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Abstract

The purpose of this note is to re-introduce the generalized QR factorization with

or without pivoting of two matrices A and B having the same number of rows, and

whenever B is square and nonsingular, the factorization implicitly gives the orthogonal

factorization with or without pivoting of B�1A. The GQR factorization was intro-

duced early by Hammarling[6] and Paige[9]. But from the general-purpose software

development point of view, we proposed the di�erent factorization forms. In addition

to the factorization forms and implementation details, we show the applications of GQR

factorization in solving the linear equality constraint least square problem, generalized

linear model. It is intended to show the possible usage of LAPACK codes for solving a

class of generalized least square problems who arise from optimization and statistics on

high-performance machines.

1 Introduction

QR factorization of an n by m matrix A assumes the form

A = QR

where Q is an n by n orthogonal matrix, R = QTA is zero below its diagonal. If n � m,

then QTA can be written in the form

QTA =

"
R

0

#

where R is an n by n upper triangular. If n < m, then the QR factorization of A assumes

the form

QTA =
h
R S

i
where R is an n by n upper triangular matrix. However, in practical applications, it is more

convenient to represent the factorization in this case as

A =
h
0 R

i
Q;

�
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The Generalized QR Decomposition 2

which is known as the RQ factorization. As the variants of the QR and RQ factorization

of matrix A, we also have QL and LQ factorization, which are orthogonal-lower triangular

and lower triangular-orthogonal factorization, respectively. Moreover, it is well-known that

the orthogonal factors of A provide information about its column and row spaces [4].

A column pivoting option in the QR factorization allows the user to detect dependencies

among the columns of matrix A. If A has rank k, then there are orthogonal matrix Q and

a permutation matrix P such that

QTAP =

"
R11 R12

0 0

#
k

n � k

k m� k

where R11 is a k by k upper triangular and nonsingular[4].

Householder transformation matrix or Givens rotation matrix provide numerical stable

numerical methods to compute these factorizations with or without pivoting. The software

for computing the QR factorization on sequential machines is available from public linear

algebra library LINPACK[7]. Redesigned codes in block algorithm fashion that are better

suited for today's high-performance architectures can be found in LAPACK.

The terminology generalized QR factorizations (GQR factorization), which has been

introduced by Hammarling[6] and Paige[9], is to refer to orthogonal transformations that

apply to n by m matrix A and n by p matrix B to transform them to triangular forms,

respectively, but which corresponds to the QR factorization of B�1A in the case whenever

B is square and nonsingular. For example, if n � m, n � p, then the GQR factorization of

A and B assumes the form

QTA =

"
R

0

#
; QTBV =

h
0 S

i
;

where Q is an n by n orthogonal matrix, V is a p by p upper triangular matrix, R is a m

by m upper triangular, S is a p by p upper triangular. If B is square and nonsingular, then

the QR factorization of B�1A is given by

V T(B�1A) =

"
T

0

#
= S�1

"
R

0

#
;

i.e., the upper triangular part T of QR factorization can be determined by solving the

triangular matrix equation

ST = R:

The advantage of this implicit determination of the QR factorization of B�1A is obvious.

We avoid the possible numerical di�culties to form B�1 and B�1A.

As the powerful tool of QR factorization in least square and related linear regression

problems, as examples, we shall show that the GQR factorization can been used to solve

linear equality constrained least square problem

min
Bx=d

kAx� bk;

where A and B are m by n and p by m matrices, respectively, and generalized linear

regression model

min
x;u

uTu; subject to b = Ax+ Bu
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where A is an n bymmatrix, B is an n by pmatrix. Indeed, the QR factorization approachs

have been used for solving these problems, see Lawson and Hanson [8], Paige[10]. We will

see that the GQR factorization of A and B provides an uniform approach to these problems.

The bene�t of this approach is threefold. First, it uses a single GQR factorization concept

to solve these problems directly. Second, from software development point of view, it allows

us to develop one subroutine that can be used for solving these problems. Third, as the QR

factorization provides important information of conditioning of linear least square, classical

linear regression model, we will show that the GQR factorization is the same. The condition

numbers of these problems can be exploited from the triangular factors of the factorization.

The principle concepts about the GQR factorization discussed in this note have been

presented in Paige's work on GQR[10]. However, from general-purpose software develop-

ment point of view, we will take a di�erent approach for the GQR factorization. The

de�nition of the GQR factorization is di�erent from the one presented in Paige's paper. As

a guideline of the development of the GQR factorization for LAPACK library, in this note,

we consider the di�erent possible cases of the factorizations and practical implementation

of the factorizations.

