
Two features that are desirable in a parallel subroutine library are;

1. alarge degree of decomposition independence, so that a subroilitiwenk correctly for a large class of
decompositions of the input data,

2. aset of communication routines for transforming between differemrdpositions.

These components give the application programmer the option of changidgabmposition, if necessary,
so that a given phase of the computation can be performed optimally, i.e., witbasteconcurrent overhead.
Alternatively, the programmer may choose to leave the decomposition uredhand perform the computation
suboptimally, thereby avoiding the overhead associated with changing ¢bendesition. The important point
here is that the software should be sufficiently flexible to permit the prograanmeake the choice, rather than
imposing a particular method.

Decomposition-independence could be achieved by having the subroatitein a conditional statement,
with each clause corresponding to a different type of decomposition. A& mlegant and, we believe, better
approach is to use a block scattered decomposition that is able to reprttiee decompositions in Fig. 1,
except for those shown in Figs. 1(f) and (g). In the block scatterpdoagh blocks of elements are scattered
over the nodes instead of single elements. The mapping of the global indean be expressed as a triplet of
values,pu(m) = (p,t,i), wherep is the node positiort, the block number, andthe local index within the block.
For the block scattered decomposition we may write,

mmodT m
¢r(m) = <{rJ , {?J , (m modT) mod r) (3
whereT = rP. It should be noted that this reverts to the scattered decomposition mwaen with local block

indexi = 0. A block decomposition is recovered wheg- L, with block humbett = 0. The block scattered
decomposition in one form or another has previously been used by 8ddschultz [20], Skjellum and Leung

0,0{0,0{0,0(0,0]0,0/0,0{0,0]0,0(0,0{0,0 0,0{0,0/0,0(0,0{0,0{0,0(0,0]0,0/0,0|0,0
0,0/0,0[0,0{0,0[0,0[0,0{0,0{0,0]0,0(0,0 1,0/1,0[1,0{1,0]1,0|1,0[1,0[1,0]1,0]1,0
0,0{0,0{0,0{0,0]0,0/0,0{0,0]0,0(0,0{0,0 2,0{2,0]2,0(2,0{2,0/2,0(2,0]|2,0/2,0|2,0
1,0[1,0{1,0{1,0{1,0|1,0{1,0[1,0[1,0]1,0 3,0/3,0[3,0(3,03,0[3,03,0[3,0[3,0[3,0
1,0/1,0|1,0/1,0{1,0|1,0(1,0{1,0/1,0(1,0 0,0{0,0/0,0(0,0{0,0{0,0(0,0]0,0/0,0|0,0
1,0/1,0|1,0(1,0(1,0/1,0|1,0{1,0{1,0{1,0 1,01,0{1,0(1,0/1,0|1,0{1,0{1,0{1,0{1,0
2,0{2,0/2,0(2,0]2,0/2,0|2,0|2,0{2,0|2,0 2,0{2,0]2,0(2,0{2,0/2,0(2,0]2,0/2,0|2,0
2,0(2,0/2,0(2,0(2,0|2,0/2,0[2,0[2,0|2,0 3,0/3,0[3,0(3,03,0[3,03,0[3,0[3,0[3,0
2,0{2,0/2,0(2,0]2,0/2,0|2,0|2,0{2,0|2,0 0,0{0,0/0,0(0,0{0,0{0,0(0,0]0,0/0,0|0,0
3,0/3,0[3,0(3,0[3,0[3,03,0[3,0/3,0[3,0 1,0/1,0[1,0{1,0]1,0|1,0[1,0[1,0]1,0]1,0

