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Abstract. Many of the currently popular \block algorithms" are scalar algorithms in which the

operations have been grouped and reordered into matrix operations. One genuine block algorithm

in practical use is block LU factorization, and this has recently been shown by Demmel and Higham

to be unstable in general. It is shown here that block LU factorization is stable if A is block

diagonally dominant by columns. Moreover, for a general matrix the level of instability in block

LU factorization can be bounded in terms of the condition number �(A) and the growth factor for

Gaussian elimination without pivoting. A consequence is that block LU factorization is stable for

a matrix A that is symmetric positive de�nite or point diagonally dominant by rows or columns as

long as A is well-conditioned.
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1 Introduction

Block methods in matrix computations are widely recognised as being able to achieve high perfor-

mance on modern vector and parallel computers. Their performance bene�ts have been investigated

by various authors over the last decade (see, for example, [11, 14, 15]), and in particular by the

developers of LAPACK [1]. The rise to prominence of block methods has been accompanied by the

development of the level 3 Basic Linear Algebra Subprograms (BLAS3)|a set of speci�cations of
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Fortran primitives for various types of matrix multiplication, together with solution of a triangular

system with multiple right-hand sides [9, 10]. Block algorithms can be cast largely in terms of calls

to the BLAS3, and it is by working with these matrix-matrix operations that they achieve high

performance. (For a detailed explanation of why matrix-matrix operations lead to high e�ciency

see [8] or [16].)

While the performance aspects of block algorithms have been thoroughly analyzed, numerical

stability issues have received relatively little attention. This is perhaps not surprising, because most

block algorithms in practical use automatically have excellent numerical stability properties. Indeed,

Demmel and Higham [7] show that all the block algorithms in LAPACK are as stable as their point

counterparts. However, stability cannot be taken for granted. LAPACK includes a block algorithm

for inverting a triangular matrix that is a generalization of a standard point algorithm. During the

development of LAPACK another, equally plausible block generalization was considered|this one

was found to be unstable [12].

In this work we investigate the numerical stability of a block form of the most important of

all matrix factorizations, LU factorization. What we mean by \block form" needs to be explained

carefully, since the adjective \block" has more than one meaning in the literature. We will use the

following terminology, which emphasises an important distinction and leads to insight in interpreting

stability results.

A partitioned algorithm is a scalar (or point) algorithm in which the operations have been grouped

and reordered into matrix operations. The partitioned form may involve some extra operations over

the scalar form (as is the case with algorithms that aggregate Householder transformations using

the WY technique of [4]).

A block algorithm is a generalization of a scalar algorithm in which the basic scalar operations

become matrix operations (�+ �, ��, �=� become A +B, AB and AB�1), and a matrix property

based on the nonzero structure becomes the corresponding property blockwise (in particular, the

scalars 0 and 1 become the zero matrix and the identity matrix, respectively). A block factorization

is de�ned in a similar way, and is usually what a block algorithm computes.

The distinction between a partitioned algorithm and a block algorithm is rarely made in the

literature (an exception is the paper [24]). The term \block algorithm" is frequently used to describe

both types of algorithm. A partitioned algorithm might also be called a \blocked algorithm" (as is

done in [8]), but the similarity to \block algorithm" can cause confusion and so we do not recommend

this terminology. Note that in the particular case of matrix multiplication partitioned and block

algorithms are equivalent.

LAPACK contains only partitioned algorithms. A possible exception is the multi-shift Hessenberg

QR iteration [2], which could be regarded a block algorithm, even though it does not work with a

block Hessenberg form. As this example indicates, not all algorithms �t neatly into one class or the

other, so our de�nitions should not be interpreted too strictly.
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Block LU factorization is one of the few block factorizations in practical use. It takes the form

A =

2
64
A11 A12 A13

A21 A22 A23

A31 A32 A33

3
75 =

2
64

I

L21 I

L31 L32 I

3
75
2
64
U11 U12 U13

U22 U23

U33

3
75 = LU; (1:1)

where, for illustration, we are regarding A as a block 3� 3 matrix. L is block lower triangular with

identity matrices on the diagonal (and hence is lower triangular), and U is block upper triangular

(but the diagonal blocks Uii are not triangular, in general).

Block LU factorization has been discussed by various authors; see, for example, [5, 15, 23, 24].

It appears to have �rst been proposed for block tridiagonal matrices, which frequently arise in the

discretization of partial di�erential equations [16, Sec. 4.5.1], [21, p. 59], [22], [26]. An attraction

of block LU factorization is that one particular implementation has a greater amount of matrix

multiplication than conventional LU factorization (see section 2), and this is likely to make it more

e�cient on high-performance computers.

By contrast with (1.1), a standard LU factorization can be written in the form

A =

2
64
L11

L21 L22

L31 L32 L33

3
75
2
64
U11 U12 U13

U22 U23

U33

3
75 = LU;

where L is unit lower triangular and U is upper triangular. A partitioned version of the outer

product LU factorization algorithm (without pivoting) computes the �rst block column of L and

the �rst block row of U as follows. A11 = L11U11 is computed as a point LU factorization, and

the equations Li1U11 = Ai1 and L11U1i = A1i are solved for Li1 and U1i, 1 = 2; 3. The process is

repeated on the Schur complement,

S =

�
A22 A23

A32 A33

�
�
�
L21

L31

�
[U12 U13 ] :

This algorithm does the same arithmetic operations as any other version of standard LU factoriza-

tion, but in a di�erent order.