The outline of this LAPACK working note is as follows: In next two sections, we shall

show how to use existing QR factorization and its variants to construct the GQR factoriza-

tion with or without pivoting strategies of two matrices A and B having the same number

of rows. The implementation details of the di�erent factorizations are discussed in section

4. Then we show the applications of the GQR factorization in solving the linear equality

constrained least square problem, generalized linear model problem, and estimating the

conditioning of these problems.

Notations: ....

2 Generalized QR Factorization

In this section, we �rst introduce the GQR factorization of n by m matrix A and n by p

matrix B when n � m, the most frequently occurring case. Then for the case n < m, we

introduce the GRQ factorization of A and B.

GQR factorization. Let A be an n by m matrix, B be an n by p matrix, n � m, then

there are orthogonal matrices Q(n� n) and V (p� p) such that

QTA = R; QTBV = S (1)

assumes one of the following forms:

if n � p,

R =

"
R11

0

#
m

n �m

m

;
S =

h
0 S11

i
n

p� n n
;

where m by m matrix R11 and n by n matrix S11 are upper triangular, and if n > p,

R =

"
R11

0

#
m

n �m

m

;
S =

"
S11
S21

#
n� p

p

p

;
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where m by m matrix R11 and p by p matrix S21 are upper triangular.

Proof: The proof is constructive. By the QR factorization of A we have

QTA =

"
R11

0

#
m

n�m

m

:

Let QT premultiply on B, then the desired factorizations follow upon the RQ factorization

of QTB; if n � p,

(QTB)V =
h
0 S11

i
n

p� n n
:

otherwise, the RQ factorization of B�1A is of the form

(QTB)V =

"
S11
S21

#
n� p

p

p

:

2.

Occasionally, one wishes to compute the QR factorizations of B�1A, for example, to

solve weighted least square problem

min
x
kB�1(Ax� b)k:

To avoid forming B�1 and B�1A, we note that the GQR factorization (1) of A and B

implicitly gives the QR factorization B�1A:

V T(B�1A) =

"
T

0

#
= S�111

"
R11

0

#
;

i.e, the upper triangular part T of the QR factorization of B�1A can be determined by

S11T = R11:

Hence, the possible numerical di�culties to use, explicitly or implicitly, the QR factorization

of B�1A is con�ned to the condition number of S11.

Moreover, if we partition V =
h
V1 V2

i
where V1 has m columns, then

B�1A = V1(S
�1

11 R11):

This shows that if A is of rank m, the columns of V1 form an orthonormal basis for the

space spanned by the columns of B�1A. The matrix V1V
T
1 is the orthogonal projection on

the column space of B�1A.

When A is n bymmatrix with n < m, although it still can be presented the similar GQR

factorization form of A and B, it is more useful in applications to represent the factorization

as the following:

GRQ factorization: Let A be an n by m matrix, B be an n by p matrix, n < m, then

there are orthogonal matrices Q(n� n) and U(m�m) such that

QTAU = R; QTB = S (2)
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assumes one of the following forms

if n � p

R =
h
0 R11

i
n

m� n n
;

S =
h
S11 S12

i
n

n p� n
;

and if n > p

R =
h
0 R11

i
n

m� n n
;

S =

"
S11
0

#
p

n� p

p

;

where n by n matrix R11 and min(n; p) by min(n; p) matrix S11 are upper triangular.

Proof : The proof is similar to the proof of the GQR factorization. In short, one �rst

does the QR factorization of B: B = QS, then follows by the RQ factorization of QTA. 2

From the GRQ factorization form of A and B, we see that if B is square and nonsingular,

then the RQ factorization of B�1A is given by

(B�1A)U =
h
0 T

i
= S�111

h
0 R11

i
:

With the decomposition forms (1) and (2), we present the formal de�nition for the

generalized QR factorizations.

De�nition: For n by m matrix A, n by p matrix B, we call (1) as the generalized

QR factorization (in short the GQR factorization) of A and B, (2) as the generalized RQ

factorization (in short the GRQ factorization) of A and B.

Discussion: the other possible generalized QR factorization forms. For example, the QR

factorizaiton of BTA. | will write later.

3 Generalized QR Factorization with Pivoting

The previous section introduces the generalized QR factorization. As in the QR factorization

of a matrix, we can also incorporate the pivoting technique into the GQR factorization to

deal with the rank de�cient case of the factorization.