(a) p block, P=4, Q=1 (b) u scattered, P=4, Q=
0,0/0,0/0,0/0,1/0,1(0,1|0,2|0,2(0,2]0,3 0,0/0,1|0,2|0,3(0,0(0,1|0,2|0,3/0,0/0,1
0,0{0,0/0,0(0,1|0,1/0,1]0,2/0,2(0,2|0,3 0,0{0,1]0,2(0,3|0,0{0,1(0,2]0,3|0,0{0,1
0,0/0,0/0,0/0,1/0,1(0,1{0,2|0,2(0,2]0,3 0,0/0,1|0,2|0,3(0,0(0,10,2|0,3/0,0/0,1
0,0{0,0/0,0(0,1|0,1/0,1|0,2/0,2(0,2|0,3 0,0{0,1]0,2(0,3|0,0{0,1(0,2]0,3|0,0|0,1
0,0/0,0/0,0/0,1/0,1(0,1{0,2|0,2(0,2]0,3 0,0/0,1|0,2|0,3(0,0(0,1|0,2|0,3/0,0/0,1
0,0/0,0/0,0(0,1]0,1/0,1|0,2/0,2(0,2|0,3 0,0{0,1]0,2(0,3|0,0{0,1(0,2]0,3|0,0|0,1
0,0/0,0/0,0/0,1/0,1(0,1{0,2|0,2(0,2]0,3 0,0/0,1|0,2|0,3(0,0(0,1|0,2|0,3/0,0/0,1
0,0/0,0/0,0(0,1|0,1/0,1]0,2/0,2(0,2|0,3 0,0{0,1]0,2(0,3|0,0{0,1(0,2]0,3|0,0{0,1
0,0/0,0/0,0/0,1/0,1(0,1{0,2|0,2(0,2]0,3 0,0/0,1|0,2|0,3(0,0(0,1/0,2|0,3/0,0/0,1
0,0{0,0/0,0(0,1|0,1/0,1]0,2/0,2(0,2|0,3 0,0{0,1]0,2(0,3|0,0/0,1(0,2]0,3|0,0|0,1

(c)v block, P=1, Q=4 (d) v scattered, P=1, Q=4
0,0[0,0[0,0{0,1[0,1[0,1|0,2[0,2]0,2[0,3 0,0/0,1/0,2|0,3]0,0[0,1/0,2[0,3]0,0[0,1
0,0{0,0/0,0(0,1|0,1/0,1]0,2]0,2(0,2|0,3 0,0{0,1]0,2(0,3|0,0{0,1(0,2]0,3|0,0{0,1
0,0[0,0[0,0{0,1[0,1[0,1|0,2[0,2]0,2[0,3 0,0/0,1/0,2|0,3/0,0[0,1/0,2[0,3]0,0[0,1
1,0/1,0|1,0/11,1|1,1]1,1(1,2|1,2|1,2(1,3 1,0/1,1(1,2|1,3/1,0|1,1|1,2|1,3]1,0(1,1
1,0/1,0|1,0|1,1|1,1|1,1(1,2|1,2|1,2(1,3 1,0/1,1(1,2|1,3/1,0|1,1/1,2|1,3]1,0(1,1
1,0/1,0|1,0/1,1|1,1]1,1(1,2|1,2|1,2(1,3 1,0/1,1(1,2|1,3/1,0|1,1|1,2|1,3]1,0(1,1
2,0{2,012,0(2,1]|2,1|2,1|2,2]|2,2|2,2|2,3 2,0(2,1]2,2(2,3|2,0|2,1(2,2]|2,3|2,0|2,1
2,0{2,012,0(2,1]|2,1|2,1|2,2]|2,2|2,2|2,3 2,0(2,1]2,2|2,3|2,0|2,1(2,2]|2,3|2,0|2,1
2,0{2,012,0(2,1]|2,1|2,1|2,2]|2,2|2,2|2,3 2,0(2,1]2,2(2,3|2,0|2,1(2,2]|2,3|2,0|2,1
3,0(3,0(3,0(3,1|3,1|3,1|3,2|3,2(3,2|3,3 3,0(3,1]3,2(3,3(3,0(3,1(3,2|3,3|3,0|3,1