Demmel and Higham [7] have recently shown that block LU factorization can be unstable, even

when A is symmetric positive de�nite or diagonally dominant by rows. This instability had previously

been identi�ed and analysed in [3] in the special case where A is a particular row permutation of

a symmetric positive de�nite block tridiagonal matrix. The purpose of this work is to gain further

insight into the instability of block LU factorization. We also wish to emphasise that of the two

classes of algorithms we have de�ned it is the block algorithms whose stability is most in question.

We know of no examples of an unstable partitioned algorithm. (Those partitioned algorithms based

on the aggregation of Householder transformations that do slightly di�erent arithmetic to the point

versions have been shown to be stable [4, 7]).

In section 2 we derive backward error bounds for block LU factorization and for the solution of a

linear system Ax = b using the block LU factors. In section 3 we show that block LU factorization is
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stable if A is block diagonally dominant by columns; this generalizes the known results that Gaussian

elimination without pivoting is stable for column diagonally dominant matrices [28] and that block

LU factorization is stable for block tridiagonal matrices that are block diagonally dominant by

columns [26]. We also show that for a general matrix A the backward error is bounded by a product

involving �(A) and the growth factor �n for Gaussian elimination without pivoting on A. If A is

(point) diagonally dominant this bound simpli�es because �n � 2. If A is diagonally dominant by

columns we show that a potentially much smaller bound holds that depends only on the block size.

In section 4 we specialize to symmetric positive de�nite matrices and show that the backward error

can be bounded by a multiple of �2(A)
1=2. Block LU factorization is thus conditionally stable for

symmetric positive de�nite and diagonally dominant matrices: it is guaranteed to be stable only if

A is well-conditioned. Results of this type are rare for linear equation solvers based on factorization

methods, although stability results conditional on other functions of A do hold for certain iterative

linear equation solvers [20, 29].

In section 5 we present some numerical experiments that show our error bounds to be reasonably

sharp and reveal some interesting numerical behaviour. Concluding remarks are given in section 6.

2 Error Analysis of Block LU factorization

We consider a block LU factorization A = LU 2 IRn�n, where the diagonal blocks in the partitioning

are square but do not necessarily all have the same dimension.

If A11 2 IRr�r is nonsingular we can write

A =

�
A11 A12

A21 A22

�
=

�
I 0

L21 I

� �
A11 A12

0 S

�
; (2:1)

which describes one block step of an outer product based algorithm for computing a block LU

factorization. Here, S = A22 � A21A
�1
11 A12 is a Schur complement of A. If the (1; 1) block of S of

appropriate dimension is nonsingular then we can factorize S in a similar manner, and this process

can be continued recursively to obtain the complete block LU factorization. The overall algorithm

can be expressed as follows.

Algorithm BLU.

This algorithm computes a block LU factorization A = LU 2 IRn�n.

1. U11 = A11, U12 = A12.

2. Solve L21A11 = A21 for L21.

3. S = A22 � L21A12 (Schur complement).

4. Compute the block LU factorization of S, recursively.

Given the block LU factorization of A, the solution to a system Ax = b can be obtained by

solving Lx = y by forward substitution (since L is triangular) and solving Ux = y by block back

substitution. There is freedom in how step 2 of Algorithm BLU is accomplished, and how the linear
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systems with coe�cient matrices Uii that arise in the block back substitution are solved. The two

main possibilities are as follows.

Implementation 1: A11 is factorized by Gaussian elimination with partial pivoting (GEPP).

Step 2 and the solution of linear systems with Uii are accomplished by substitution with the LU

factors of A11.

Implementation 2: A�111 is computed explicitly, so that step 2 becomes a matrix multiplication

and Ux = y is solved entirely by matrix-vector multiplications. This approach is attractive for

parallel machines [15, 24].

We now give an error analysis for Algorithm BLU, under the following model of 
oating point

arithmetic, where u is the unit roundo�:

fl(x � y) = x(1 + �) � y(1 + �); j�j; j�j � u;

fl(x op y) = (x op y)(1 + �); j�j � u; op = �; =:

It is convenient to use the matrix norm de�ned by

kAk = max
i;j

jaijj: (2:2)

Note that if A 2 IRm�n and B 2 IRn�p then kABk � nkAkkBk is the best such bound; this

inequality a�ects some of the constants in our analysis and will be used without comment.

We assume that the computed matrices bL21 from step 2 of Algorithm BLU satisfy

bL21A11 = A21 +E21; kE21k � cnukbL21kkA11k+ O(u2); (2:3)

where cn denotes a constant depending on n (we are not concerned with the precise values of the

constants in this analysis). We also assume that when a system Uiixi = di is solved, the computed

solution bxi satis�es
(Uii +�Uii)bxi = di; k�Uiik � c0nukUiik+O(u2): (2:4)

The assumptions (2.3) and (2.4) are satis�ed for implementation 1 and are su�cient to prove the

following result.