GQR factorization with column pivoting: Let A be an n by m matrix, B be an n

by p matrix, then there are orthogonal matrices Q(n�n), V (p�p), and n by n permutation

matrix P such that

QTAP = R; QTBV = S (3)

assumes one of the following forms:

if n � p

R =

2
64 R11 R12

0 0

0 0

3
75 qk
n � q � k

q m� q

;
S =

2
64 0 S11 S12
0 0 S22
0 0 0

3
75 q

k

n� q � k

p� n q n� q

;
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where R11 and S22, if which exists, are full row rank upper trapezoidal matrices. q by q

matrix S11 is upper triangular. And if n > p,

R =

2
64 R11 R12

0 0

0 0

3
75 qk
n � q � k

q m� q

;
S =

2
64 S11 S12

0 S22
0 0

3
75 q

k

n� q � k

p� n+ q n� q

;

where q by q matrix R11 are nonsingular and upper triangular, and k by n � q matrix S22
is full row rank upper trapezoidal1.

Proof : The proof is also constructive. By the QR factorization with pivoting of A, we

have

QT
1AP =

"
R11 R12

0 0

#
q

n � q

q m� q

:

where q = rank(A). If n � p, let

(QT
1B)V1 =

"
0 S11 �S12
0 0 �S22

#
q

n� q

p� n q n � q

be the RQ factorization of matrix QT
1B. Then by the QR factorization with pivoting of

submatrix �S22, we have

QT
2
�S22P2 =

"
S22
0

#
k

n � q � k

n � q

:

The result for this case follows by setting Q = Q1

"
I 0

0 Q2

#
, V = V1

"
I 0

0 P2

#
.

If n > p, let QT
1 premultiply on B, denote as

QT
1B = �B =

"
�S11
�S21

#
q

n� q

p

:

if p � n � q, then by the QR factorization with pivoting of �S21, we have

QT
2
�S21P2 =

"
S21
0

#
k

n� q � k

p

where k = rank( �S21). The desired factorization forms are obtained by setting

Q = Q1

"
I 0

0 Q2

#
and V = P2.

1
if p < n� q, then set p� n+ q equal to zero, set n� q equal p in the factorization form of S.
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If p > n � q, by the RQ factorization of �B we have

(QT
1B)V =

"
�S11
�S21

#
n� p

p

p

:

The conclusion for this case follows upon the QR factorization with pivoting of n � q by

n� q bottom right corner submatrix of S21. 2

We note that in this case, if B is square and nonsingular, then the QR factorization

with column pivoting of B�1A is given by

V T(B�1A)P = S�1
11

"
R11

0

#
:

Hence we present

De�nition: For n by m matrix A, n by m matrix B, we call (3) as the generalized QR

factorization with column pivoting (in short the GQR with pivoting) of matrices A and B.

4 Implementations

In this section, we shall discuss the algorithms and implementation details of GQR factor-

ization and its variants. We will see that the implementations of all these factorizations can

be easily kept in the block algorithm fashion as QR factorization does.

The \MATLAB" style notation A(i : j; p : q) is used in this section to specify the ith to

jth rows and pth to qth columns submatrix of matrix A.

As was mentioned in section 2, the existence proofs of the GQR factorization and its

variants are constructive. They strongly depends on the regular QR factorization and its

variants. At the beginning of this note we briey reviewed the QR factorizations and

its variants, the correspondent LAPACK subroutine names (in typewriter font) and its

functions are listed in the followings:

SGEQRF: QR factorization of a n by m matrix.

SGEQPF: QR factorization of a n by m matrix with column pivoting.

SGERQF: RQ factorization of a n by m matrix.

SGELQF: LQ factorization of a n by m matrix.

All these subroutines are the implementations of the block algorithms. That is to say,

instead of traditional algorithms to generate and apply Householder transformations one

by one (BLAS 2 matrix-vector operations), the block algorithms aggragate a series (say a

block with size b) of Householder transformations, represent in a block matrix form and

apply them to reduce a block at the same time (BLAS 3 matrix-matrix operations). There

is a common parameters called blocksize NB of these subroutines that allows user to choice

to �nd the best blocksize one their machines. In particularly, if blocksize is one, then they

are just traditional QR factorizations and its variants.