(e) u block,v block, P=Q=4 (f) p block,v scattered, P=Q=4

0,0{0,0/0,0(0,1|0,1/0,1|0,2/0,2(0,2|0,3 0,0{0,1]0,2(0,3|0,0{0,1(0,2]0,3|0,0|0,1
1,0/1,0|1,011,1(1,1]1,1(1,2|1,2|1,2(1,3 1,0/1,1(1,2|1,3/1,0|1,1|1,2|1,3]1,0(1,1
2,0{2,0/2,0(2,1]|2,1|2,1|2,2|2,2|2,2|2,3 2,0(2,1]2,2(2,3|2,0|2,1(2,2]|2,3|2,0|2,1
3,0(3,0(3,0(3,1|3,13,1|3,2|3,2(3,2|3,3 3,0(3,1]3,2(3,3(3,0(3,1(3,2/3,3|3,0|3,1
0,0/0,0/0,0(0,1|0,1/0,1]0,2/0,2(0,2|0,3 0,0{0,1]0,2(0,3|0,0{0,1(0,2]0,3|0,0|0,1
1,0/1,0|1,011,1(1,1]1,1(1,2|1,2|1,2(1,3 1,0/1,1(1,2|1,3/1,0|1,1|1,2|1,3]1,0(1,1
2,0{2,0/2,0(2,1]|2,1|2,1|2,2|2,2|2,2|2,3 2,0(2,1]2,2(2,3|2,0|2,1(2,2]|2,3|2,0|2,1
3,0(3,0(3,0(3,1|3,13,1|3,2|3,2(3,2|3,3 3,0(3,1]3,2(3,3(3,0(3,1(3,2/3,3|3,0|3,1
0,0{0,0/0,0(0,1|0,1/0,1]0,2/0,2(0,2|0,3 0,0{0,1]0,2(0,3|0,0{0,1(0,2]0,3|0,0|0,1
1,0/1,0|1,011,1(1,1]1,1(1,2|1,2|1,2(1,3 1,0/1,1(1,2|1,3/1,0|1,11,2|1,3]1,0(1,1

(g) 1 scatteredy block, P=Q=4 (h) p scatteredy scattered, P=Q=4

Figure 1: These 8 figures show different ways of decomposing-all®matrix. Each cell represents a matrix
entry, and is labeled by the positiofp,q), in the node grid of the node to which it is assigned. To emphasize
the pattern of decomposition the matrix entries assigned to the node in the virsintbcolumn of the node
grid are shown shaded. Figures (a) and (b) show block and scatteventiented decompositions, respectively,
for 4 nodes arranged as ax4l grid (P =4, Q = 1). In figures (c) and (d) the corresponding column-oriented
decompositions are showR & 1, Q = 4). Figures (e)-(h) show block and scattered decompositions ford€ésno
arranged as a4 4 grid P=Q=4).

Figure| P | Q| r | s |r=s
@ |41 3|10 3
() |41 1|10 1
(© 1/4|10]| 3 3
(d) 1/4]10| 1 1
e) |[4]4] 3|3 3
U] 414 3|1 -
9 (44|13 -
hy [4]4]1]|1 1

Table 1: Block-scattered decomposition parameters needed to reptbdusleck and scattered decompositions
in Fig. 1. The last column gives the block size when only square blockesa®. Decompositions (f) and (g)
cannot be generated with square blocks.

[21], Dongarra and Ostrouchov [9], Anderson et al. [2], Askidrg 5], Dongarra and van de Geijn [15], van
de Geijn [22], and Brent [6], to name a few. The block scattered decsitmpois one of the decompositions
provided in the Fortran D programming style [17].