Theorem 2.1 Let bL and bU be the computed block LU factors of A 2 IRn�n from Algorithm BLU,

and let bx be the computed solution to Ax = b. Under assumptions (2.3) and (2.4),

bLbU = A +E; kEk � dnu(kAk+ kbLkkbUk) + O(u2); (2.5)

(A +�A)bx = b; k�Ak � d0nu(kAk+ kbLkkbUk) +O(u2): (2.6)

Proof. Standard error analysis for matrix multiplication [16, p. 66] shows that in step 3 of the

�rst block stage of the factorization,

bS = A22 � bL21A12 +�S; k�Sk � cnu(kA22k+ kbL21kkA12k) + O(u2):
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The remaining stages of the factorization compute the block LU factorization bS � bLS
bUS , which,

inductively, we can assume satis�es

bLS
bUS = bS +ES ; kESk � c0nu(kbSk+ kbLSkkbUSk) +O(u2):

Using (2.3) we have

A� bLbU = A�
�
Ir 0

bL21
bLS

� �
A11 A12

0 bUS

�

=

�
0 0

�E21 ��S � ES

�
;

and so

kA � bLbUk � c00numax
�
kbL21kkA11k; kA22k+ kbL21kkA12k+ kbSk+ kbLSkkbUSk

�
+O(u2)

� dnu(kAk+ kbLkkbUk) + O(u2):

The system Ax = b is solved via bLy = b and bUx = y. Since bL is triangular we have from a

standard result [16, sec. 3.1] that

(bL +�bL)by = b; k�bLk � cnukbLk+O(u2): (2:7)

For bUx = by consider the �rst block row, which can be written

bU11x1 = by � bU12x2:

In the last stage of block back substitution x2 is known and this equation is solved for x1. Accounting

for the error in forming the right-hand side, and invoking (2.4), we have

(bU11 +�bU11)bx1 = by � (bU12 +�bU12)bx2; k�bU1jk � c0nukbU1jk+ O(u2):

Since analogous equations hold for all the block rows, we have, overall,

(bU +�bU )bx = by; k�bUk � c0nukbUk+O(u2): (2:8)

Combining (2.5), (2.7) and (2.8) we have

b = (bL +�bL)(bU +�bU)bx
= (A +E +�bLbU + bL�bU +�bL�bU)bx
= (A +�A)bx;

and k�Ak is bounded as in (2.6).

Theorem 2.1 shows that the stability of block LU factorization is determined by the ratio

kbLkkbUk=kAk (the sharpness of the bounds is demonstrated in the numerical experiments of sec-

tion 5). If this ratio is reasonably bounded, by a modest function of n, say, then bL and bU are
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the true factors of a matrix close to A, and bx solves a slightly perturbed system. It was noted in

[7] that kbLkkbUk can exceed kAk by an arbitrary factor, even if A is symmetric positive de�nite or

diagonally dominant by rows. Indeed, kLk � kL21k = kA21A
�1
11 k, using the partitioning (2.1), and

this lower bound for kLk can be arbitrarily large. In the following two sections we investigate this

instability more closely and show that kLkkUk can be bounded in a useful way for particular classes

of A. Without further comment we make the reasonable assumption that kLkkUk � kbLkkbUk, so
that these bounds may be used in Theorem 2.1.

We mention that the bounds in Theorem 2.1 are valid also for other version of block LU factor-

ization obtained by \block loop reordering", such as a block gaxpy based algorithm [16, p. 101].

Finally, we comment on implementation 2. Suppose, for simplicity, that the inverses A�111 (which

are used in step 2 of Algorithm BLU and in the block back substitution) are computed exactly.

Then the best bounds of the forms (2.3) and (2.4) are

bL21A11 = A21 +E21; kE21k � cnu�(A11)kA21k+O(u2);

(Uii +�Uii)bxi = di; k�Uiik � c0nu�(Uii)kUiik+ O(u2):

Working from these results, we �nd that Theorem 2.1 still holds provided the �rst order terms in

the bounds in (2.5) and (2.6) are multiplied by maxi �(bUii). This suggests that implementation 2 of

Algorithm BLU can be much less stable than implementation 1 when the diagonal blocks of U are

ill-conditioned, and this is con�rmed by the numerical results in section 5.

3 Diagonal Dominance

One class of matrices for which block LU factorization has long been known to be stable is block

tridiagonal matrices that are block diagonally dominant. A general matrix A 2 IRn�n is block

diagonally dominant by columns, with respect to a given partitioning A = (Aij) and a given norm,

if, for all j,

kA�1jj k�1 �
X
i6=j

kAijk = 
j � 0: (3:1)

A is block diagonally dominant by rows if AT is block diagonally dominant by columns. For the block

size 1 the usual property of point diagonal dominance is obtained. Note that for the 1 and1-norms

diagonal dominance does not imply block diagonal dominance, nor does the reverse implication hold.

Block diagonal dominance was introduced in [13], and has mostly found use in generalizations

of the Gershgorin circle theorem. However, Varah [26] proved that if A is block tridiagonal and has

the block LU factorization A = LU (so that L and U are block bidiagonal and Ui;i+1 = Ai;i+1),

then if A is block diagonally dominant by columns

kLi;i�1k � 1; kUiik � kAiik+ kAi�1;ik; (3:2)

while if A is block diagonally dominant by rows

kLi;i�1k �
kAi;i�1k
kAi�1;ik

; kUiik � kAiik+ kAi;i�1k: (3:3)
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Here, the norm is assumed to be a subordinate matrix norm. For the 1-norm the inequalities

(3.2) imply that kLk1 � 2 and kUk1 � 3kAk1, so block LU factorization is stable if A is block

diagonally dominant by columns. Similarly, if A is block diagonally dominant by rows we have

stability if kAi;i�1k=kAi�1;ik is suitably bounded for all i.