To call this routine, the input array A contains the n by m matrix. On the return of

these subroutines, the upper (lower) triangle of the array contains the triangular part of
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the factorizations, the orthogonal matrix can be recovered from the elements below (above)

the diagonal with another one dimensional array.

Turning to compute GQR factorization, we �rst present the GQR factorization of n by

m matrix A and n by m matrix B with n � m, then the GRQ factorizations for the case

n � m and GQR factorization with column pivoting.

Algorithm 1 (GQR factorization, n � m)

1). QR factoriztion of A: QTA = R and B = QTB.

2). RQ factorization of B: BV T = S.

To implement Algorithm 1, we note that the block transformations can be applied to B

at the same time while A is reduced to upper triangular form block by block. At the end

of step 1, the upper diagonal line part of A stores the factor R, the strictly lower diagonal

line of A and another vector stores Householder vectors from which the orthogonal matrix

Q can be recovered later if necessary. At step 2, we just need to implement the block RQ

factorization on updated B.

When A is n by m with n � m, B is n by p matrix, the following algorithm computes

the GRQ factorization.

Algorithm 2 (GRQ factorization, n � m)

1.) QR factorization of B: QTB = S, and A = QTA.

2.) RQ factorization of A: A = RU .

The remarks for algorithm 1 can be established similarly in this case. Finally, to treat

with ill-conditioned or rank de�cient cases, we can use the GQR factorization with column

pivoting.

Algorithm 3 (GQR factorization with pivoting)

1). QR factorization with pivoting of A: QTAP = R and B = QTB.

2). determine the rank q of A.

3). if (n � p) then

RQ factorization of B: BV T = S

QR factorization with pivoting of S(q + 1 : n; p� n+ q + 1 : p)

else

if (p � n� q) then

QR factorization with pivoting of B(q + 1 : n; 1 : p).

else

RQ factorization of B: BV T = S,

QR factorization with pivoting of S(q + 1 : n; q + 1; p).

endif

endif

Update the q + 1 to n columns of Q correspondently.
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To numerically determine the rank of A, according to the properties of the QR factor-

ization with column pivoting, we can use the the following simple strategy:

q = 0;

k = min(n;m);

for i = 1; m

if (jriij � tol � jr11j) q = q + 1

where tol is a user given tolerance value, for example, tol can be chosed as machine precision.

As a more careful method to determine the rank of a matrix, the so-called rank revealing

QR factorization can also be used to replace the normal column pivoting QR scheme[4, 2].

The MATLAB codes of algorithm 1, 2 and 3 are in Appendix.

5 Applications

In the above sections, we introduced the GQR factorization with or without pivoting. In

this section, as examples, we will show that the GQR factorization provide a simplier and

more e�cient way to solve the linear equality constrained linear least square problem and

generalized linear regression problem, and to assess the conditioning of these problems. The

results presented in this section show that the GQR factorization for solving these general-

ized optimization or linear regression problems is just as power as the QR factorization for

solving least square and linear regression problems.

5.1 Linear Equality Constrained Linear Least Squares

Linear equality constrained linear least squares problem (Problem LSE) arises in constrained

surface �tting, constrained optimizing, geodetic least-squares adjustment, and beamforming

etc. The problem is stated as follows: �nd a n-vector x that solves

min
Bx=d

kAx� bk; (4)

where A is m by n matrix, m � n, B is p by n matrix, p � n, b is n column vector, d is p

column vector. Clearly, the Problem LSE has a solution if and only if the equation Bx = d

is consistent. In addition, for simplicity, we will also assume that

rank(B) = p (5)

and that the null spaces of A and B intersect only trivially:

N (A) \N (B) = f0g () rank

 "
A

B

#!
= n: (6)

These conditions ensure that the problem LSE has a unique solution which we denote by

xe.

Several methods for solving the problem LSE are discussed in Lawson and Hanson[8,