As discussed above, the block scattered decomposition of a matrix cagdrded as the tensor product of
two block scattered decompositiong,andvs. This results in scattered blocks of size s. We can view the
block scattered decomposition as stampiipaQ processor grid, or template, over the matrix, where each cell
of the grid covers x sdata items, and is labeled by its position in the template. In Table 1 we give the @élues
the block size x sthat give the same results as the block and scattered decompositions in Fige block and
scattered decompositions may be regarded as special cases of thechlbeted decomposition. In general, the
scattered blocks are rectangular, however, the use of nonsquaks lskn lead to complications. For example,
in the LU factorization algorithm, described in the next section, a triangulee $dneeded to update submatrix
C. If nonsquare blocks are used either the triangular matrix will extend roeee than one column of blocks
(if r > s), or the submatrixC will extend over more than one row of blocks (ik s). Thus, nonsquare blocks
will result in additional software and communication overhead. We, thexgfioopose to restrict ourselves to the
square block scattered (SBS) class of decompositions. The colummadecompositions can still be recovered
by settingP = 1 orQ = 1, as shown in Table 1, however, the decompositions shown in Figs.nt{{)gd cannot
be generated with an SBS decomposition.

So far we have only considered how to map matrix elements onto the nodergddcomposing a problem
we must also specify how locations in the node grid are mapped to physa@é nGommon mapping functions
are the natural mapping,

Al,j)=i+j-Q (4)
and the binary-reflected Gray code mapping,

All, 1) =G(i) +G(1)-Q (5)

whereG(x) denotes the Gray code gf andi =0,1,...,Q—1,j =0,1,...,P—1. On most current multicom-
puters the cost of communicating between any two nodes is weakly depefitleeir separation in the topology
of the communication network. Hence the choice of mapping should not impddrmance very much. The
subroutine library should support the natural and Gray code mapmBgsell as any functior, supplied by
the application programmer.

3 An Example

In this section, we discuss the scalability of the LU factorization algorithm ithieimplemented using the block
scattered decomposition. First, we describe the algorithm. Next, we summarimestlits from an analysis of
the time complexity. Data from experiments on the Intel Touchstone Delta systamed to further demonstrate
the scalability.

3.1 LU factorization

To obtain our parallel implementation of the LU factorization, we started with @maof the right-looking
LAPACK LU factorization routine. It can be briefly described as followsssume the LU factorization has
proceeded so that all but the labeled portions of the matrix have beetedpda

whereB € RM*" C € R™*M-1) andE € RM-"*M=1) During the next step, the right-looking algorithm factors
panelB, pivoting if necessary. Next, the pivots are applied to the remainder ohétex. BlocksC andE now
become block€ andE, a triangular solve updates submattixand a ranky, update updates submatix This
process continues recursively with the updated matrix [12].

Turning now to the distributed memory implementation, assume the matrix is distributatafox Q
grid on nodes using a block scattered decomposition, with blockrsize For our analysis, we assume that
communicating a block df floating point numbers between any two nodes requires ¢irtek3, wherea and
[represent the communication latency and the inverse of the bandwidtbctiesty. In addition, the time for
a floating point operation is given by Finally, in our formulas/k] indicates the smallest integemultiple of r
greater thark.

The above described process proceeds as follows:

e (fB) The column of nodes that hol@scollaborates to factor this panel. Since there is relatively little to
compute (the panelis typically narrow), and communication is restricted toralessages, the contribution
of this operation to the run-time is almost entirely due to communication latency. Wigmalte the other
costs. For each column, this consists of(Bgx for determining the pivot rong for swapping pivot rows
of this panel, and another I08)a for broadcasting the pivot row. (Possible optimization: since this is
latency bound, a clever implementation would combine the messages for detgrthimipivot row, and
distributing it within the column of nodes that hold the panel.)

e (bp) Pivotinformation is distributed to all other columns of nodes. Approtémeantribution to run-time:
o per panel.

e (p) Columns of nodes collaborate to pivot the remainders of the matrix rproximate contribution
to run-time:r(a + [(N —r)/Q]|PB) for each of theN/r panels.

e (bB) Factored paneB is distributed within rows of nodes. Approximate contribution to run-timex 2
[(N—(k—1)r)/P|rp) for panelk =1,...,N/r. (Since this operation can be pipelined around the ring,
overlapping with computation, there is no (6 term here.)

. (b5) The row that hold<C performs the triangular solve, the results of which are distributed within

columns of nodes. Approximate contributiofN — kr)/Q1r?y+log(P)(a + [N —kr)/Q]rB) for panel
k=1,...,N/r.