Varah's results can be extended to full, block diagonally dominant matrices, as we now explain.

First, we show that for such matrices a block LU factorization exists, using the key property that

block diagonal dominance is inherited by the Schur complements obtained in the course of the

factorization. In the following analysis we assume that A has m block rows and columns.

Lemma 3.1 Suppose A 2 IRn�n is nonsingular and block diagonally dominant by rows or columns

with respect to a subordinate matrix norm in (3.1). Then A has a block LU factorization, and all

the Schur complements arising in Algorithm BLU have the same kind of diagonal dominance as A.

Proof. The proof is a generalization of the corresponding result for point diagonal dominance

[16, p. 20], [28]. We consider the case of block diagonal dominance by columns; the proof for row-wise

diagonal dominance is analogous.

Let

A(2) =

�
U11 U12

0 S

�

denote the matrix obtained from A after one step of Algorithm BLU. For 2 � j � n we have

mX
i=2

i6=j

kA(2)
ij k =

mX
i=2

i6=j

kAij �Ai1A
�1
11 A1jk

�
mX
i=2
i6=j

kAijk+ kA1jkkA�111 k
mX
i=2
i6=j

kAi1k

�
mX
i=2

i6=j

kAijk+ kA1jkkA�111 k
�
kA�111 k�1 � kAj1k

�
; using (3.1);

=

mX
i=2
i6=j

kAijk+ kA1jk � kA1jkkA�111 kkAj1k

� kA�1jj k�1 � kA1jkkA�111 kkAj1k; using (3.1);

= min
kxk=1

kAjjxk � kA1jkkA�111 kkAj1k

� min
kxk=1

k(Ajj � Aj1A
�1
11 A1j)xk

= min
kxk=1

kA(2)
jj xk: (3.4)

Now if A
(2)

jj is singular it follows that
Pm

i=2;i6=j kA
(2)

ij k = 0; therefore A(2), and hence also A, is

singular, which is a contradiction. Thus A
(2)
jj is nonsingular, and (3.4) can be rewritten

mX
i=2

i6=j

kA(2)
ij k � kA(2)

jj

�1
k�1;
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showing that A(2) is block diagonally dominant by columns. The result follows by induction.

The next result allows us to bound kUk for a block diagonally dominant matrix.

Lemma 3.2 Let A satisfy the conditions of Lemma 3.1. If A(k) denotes the matrix obtained after

k � 1 steps of Algorithm BLU, then

max
k�i;j�m

kA(k)

ij k � 2 max
1�i;j�m

kAijk:

Proof. The proof is a straightforward generalization of Wilkinson's proof of the corresponding

result for point diagonally dominant matrices [28, pp. 288{289]. Let A be block diagonally dominant

by columns (the proof for row diagonal dominance is similar). Then

mX
i=2

kA(2)
ij k =

mX
i=2

kAij �Ai1A
�1
11 A1jk

�
mX
i=2

kAijk+ kA1jkkA�111 k
mX
i=2

kAi1k

�
mX
i=1

kAijk;

using (3.1). By induction, using Lemma 3.1, it follows that
Pm

i=k kA
(k)
ij k �

Pm

i=1 kAijk. This yields

max
k�i;j�m

kA(k)
ij k � max

k�j�m

mX
i=k

kA(k)
ij k � max

k�j�m

mX
i=1

kAijk:

>From (3.1),
P

i6=j kAijk � kA�1jj k�1 � kAjjk, so

max
k�i;j�m

kA(k)
ij k � 2 max

k�j�m
kAjjk � 2 max

1�j�m
kAjjk = 2 max

1�i;j�m
kAijk:

The implications of Lemmas 3.1 and 3.2 for stability are as follows. Suppose A is block diagonally

dominant by columns. Also, assume that the norm has the property that

max
i;j

kAijk � kAk �
X
i;j

kAijk; (3:5)

which holds for any p-norm, for example. Then Lemma 3.1 implies that k[LT
j+1;j; : : : ; L

T
mj]

Tk � 1

for each subdiagonal block column of L, and since Uij = A
(i)
ij for j � i, Lemma 3.2 shows that

kUijk � 2kAk for each block of U . Therefore kLk � m and kUk � m(m+ 1)kAk, and so kLkkUk �
m2(m + 1)kAk. For particular norms the bounds on the blocks of L and U yield a smaller bound

for kLk and kUk. For example, for the 1-norm we have kLk1kUk1 � 2mkAk1 and for the 1-norm

kLk1kUk1 � 2m2kAk1. We conclude that block LU factorization is stable if A is block diagonally

dominant by columns with respect to any subordinate matrix norm satisfying (3.5).
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Unfortunately, block LU factorization can be unstable when A is block diagonally dominant by

rows. For although Lemma 3.2 guarantees that kUijk � 2kAk, kLk can be arbitrarily large. This

can be seen from the example

A =

�
A11 0
1
2
I I

�
=

�
I 0

1
2
A�111 I

� �
A11 0

0 I

�
= LU;

where A is block diagonally dominant by rows in any subordinate norm for any nonsingular matrix

A11. It is easy to con�rm numerically that block LU factorization can be unstable on matrices of

this form. Note that if the block size is 1 then we do have stability, since block LU factorization is

equivalent to Gaussian elimination (GE) and the growth factor is bounded by 2 [28] (see Lemma3.2).