Chaps.20-22], Van Loan[12]. For large sparse matrices case, see Barlow et al [1]. The QR

style approach is one of the most common approach. Now this approach can be more easily

presented in terms of the GQR factorization of A and B.
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By the GQR factoization of BT and AT, we know that there are orthogonal matrices Q

and U

QTATU =

"
0 RT

11 RT
12

0 0 RT
22

#
p

n� p

m� n p n� p

;
QTBT =

"
ST11
0

#
p

n� p

p

and moreover, from the assumptions (4) and (6), we know ST11 and RT
22 are upper triangular

and nonsingular. If we partition

Q =
h
Q1 Q2

i
; U =

h
U1 U2 U3

i
;

where Q1 has p columns, U1 has m� n columns, and U2 has p columns, and set

y = QTx =

"
y1
y2

#
p

n� p
; c = UTb =

2
64 c1
c2
c3

3
75 m� n

p

n� p

;

where yi = QT
i x; i = 1; 2, ci = UT

i b; i = 1; 2; 3. The Problem LSE is then transformed to

min


2
64 0 0

R11 0

R12 R22

3
75
"
y1
y2

#
�

2
64 c1
c2
c3

3
75


subject to h
S11 0

i " y1
y2

#
= d:

Hence we can compute y1 from constrained equality by solving the triangular system

S11y1 = d:

Then the Problem LSE is truncated to the ordinary linear least square problem

min
y2

kR22y2 � (c3 � R12y1)k

Since R22 is nonsingular and lower triangular, y2 is given by

y2 = R�122 (c3 � R12y1);

a triangular solver. The solution of Problem LSE is then given by

xe = Qy = Q1y1 + Q2y2

or in a more straightforward form

xe = Q2R
�1

22 U
T

3 b+ Q

"
I

�R�1
22
R12

#
S�111 d

and the residual sum of squares �2 = krek
2 = kAxe � bk2 is given by

�2 = kc1k
2 + kR11y1 � c2k

2:
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The Sensitivity of Problem LSE: The condition numbers ofA and B were introduced

by Elden [3] to assess the perturbation behavior of the Problem LSE. Speci�cally, let E be

an error matrix of A, F be an error matrix of B, e and f be errors of b and d, respectively.

We assume that B + F also has full row rank and N (A + E) \ N (B + F ) = f0g. Let �xe
be the solution of the same problem with A;B; b; d replaced by A+E, B + F , b+ e, d+ f ,

respectively. Elden uses the numbers

�B(A) = kAk k(AG)+k; �A(B) = kBk kB+

IAk

to measure the sensitivity of the problem LSE, where

G = I � B+B; B+

IA = (I � (AG)+A)B+:

His asymptotic perturbation bound, modi�ed slightly here, can be presented as following,

where the bound has a +O(�2) term (i.e., the higher order of the perturbation matrices E

and F ) has not been written.

Problem LSE Perturbation Bound:

kxe � �xek

kxek
� �B(A)

�
kEk

kAk
+ �e

�
+ �A(B)

�
kFk

kBk
+ e

�
+ �2B(A)

�
kEk

kAk
+ �A(B)

kFk

kBk

�
�e

where

�e =
kek

kAk kxek
; e =

kfk

kBk kxek
;

�e =
krek

kAk kxek
; re = Axe � b:

The interpretation of this result is that the sensitivity of �xe is measured by �B(A) and

�A(B) if the residual re is zero or relatively small, and otherwise by �2B(A)(�A(B) + 1).

We note that if matrix B is zero (hence F = 0), then the problem LSE is just the

ordinary linear least square problem. The perturbation bound for the problem LSE is then

reduced to

kxe � �xek

kxek
� �(A)

�
kEk

kAk
+

kek

kAk kxek

�
+ �2(A)

kEk

kAk

krek

kAk kxek
+O(�2)

where �B(A) = �(A) = kAk kA+
k. This is just the perturbation bound of the linear least

square problem eariest othe btained by Golub and Wilkinson(1966) [4].

Esitmation of the condition numbers: The condition numbers of Problem LSE

�B(A) and �A(B) involve B+, B+B, (AG)+ etc, and computing these matrices can be

relatively expensive. Fortunately, it is possible to compute inexpensive estimates of �B(A)

and �A(B) without forming B+ , B+B or (AG)+. This can be done using a method of

Hager (1984) and Higham (1988) [5] that computes a lower bound for kBk1, where B is a

matrix, given a mean for evluating matrix-vector products Bu and BTu. Typically, 4 or 5

products are required, and the lower bound is almost always within a factor 3 of kBk1. The

corresponding subroutine, named as SLACON, is available in LAPACK. To estimate �B(A)

and �A(B), we apparently need to estimate vector norms kKzk1, where K = (AG)+, or

K = B+

IA and z � 0 is a vector that is readily computed. Given GQR factorization of A

and B, after tedious computations, we have

(AG)+z = Q2R
�1

22 U
T

3 z
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B+

IAz = Q

"
I

�R�1
22
R12

#
S�1
11
z

where we do not form R�1
22

or S�1
11

but rather solve the triangular system and do matrix-

vector operations.