° (uE_) Most parallelism is derived from updatirE_J Approximate contribution:
2[(N—kr)/PT[(N—kr)/Q]ry
for panelk=1,... N/r.
The total run time is then given by
Tiot ~ Tig + Trig + Top+ Tp+ Tyg + T + Ty (1)

where the different terms come from summing over all panels the diffecenitibutions given above.
Since the total computation time of the algorithm on a single processor is givdn 4y(2/3)N3y, the
efficiency attainedE = T1/pTiot, as a function of the various parameters, can be shown to be of the form

E = [1+ N—pz (c1log(P) +Cz)3)
-1
+g <C3|09(P)5 +C4> + % (055 +CG>] 3)

wherec;_g depend only om.

Let us start by considering the block column scattered decompositio® k6 = 1 x p. Then, for reason-
ably largeN,

-1

E~ {1+Czl\5:)2c;+£<C55+06>} @)
In the limit, N must grow withp to maintain efficiency. Notice that thd? cannot be readily ignored, even
for N = O(10%), sincea is several orders of magnitude greater tiydor many multicomputers. This kind of
scalability poses a problem: Memory requirements grow Witand hence eventually cannot be increased to
maintain efficiency. A similar analysis can be done for row distributions.

By contrast, consider a genefak Q grid of nodes. Assume the ratf@/P is kept constant ag s increased,
i.e.,P=u,/pandQ = v,/p, whereu andv are constants. Thed/N andQ/N becomeu,/p/N andv,/p/N,
respectively. If logP) is ignored, since it is a slowly growing functioN? must grow withp in order to main-
tain efficiency. If logP) is not ignored, it can be argued that orRés sufficiently large (e.g. greater than 4)
performance will degrade slowly witp.

3.2 Experimentson thelntel Delta

In this section, we discuss results from experiments conducted on theltntethstone Delta that illustrate the
scalability of the LU factorization.

The Intel Touchstone Delta system is a distributed-memory, messagegpassgticomputer of the Multiple
Instruction Multiple Data (MIMD) class [19]. It consists of 520 i860-b&s®des, interconnected via a com-
munications network having the topology of a two-dimensional rectanguikr §he interconnection network
employs a Mesh Routing Chip (MRC) at each system node. The peak mtegsor communications band-
width is ~ 30 MBytes/s in each direction. The system supports explicit messagegpaasth a latency of
~ 75 microseconds via worm-hole routing using a packet-based prototaicdmnect blocking is minimized by
interleaving packets associated with distinct messages that need to ttheesaene interconnect path.

7

DELTA (predicted)
14 ‘ ‘
Loy p=512=8x64 7
10+ g
0w 8 g
o
0 I
] -
G o p=256=8x32 |
4L |
p=128=4x32
e - pe64=4x16 1
/,, p=32=2x16
0 L L L L
0 05 1 15 2 25
problem size n X104

Figure 2: Total predicted (left) and observed (right) performanceddousp as a function of the problem size

N.

DELTA

MFLOPS per node

10r

251,
20+

15¢

n/sqrt(p) = 1000

n/sqrt(p) = 250

0
0

100 200 300 400

number of nodes p

500

GFLOPS

MFLOPS per node

14

DELTA

10r

12 p=512=8x64

T p=256=8x32

p=128=4x32

P peb4=axi6

/ p=32=2x16

0 0.5 1 15 2

problem size n

25

X104 N

DELTA (predicted)
35 T T
30 1
‘ B nisqri(p) = 1000
250, nisqrt(p) = 750 i
s T wsp)=500 |
15 1
n/sqrt(p) = 250
10+ B
5 L 4
0 L L L L L
0 100 200 300 400 500

number of nodes p

Figure 3: Performance per node predicted (left) and observed (dghitje number of nodgsvaries. Different
curves correspond to problem sizes increased so\that (or N/sqrt(p)) is constant.

Massively parallel LINPACK benchmark
35 : : : : . .