It is also of interest to bound kLkkUk for a point diagonally dominant matrix, since this property

is much easier to check than block diagonal dominance. We will derive a bound for kLkkUk for a
general matrix and then specialise to diagonal dominance. We partition A according to

A =

�
A11 A12

A21 A22

�
; A11 2 IRr�r : (3:6)

In the rest of this section we use the norm (2.2) and �n denotes the growth factor for Gaussian

elimination (GE) without pivoting, that is, �n = maxi;j;k ja(k)ij j=jaijj in the usual notation. We

assume that GE applied to A succeeds.

Lemma 3.3 If A 2 IRn�n then kA21A
�1
11 k � n�n�(A).

Proof. >From (2.1) it can be seen that (A�1)21 = �S�1A21A
�1
11 , where the Schur complement

S = A22 �A21A
�1
11 A12. Hence

kA21A
�1
11 k � nkSkk(A�1)21k � nkSkkA�1k:

S is the trailing submatrix that would be obtained after r � 1 steps of GE. It follows immediately

that kSk � �nkAk.

Lemma 3.4 If A 2 IRn�n then the Schur complement S = A22 � A21A
�1
11 A12 satis�es �(S) �

�n�(A).

Proof. kSk � �nkAk, as noted in the proof of Lemma 3.3, and kS�1k � kA�1k because S�1 is
the (2; 2) block of A�1, as is easily seen from (2.1).

To bound kLk note that, under the partitioning (3.6), for the �rst block stage of Algorithm BLU

we have kL21k = kA21A
�1
11 k � n�n�(A) by Lemma 3.3. Since the algorithm works recursively with

the Schur complement S, and since �(S) � �n�(A) (by Lemma 3.4), each subsequently computed

subdiagonal block of L has norm at most n�2n�(A). Since U is composed of elements of A together

with elements of Schur complements of A, kUk � �nkAk. Overall, for a general matrix A 2 IRn�n,

kLkkUk � n�2n�(A) � �nkAk = n�3n�(A)kAk:
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Thus block LU factorization is stable for a general matrix A as long as GE is stable for A (that is,

�n = O(1)) and A is well-conditioned.

If A is diagonally dominant by rows or columns then �n � 2 [28], as noted above. Hence for a

diagonally dominant matrix A,

kLkkUk � 8n�(A)kAk; (3:7)

that is, stability depends only on the condition of A.

The upper bound in Lemma 3.3 gives about the best possible bound for row diagonally dominant

matrices, but a potentially much smaller bound holds under column diagonal dominance, as we now

explain. Consider the standard LU factorization,

A =

�
A11 A12

A21 A22

�
=

�
L11 0

L21 L22

� �
U11 U12

0 U22

�
= LU; (3:8)

where A11 2 IRr�r . Equating this factorization with (2.1), we see that

L21 = A21A
�1
11 = A21U

�1

11 L
�1

11 = L21L
�1

11 :

If A is diagonally dominant by columns then the multipliers for GE are all bounded by 1 in absolute

value (from Lemma 3.1 with block size 1), or, equivalently, no row interchanges are required by

partial pivoting. This implies that kL21k � 1 and kL�111 k � 2r�2, and so

kL21k � n2r�2: (3:9)

The bound for kL�111 k is not attainable, for if a unit lower triangular T 2 IRn�n satis�es kT�1k = 2n�2

then tij = �1 for all i > j, and this implies that the �rst column ofA = TU is u11(1;�1;�1; : : :;�1)T ,
so A is not diagonally dominant by columns. In any case, kL�111 k is typically O(r) in practice, assum-

ing only that partial pivoting requires no row interchanges (A � PA) (and thus not fully exploiting

the diagonal dominance) [25]. No such bound as (3.9) holds for row diagonal dominance, because in

this case there is no a priori bound on the multipliers.

For a column diagonally dominant matrix (3.7) and (3.9) give

kLkkUk � 2nmin(2r�2; 4�(A))kAk; (3:10)

where the maximum block size is r.

To summarise, for (point) diagonally dominant matrices stability is guaranteed if A is well-

conditioned. This in turn is guaranteed if the block column diagonal dominance amounts 
j in

(3.1) are su�ciently large relative to kAk, because for the 1-norm and any block sizes in (3.1),

kA�1k1 � (minj 
j)
�1 [27]. In the case of column diagonal dominance, stability is guaranteed for

small block sizes r irrespective of �(A), by (3.10).

4 Symmetric Positive De�nite Matrices

Let A be a symmetric positive de�nite matrix, partitioned as

A =

�
A11 AT

21

A21 A22

�
; A11 2 IRr�r :

11



The de�niteness implies certain relations among the submatrices Aij that can be used to obtain a

stronger bound for kLk2 than can be deduced from Lemma 3.3.