5.2 Solve Generalized Linear Model

The generalized linear regression model (Problem GLM) can be written as

b = Ax+ w; (7)

where the vector b, the n by m matrix A, n by n symmetric nonnegative de�nite matrix W

are known, while w is a random error with mean 0 and covariance �2W . The problem is

that of estimating the unknown parameters x on the basis of observation b. If W has rank

p, then W has a factorization

W = BBT ;

where the n by p matrix B has linearly independent columns, for example, the Cholesky

factorization of W could be carried out to get B. In some practical problems, the matrix B

might be available directly. Form numerical computational reasons it is preferable to use B

rather than W . Since W could be ill-conditioned in the sene discussed by Golub and Styan

(1973). Then the condition of B will be much better. Thus we replace (7) by

b = Ax+Bu; (8)

where A is a n bym matrix, B is n by p matrix having full column rank, while u is a random

error with mean 0 and covariance �2I . Then the estimator of x in ( 8) is the solution to

the following algebraic generalized linear least squares problem:

min
x;u

uTu subject to b = Ax+ Bu (9)

For convenience, we assume that n � m, n � p, and rank(B) = p, the most frequently

ocurring case. When B = I , (9) is just an ordinary linear regression problem.

The Problem GLM can be formulated as the problem LSE which is discussed in the last

subsection:

min


h
0 I

i " x

u

# subject to
h
A B

i " x

u

#
= b:

Hence, it is easy to see that the problem GLM has a unique solution under the following

conditions:

rank
�h

A B
i�

= n and rank(A) = m:

To avoid the overhead of computation cost, storage and possible numerical di�culty of

the combination of the matrices A and B, it is not suggested to solve the problem GLM

directly by the method of the problem LSE. Early 1979, Paige [10] proposed two steps QR

decomposition approach to the problem GLM to treat with A and B separately. Now, his

approach can be simpli�ed with GQR factorization terminology. For sake of arguments, we

assume that the Problem GLM has unique solutions of x and u which we denote by xe and

ue.
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By the GQR factorization with pivoting of A and B, under the uniqueness assumption,

we have orthogonal matrices Q(n � n), V (p� p), and m by m permutation matrix P such

that

QTAP =

"
R11 R12

0 0

#
q

n� q

q m� q

;
QTBV =

"
S11 S12
0 S22

#
q

n� q

p� n+ q n� q

where q by q matrix R11, n� q by n� q matrix S22 are nonsingular upper triangular. If we

partition

Q =
h
Q1 Q2

i
; V =

h
V1 V2

i
; P =

h
P1 P2

i
;

where Q1 has q columns, V2 has n � q columns, P1 has q columns, and set

c = QTb �

"
c1
c2

#
; v = V Tu �

"
v1
v2

#
; y = PTx �

"
y1
y2

#

i.e., ci = QT
i b, vi = V T

i u, yi = PT
i x, i = 1; 2, then the problem GLM is transformed to

"
c1
c2

#
=

"
R11 R12

0 0

# "
y1
y2

#
+

"
S11 S12
0 S22

# "
v1
v2

#
: (10)

Hence v2 can be determined from the \bottom" equation by solving a triangular system:

v2 = S�1
22
c2:

Then from the \top" equation, we have

c1 = R11y1 + R12y2 + S11v1 + S12v2:

It is obvious that the rest of solutions are given by

v1 = 0; y2 = 0; y1 = R�111 (c1 � S12v2):

The solution of the original problem GLM can be written in the forms:

xe = P1y1; ue = V2v2

or in a more straightforward form

xe = P1R
�1

11
(QT

1 � S12S
�1

22
QT
2 )b

and

ue = V2S
�1

22 Q
T

2 b:

The Sensitivity of the Problem GLM: Regarding to the sensitivity of the problem

solutions to perturbations, we shall consider the e�ects of the perturbations in the vector b

and perturbations in the matrices A and B. Let the perturbed problem GLM be de�ned as

min
�x;�u

�uT�u; subject to b+ e = (A+E)�x+ (B + F )�u;
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and also assume that the perturbated system has unique solution, i.e., rank(A+E;B+F ) =

n, and rank(A+E) = m. The solutions are denoted as �xe and �ue. Then we have the following

bounds on the relative error in �xe and �ue due to the perturbations of b, A and B, where

each asymptotic bound has a +O(�2) term (i.e., the higher order of the perturbation data

E, F etc) which is not written.