30 E
| DELTA

250\ Mieko B

20/ R D - iPSC/860 1

MFLOPS per node

101 1

Fujitsu AP1000

NCUBE2

0 20 40 60 80 100 120 140 160 180 200

number of nodes p

Figure 4: Performance per node attained for the LINPACK benchmankaligus parallel architectures as the
number of nodeg varies.

There are a number of issues that complicate a direct comparison of alytieal estimates and observed
performance. First, certain optimizations can be done to improve the algoritlem ig Section 3 [22], details
of which go beyond the scope of this paper. Second, the paramiteffected by the size of the data being
manipulated: computation at different stages involves Level 1, 2, andEBwhich yield different performance
depending on the size of the data being manipulated. Finally, the bloakaiza grid sizeP x Q are chosen so
the performance of the BLAS is maximized without creating unreasonable idlatisméo load inbalance. This
leaves us to investigate if the predicted trends can be observed in practice.

In Fig. 2, we report the predicted and observed performance of thiattdrization for different numbers of
nodes when the problem sikkis varied. For the predicted performanae= 10Qusec, = 1usec (8 Mbytes/sec
bandwidth), ang = 29nsec (34 MFLOPS per node) where used. (These correspogialyda what we observed
in practice. Communication overhead is somewhat increased by our cduegrill sizes were experimentally
determined to be optimal for large problem sizes. As the problem size ies;g@esrformance improves. The
results compare favorably with the peak performance that can be attainihisftype of problem on the Delta.

The predicted degradation of performance whefy/p is held constant is illustrated in Fig. 3. This trend
is also observed in practice, as illustrated in Fig. 3. In these figures, peet refficiency as performance (in
MFLOPS) per node.

The LU factorization is at the core of the LINPACK benchmark. This bematk measures the performance
of a given computer while performing a dense linear solve. A typical implerientatarts by factoring the
matrix, followed by triangular solves. Results from implementations on variaxgslpl architectures are reported
in [13]. To illustrate that the predicted trends can be observed on othaltgpacomputers as well, we report
performance per node in Fig. 4. While there is a clear incentive to fill the mewmibh the largest possible
problem, thereby automatically increasiNg roughly with p, the data made available to us did not in all cases
include problem sizes that scaled as nicely as those used for Fig. 3. gitliama was available for an NCUBE2
up to size 1024, and for the Fujitsu and Delta up to size 512, we concentralbe onore interesting range of
machine sizes in this figure.

Several observations can be made: Both the NCUBE2 and the Fujitsusaic drarelatively slow processors.

This decreases the ratiagy anda /3, thereby reducing the effects of communication overhead. Moreower, th
performance of the BLAS on these machines is less affected by the size pfablem. All other machines are
base on the same processor: the Intel i860. The curve for the Miekavéollee predicted trend, except that the
last data point (for 62 nodes) is for a much smaller problem size than iseddo keepN?/p constant. At first
glance, the efficiency attained by the Alliant appears to improve with the nunfimerdes, defying the results
of our analysis. Moreover, when looking at the raw data, the problees siztually grow slower than required
by our analysis. This indicates that there is a lower order term that affedisrmance for small problem sizes.
Indeed, it is reportedly due to an inefficient triangular solve algorithnd uséhis implementation.

4 Programmability

Programmability will be used here to refer to a number of features of the a@ftenvironment concerned with
software maintenance and usage. Programmability covers the flexibility cdrignctionality, portablility, and
ease of use of some software component. From an application prograsrpoart of view, the main factor
that will determine how easy it is to learn and use the proposed subroutineyliwill be the interface to the
subroutines. Clearly, this interface must pass the appropriate informében the decomposition and layout of
the data in memory to the subroutine. This could be done in three ways:

1. by only allowing one type of decomposition for each subroutine so tHatelift subroutines must be called
for different decompositions. This avoids having to specify the decoitigpoén a lengthy argument list,
but makes maintaining and porting the subroutine library rather tedious.