Lemma 4.1 If A is symmetric positive de�nite then kA21A
�1
11 k2 � �2(A)

1=2.

Proof. Let A have the Cholesky factorization

A =

�
RT
11 0

RT
12 RT

22

� �
R11 R12

0 R22

�
; R11 2 IRr�r:

Then A21A
�1
11 = RT

12R11 �R�111 R�T11 = RT
12R

�T
11 , so

kA21A
�1
11 k2 � kR12k2kR�111 k2 � kRk2kR�1k2 = �2(R) = �2(A)

1=2:

Note: At the cost of a much more di�cult proof, Lemma4.1 can be strengthened to the attainable

bound kA21A
�1
11 k2 � (�2(A)

1=2 � �2(A)
�1=2)=2, as shown in [6, Theorem 4], but the weaker bound

is su�cient for our purposes.

The proof of the following lemma is similar to that of Lemma 3.4.

Lemma 4.2 If A is symmetric positive de�nite then the Schur complement S = A22 � A21A
�1
11 A

T
21

satis�es �2(S) � �2(A).

Using the same reasoning as in the last section, we �nd that each subdiagonal block of L is

bounded in 2-norm by �2(A)
1=2. Therefore kLk2 � 1 +m�2(A)

1=2, where there are m block stages

in the algorithm. Also, it can be shown that kUk2 �
p
mkAk2. Hence

kLk2kUk2 �
p
m(1 +m�2(A)

1=2)kAk2: (4:1)

It follows from Theorem 2.1 that when Algorithm BLU is applied to a symmetric positive de�nite

matrix A, the backward errors for the LU factorization and the subsequent solution of a linear

system are both bounded by

cn
p
mukAk2(2 +m�2(A)

1=2) +O(u2): (4:2)

Any resulting bound for kx� bxk2=kxk2 will be proportional to �2(A)3=2, rather than �2(A) as for a

stable method. This suggests that block LU factorization can lose up to 50% more digits of accuracy

in x than a stable method for solving symmetric positive de�nite linear systems.

Note that the �2(A)
1=2 term in (4.2) can be pessimistic, because it is clear from the proof of

Lemma 4.1 that it is terms kU�1ii k
1=2
2 , where Uii is a diagonal block of U , that in
uence the error

bounds, and kU�1ii k
1=2
2 � kA�1k1=22 . One would expect the backward error to increase with the block

size, with a backward error of size (4.2) being nearly attainable for a su�ciently large block size.

Our main conclusion is that block LU factorization is guaranteed to be stable for a symmetric

positive de�nite matrix A if A is well-conditioned.

12



One might wonder whether block LDLT and block Cholesky factorizations have better stability

properties than block LU factorization. A genuine block Cholesky factorization A = RTR would

use matrix square roots (R11 = A
1=2
11 , etc.), which makes this factorization too expensive, whereas

a partitioned Cholesky factorization is numerically equivalent to the point case. A block LDLT

factorization, where D = diag(D11; : : : ; Dmm), is feasible to compute, but it is easily shown to have

analogous stability properties to block LU factorization.

5 Numerical Experiments

We describe some numerical experiments that give further insight into the analysis presented above.

The computations were performed in MATLAB, which has unit roundo� u = 2�53 � 1:1� 10�16.

We use the following two matrices, which were also used in [7]. The symmetric positive de�nite

Moler matrix [19] is de�ned by An(�) = Rn(�)
TRn(�), where Rn(�) is unit upper triangular

with all the o�-diagonal elements equal to �. The Dorr matrix Dn(�) [19], is an unsymmetric,

row diagonally dominant tridiagonal matrix. Dn(�) has row diagonal dominance factors 
i :=

jdiij� jdi;i�1j� jdi;i+1j = (n+1)2� for i = 1; n and 
i = 0 otherwise, and we perturbed the diagonal

elements d22; : : : ; dn�1;n�1 to ensure that 
i � 10�14 for the computed matrix. Neither of these two

matrices is row or column block diagonally dominant for any block sizes in the 1, 2 and 1 norms.

In the �rst experiment we chose x = e = (1; 1; : : : ; 1)T , formed b = Ax and solved for x using

Algorithm BLU with implementations 1 and 2. One step of iterative re�nement in �xed precision

was done, yielding a corrected solution by. We report the relative residuals

res(bL; bU) = kA� bLbUk1
kAk1

; res(bx) = kAbx� bk1
kAk1kbxk1 + kbk1

;

and the forward error

err(bx) = kbx� xk1
kxk1

:

Note that res(bx) is the normwise backward error of bx (see, e.g., [17]), and that, approximately,

err(bx) � �1(A)res(bx). We also report the upper bounds for res(bL; bU) and res(bx) from Theorem 2.1,

which modulo the constant terms are both approximately

bound1 =
ukbLk1kbUk1

kAk1
;

the corresponding bound for implementation 2 is

bound2 = max
i

�1(Uii)bound1:

The results for the Moler matrix A16(�2) are shown in Tables 5.1 and 5.2. Note that we know

the exact solution x because A has integer entries with jaijj � 61 and so b = Ax is formed exactly.

We comment on several interesting features.

(1) For implementation 1 instability is revealed in the residuals for both the factorization and for

bx; it increases with the block size, as is to be expected (see the discussion at the end of section 4).