2. have a single subroutine handle all possible different decompositioinsass the decomposition informa-
tion via the argument list. This can result in long argument lists.

3. use an object-oriented approach in which a matrix is actually a data strecttaining the data itself (or
pointers to it), plus all the information necessary to fully specify the decoitiposThis allows a single
subroutine to handle all decompositions, and avoids a long argument lisiadpmnsach is the most elegant
and conceptually simplest for the application programmer. It is rather mdieudtito implement than the
other two approaches.

The object-oriented approach allows details of the parallel implementation tiddenhat a low level of the
software. Ideally, all communication would be hidden below the level of thABLoutines. In the prototype
parallel dense linear algebra library currently under development atpioigessor communication takes place
explicitly at the level of the parallel linear algebra routines through calls fwnantunication library, the LACS
routines [3, 16, 14]. Thus, currently the sequential BLAS routinesgtteay with the LACS, are the building
blocks used to build higher level library routines, such as LU and QRriaatn.

In addition to a set of subroutines for performing matrix computations theogesplibrary will also contain
routines for performing communication tasks. Such tasks will include gldemhges to the decomposition,
such as performing a matrix transpose, and replicating parts of a matrigugys of nodes. This latter type of
communication is similar to the SPREAD routine in Fortran 90 [8], and will allowef@mple, row and columns
of a matrix to be communicated across across the machine. These LACS soule: ggiven an object-oriented
style of interface. In fact, some of the array intrinsic functions of For@@nsuch as SPREAD, CSHIFT, and
EOSHIFT, could be included in the LACS.

Other utility routines will also be provided. One set of assignment routinedevilised to initially specify the
decomposition, and another set of inquiry routines will provide a meansti@oting information about the cur-
rent decomposition. These inquiry routines will allow application programtoatevelop modular subprograms
that are fully compatible with our linear algebra library.

10

5 Conclusions

The square block scattered decomposition (SBS) is a practical ancagpogoose way of decomposing dense
linear algebra computations. In problems, such as LU factorization, in wbwes and/or columns become inac-
tive as the algorithm progresses, the SBS decomposition provides gablodzace. At the same time it reduces
communication latency since fewer messages need to be sent than in thechedldasér = 1). Itis possible to
regard each of the blocks as a distinct process, so the SBS decompasigitfect, overdecomposes the problem.
The resultant parallel slackness could then be exploited by overlappmghanication and computation. This
might be a viable approach on future machines that support multithreading ap#rating system kernel, or in
hardware. However, on currently available machines the communicatiocyateprobably too high to make it
worthwhile, although our general approach should make it easy to erglitiecomposition in the future.

The LU factorization timings presented in Section 3 show that the SBS deciimpassults in scalable
and efficient code, attaining a speed of about 14 GFLOPS on the Inteh$tone Delta system for the largest
problem considered.

We propose an object-oriented interface to the library routines, in whiclolifexts are matrices that in-
clude pointers to both the matrix data and the decomposition. With this approdetegirocessor communica-
tion takes place within the Level 3 BLAS routines, or within the Linear Algeboan@unication Subprograms
(LACS), which are provided to perform common communication tasks. Thaeisdargely insulated from the
details of the parallel implementation, making applications more readily portaltleaesner to develop.

Acknowledgements

This research was performed in part using the Intel Touchstone DdtarS8yperated by the California Institute
of Technology on behalf of the Concurrent Supercomputing Consor#meess to this facility was provided by
the California Institute of Technology and Intel Supercomputer Systenisi@iv

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DaCA. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen. Lapack: A portable linear algebrariifor high-performance computers.
In Proceedings of Supercomputing ;98ages 1-10. IEEE Press, 1990.

[2] E. Anderson, A. Benzoni, J. Dongarra, S. Moulton, S. OstroucB. Tourancheau, and R. van de Geijn.
LAPACK for distributed memory architectures: Progress reporPdrallel Processing for Scientific Com-
puting, Fifth SIAM Conferenc&IAM, 1991.

[3] E. Anderson, A. Benzoni, J. Dongarra, S. Moulton, S. OstrougiB. Tourancheau, and R. van de Geijn.
Basic Linear Algebra Communication SubprogramsSixth Distributed Memory Computing Conference
Proceedingspages 287-290. IEEE Computer Society Press, 1991.

[4] C. C. Ashcraft. The distributed solution of linear systems using the torap data mapping. Engineering
Computing and Analysis Technical Report ECA-TR-147, Boeing Com&eerices, 1990.

[5] C. C. Ashcraft. A taxonamy of distributed dense LU factorization methdisyineering Computing and
Analysis Technical Report ECA-TR-161, Boeing Computer Servic@g11

[6] R. Brent. The LINPACK benchmark on the AP 1000: Preliminary répbr Proceedings of the 2nd CAP
Workshop November 1991.

11

[7] E. F. Van de Velde. Data redistribution and concurrerarallel ComputingDecember 1990.

[8] J. Demmel, J. J. Dongarra, J. Du Croz, A. Greenbaum, S. HammaalimhD. Sorensen. Prospectus for
the development of a linear algebra library for high performance congputechnical Report 97, Argonne
National Laboratory, Mathematics and Computer Science Division, Septeifg@.

[9] J. Dongarra and S. Ostrouchov. LAPACK block factorization dtgans on the Intel iPSC/860. Technical
report, University of Tennessee at Knoxville, Computer Science Dapat, October 1990.

[10] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A sdeweél 3 basic linear algebra subprograms.
ACM Transactions on Mathematical Softwat€(1):1-17, 1990.

[11] J.J. Dongarra, I. S. Duff, J. Du Croz, and S. Hammarling. Ao$tdvel 3 basic linear algebra subprograms.
ACM TOMS 16(1):1-17, March 1990.

[12] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van\best. Solving Linear Systems on Vector and
Shared Memory ComputerSIAM, Philadelphia, PA, 1990.

[13] Jack J. Dongarra. Performance of various computers usingastatinear equations software. Technical
report.

[14] J.J. Dongarra. Workshop on the BLACS. LAPACK Working Note Bdchnical Report CS-91-134, Uni-
versity of Tennessee, 1991.

[15] J.J. Dongarra and R.A. van de Geijn. Reduction to condenseddotite eigenvalue problem on distributed
memory architectures. LAPACK Working Note 30, Technical Report @€3-30, University of Tennessee,
1991. To appear iRarallel Computing

[16] J.J. Dongarra and R.A. van de Geijn. Two dimensional basic lineabedgcommunication subprograms.
LAPACK Working Note 37, Technical Report CS-91-138, Universitffennessee, 1991.

[17] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, CI&eng, and M-Y. Wu. Fortran D lan-
guage specification. Technical Report CRPC-TR90079, Centerefeedtch on Parallel Computation, Rice
University, December 1990.

[18] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salrraord D. W. Walker.Solving Problems
on Concurrent Processargolume 1. Prentice Hall, Englewood Cliffs, N.J., 1988.

[19] S.L. Lillevik. The Touchstone 30 Gigaflop DELTA Prototype. $ixth Distributed Memory Computing
Conference Procedingpages 671-677. IEEE Computer Society Press, 1991.

[20] Y. Saad and M. H. Schultz. Parallel direct methods for solving bdrhear systems. Technical Report
YALEU/DCS/RR-387, Departmen t of Computer Science, Yale Universg@gbl

[21] A. Skjellum and A. Leung. LU factorization of sparse, unsymmetrcobian matrices on multicomput-
ers. In D. W. Walker and Q. F. Stout, editofroceedings of the Fifth Distributed Memory Concurrent
Computing Conferen¢cpages 328-337. IEEE Press, 1990.

[22] R.A. van de Geijn. Massively parallel LINPACK benchmark on theelliTouchstone Delta and iPSC/860
systems. IM991 Annual Users’ Conference Proceediniggel Supercomputer Users’ Group, Dallas, TX,
1991.

12