13



The values for bound1 show that the theoretical error bounds correctly model the variation of the

residuals with the block size and are mostly within two orders of magnitude of the actual residuals.

(2) Implementation 2 is much more unstable than implementation 1 as a means of computing

the block LU factorization. The residuals of the computed solutions bx are as small as for imple-

mentation 1 but the forward errors are mostly larger. The quantity bound2 is very pessimistic as

an estimate of the residuals.

(3) One step of iterative re�nement works extremely well for implementation 1, but it is ine�ective

for most block sizes with implementation 2. Theoretical backing for iterative re�nement in �xed

precision can be given using Theorem 2.1 together with Theorem 2.1 of [18]; see the discussion in

section 2.2 of [7]. For implementation 2 the instability is too severe for iterative re�nement to work.

(4) The forward errors for by in implementation 1 re
ect the ill-condition of the problem. It is

not clear why the forward errors for bx are no larger than those for the \more stable" solution by.
(5) For the block size 15 (m = 2) with implementation 1,

kbLk2kbUk2 � 3� 109 � 0:05�2(A)
1=2kAk2;

which shows that (4.1) is reasonably sharp.

We solved another system with the same coe�cient matrix and with b = e. Now x is a \large-

normed" solution, that is, kxk1 = O(kA�1k1kbk1) (indeed, kxk1 = kA�1k1kbk1 since A�1 �
0). For this right-hand side the instability in the block LU factorization does not a�ect bx for

implementation 1: res(bx) � 5 � 10�19 for all block sizes. In our experience this behaviour is not

uncommon for large-normed solutions.

Table 5.3 reports results for the Dorr matrix D16(10
�4), for implementation 1 with xi = i.

In computing the err(�) quantities for the Dorr matrix we approximated the true solution by the

computed solution fromGaussian eliminationwith partial pivoting. The results for implementation 2

are very similar. We see more severe instability than for the Moler matrix. One step of iterative

re�nement is not su�cient to achieve a residual of order u. It is surprising that despite the instability

evident for the block size 15, the magnitude of the error err(bx) indicates that bx is about as accurate

as the solution from GEPP. For the block size 15 with implementation 1,

kbLk1kbUk1 � 8� 1015 � 0:4�1(A)kAk1;

con�rming that (3.7) is reasonably sharp.

We also solved the Dorr matrix system with b = e and found the results to be very similar to

those in Table 5.3. Thus, although bx is now a large-normed solution, the instability in the LU

factorization is still fully re
ected in bx. We solved the same systems with the transpose of the Dorr

matrix, which is diagonally dominant by columns. All the relative residuals for Implementation 1

were less than 3u. Implementation 2 behaved erratically: for the system with xi = i, res(bL; bU) � 3u

but res(bx) was as large as 5� 10�4! In this example kbLk1kbUk1=kAk1 was approximately equal to

the block size r, so the 2r�2 bound in (3.10) is pessimistic here.

14



We conclude from these experiments that our backward error bounds for implementation 1 of

Algorithm BLU are almost attainable and they seem to capture well the behaviour of the backward

error. We have also observed some varied and interesting behaviour, all of which is within the

freedom a�orded by the error bounds, but not all of which is easily explained heuristically.
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Table 5.1: Moler matrix. Implementation 1. x = e.

�1(A16(�2)) � 7� 1016

block size res(bL; bU ) bound1 res(bx) res(by) err(bx) err(by)
1 0.00 2.34e-16 0.00 0.00 0.00 0.00

2 0.00 4.87e-16 0.00 0.00 0.00 0.00

3 6.64e-17 2.91e-15 6.27e-17 0.00 6.02e-2 6.03e-2

4 2.56e-16 8.41e-15 1.24e-16 0.00 2.75e-2 4.79e-2

5 3.67e-16 3.39e-14 3.14e-16 6.27e-17 3.15e-2 1.31e-1

6 1.18e-15 8.35e-14 3.14e-16 0.00 3.46e-2 4.67e-2

7 4.09e-15 2.93e-13 2.70e-15 0.00 2.24e-2 5.40e-2

8 1.66e-15 4.98e-13 2.38e-15 0.00 8.04e-3 5.89e-2

9 1.02e-14 1.65e-12 5.58e-15 6.12e-17 2.57e-2 5.02e-2

10 1.14e-13 5.35e-12 6.30e-14 0.00 1.21e-1 7.74e-3

11 1.56e-13 1.71e-11 8.65e-14 0.00 4.81e-2 1.28e-1

12 7.63e-13 5.38e-11 1.13e-13 0.00 9.31e-2 9.04e-2

13 3.89e-13 1.68e-10 1.24e-12 5.94e-17 4.03e-3 1.13e-1

14 1.71e-12 5.17e-10 3.55e-12 3.92e-18 1.64e-2 2.88e-2

15 2.95e-11 1.58e-9 1.32e-11 0.00 1.17e-1 3.20e-2
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Table 5.2: Moler matrix. Implementation 2. x = e.

�1(A16(�2)) � 7� 1016

block size res(bL; bU ) bound2 res(bx) res(by) err(bx) err(by)
1 0.00 2.34e-16 0.00 0.00 0.00 0.00

2 0.00 2.39e-14 0.00 0.00 0.00 0.00

3 3.36e-16 2.31e-12 6.27e-17 6.18e-17 2.58e-2 3.10e-2

4 2.40e-15 1.06e-10 6.27e-16 0.00 3.97e-1 2.08e-1

5 1.47e-14 6.17e-9 2.57e-15 2.90e-17 1.38e0 1.63e-1

6 1.13e-13 2.04e-7 8.32e-15 9.41e-17 5.32e0 1.07e-1

7 5.95e-13 9.01e-6 3.11e-13 6.12e-17 1.72e0 4.87e-2

8 1.83e-11 1.85e-4 1.34e-13 3.78e-14 1.69e2 1.24e0

9 1.18e-10 7.07e-3 3.20e-13 1.28e-13 3.39e2 5.81e-1

10 4.82e-10 2.59e-1 1.45e-11 8.37e-14 6.52e1 9.32e-2

11 1.93e-8 9.15e0 2.82e-12 2.30e-12 6.79e3 4.67e1

12 1.11e-7 3.13e2 8.08e-12 5.89e-12 1.25e4 5.00e1

13 1.54e-6 1.04e4 2.69e-11 2.19e-11 6.32e4 3.90e2

14 8.49e-6 3.38e5 1.38e-10 2.47e-10 8.65e4 1.06e2

15 1.13e-4 1.08e7 2.55e-10 2.04e-10 4.51e5 2.39e3
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Table 5.3: Dorr matrix. Implementation 1. x = (1; 2; : : : ; n)T .

�1(D16(10
�4)) � 2� 1015

block size res(bL; bU ) bound1 res(bx) res(by) err(bx) err(by)
1 5.89e-17 2.49e-14 6.76e-17 2.14e-17 2.10e-4 5.72e-4

2 2.92e-14 4.77e-12 5.67e-15 2.85e-17 1.84e-4 7.37e-4

3 1.06e-12 3.38e-10 7.65e-13 5.09e-16 1.49e-4 3.77e-4

4 7.11e-12 1.00e-8 6.03e-12 6.95e-15 1.91e-4 5.01e-4

5 7.59e-9 6.48e-6 8.87e-10 7.83e-13 2.37e-4 6.06e-4

6 1.51e-10 2.00e-8 8.35e-12 2.31e-15 7.18e-5 4.29e-4

7 1.42e-5 8.48e-4 3.79e-7 9.95e-11 7.64e-5 4.29e-4

8 1.28e-19 2.24e-16 2.49e-17 2.85e-17 1.39e-4 5.51e-4

9 9.98e-17 1.20e-14 2.49e-17 6.05e-17 1.47e-4 3.88e-4

10 3.67e-14 1.05e-12 1.41e-15 1.42e-17 2.37e-4 6.10e-4

11 1.54e-12 1.28e-10 7.68e-14 2.67e-17 1.03e-4 7.44e-4

12 1.52e-10 2.00e-8 8.94e-12 3.17e-15 7.68e-5 6.12e-4

13 3.10e-8 3.83e-6 2.23e-9 7.44e-13 1.00e-4 7.41e-4

14 8.98e-6 8.56e-4 4.39e-7 1.37e-10 8.84e-5 6.04e-4

15 5.44e-4 6.07e-2 2.30e-5 5.90e-9 6.51e-5 4.04e-4
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6 Concluding Remarks

The main conclusions of this work are that although block LU factorization is unstable in general,

it is stable for matrices that are block diagonally dominant by columns, and generally the level

of instability is bounded in terms of the condition number and the growth factor for Gaussian

elimination without pivoting. Therefore if the matrix is symmetric positive de�nite or (point)

diagonally dominant, stability is assured if A is well-conditioned. These results are summarised in

Table 6.1, which tabulates a bound for kA�bLbUk=(cnukAk) for block and point LU factorization with

the matrix properties considered in sections 3 and 4. The constant cn incorporates any constants

in the bound that depend polynomially on the dimension, so a value of 1 in the table indicates

unconditional stability.

The implications for practical computation are that when using block LU factorization to solve

Ax = b (which we certainly do not discourage) it is vital to check the relative residual (or normwise

backward error) kAbx� bk1=(kAk1kbxk1 + kbk1). If the residual is unacceptably large it is worth

trying one step of iterative re�nement in �xed precision, although this is not guaranteed to yield

a smaller residual if the instability is severe. Note that one may be fortunate enough to obtain an

acceptable bx even if kA� bLbUk1=kAk1 is large, as our numerical experiments illustrate.

A more general conclusion is that the stability of a block algorithm can not be taken for granted.

Existing error analysis for point algorithms is not directly applicable to block algorithms; it is,

however, applicable to partitioned algorithms. A complicating feature is that there may be several

possible block reformulations of a basic algorithm to consider, as is the case with Algorithm BLU in

section 2. Assessing the stability of other block algorithms is clearly an interesting area for further

research.
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Table 6.1: Stability of LU factorization.

�n is the growth factor for GE without pivoting.

r is the maximum block size.

Matrix property Block LU Point LU

symmetric positive de�nite �(A)1=2 1

block column diag. dom. 1 �n�(A)

point column diag. dom. 2r�2 1

block row diag. dom. �3n�(A) �n�(A)

point row diag. dom. �(A) 1

arbitrary �3n�(A) �n�(A)
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