Problem GLM Perturbation Bounds:

k�xe � xek

kxek
� �B(A)

�
kEk

kAk
+

kek

kAk kxek

�
+ �B(A)

�
�B(A)

kEk

kAk
+
kF1k

kBk

�
kBk2 kpk

kAk kxek
; (11)

and

k�ue � uek

kbk
� �B(A)

kEk

kAk

kBk kpk

kbk
+
�2A(B)

kBk

�
kEk

kxek

kbk
+
kek

kbk
+ kF1k

kpk

kbk

�
+ kFk

kpk

kbk
;

(12)

where

�B(A) = kAk kA+

IBk; �A(B) = kBk k(GB)+k;

G = I �AA+, A+

IB = A+(I �B(GB)+) and p = (GB(GB)T)+b, F1 = BFT + FTB.

The proof is going to be presented later.

The bounds are quite complicated. If we note that

kBk2kpk � �2A(B)kbk:

then the bounds (11) and (12) can be simpli�ed a little bit. We see that the sensitivities of

�xe and �ue depend on the �B(A) and �A(B). For this reason, �B(A) and �A(B) are de�ned

as the condition numbers of Problem GLM. They can be used to predict the e�ects of errors

in the regression variables on regression coe�cients.

As special case, we note that if B = I , then the problem GLM is reduced to the classical

linear regression problem. ue is just the residual vector, ue = p = re = b�Axe = (I�AA+)b,

�u = �r = (b+ e)� (A+E)�x, F = 0, and

�B(A) = �(A) = kAk kA+
k; �A(B) = 1:

Hence we have

k�xe � xek

kxk
� �(A)

�
kEk

kAk
+

kek

kAk kxek

�
+ �2(A)

kEk

kAk

krek

kAk kxek
+O(�2)

and
k�re � rek

kbk
� �(A)

kEk

kAk

krek

kbk
+ kEk

kxek

kbk
+
kek

kbk
+O(�2)

These are the well-known perturbation results for the solution and residual of ordinary

linear least regression problem [11, 4].

Estimation of condition numbers: Concerning about the estimating of the condition

numbers �B(A) and �A(B) of the Problem GLM, we still can use the Hager and Higham's

method without forming expensive A+ or (GB)+. To use their method, the required vector

norms kKzk1 can be computed by GQR factorization of A and B, where K = (GB)+, or

K = A+

IB and z � 0 is a vector that is readily computed. After tedious computations, we

have

(GB)+z = V2S
�1

22 Q
T

2 z
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and

A+

IBz = P1R
�1

11
(QT

1 z � S12S
�1

22
QT

2 z):

Hence, we can just use triangular system solver and matrix-vector operations to give the

estimation of condition numbers of the Problem GLM.

5.3 Other possible applications:

Will briey mention the possible use of GQR in

Preprocessing step of computing the generalized singular value decomposition.

Structural equations:

f = ATt; e = BBTt; e = �Ad;

where f is given, and we wish to �nd d.
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A Matlab Codes

In this appendix, we list the MATLAB codes for computing the GQR factorizations with

and without pivoting.

function [Q,V,R,S] = gqr(A,B)

%

% GQR ----------------------------------------------------------

%

% Compute the generalized QR factorization of A(nxm) and

% B(nxp):

%

% A = Q*R; B = Q*S*V;

%

% where n >= m, Q(nxn), V(pxp) are orthogonal matrices,

% R and S assumes one of the forms:

% if n <= p

%

% R = [ R11 ] m S = [ 0 S11 ] n

% [ 0 ] n-m p-n n

% m

% where m by m matrix R11 and n by n matrix S11 are upper

% triangular, and

% if n > p

%

% R = [ R11 ] m S = [ S11 ] n-p

% [ 0 ] n-m [ S21 ] p

% m p

% where m by m matrix R11 and p by p matrix S21 are upper

% triangular.

%

% --------------------------------------------------------------

%

[n,m] = size(A);

[n1,p] = size(B);

%

if n1 ~= n

error('Matrices A and B have different rows')

end

%

if n < m

error('suggest to use GRQ factorization')

end

%

% QR factorization of A:

% Q'*A = RA

%

[Q,R] = qr(A);
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%

% RQ factorization of Q'*B:

% Q'*B = S*V;

%

[S,V] = rq(Q'*B);

%

% Test the backward error

%

resida = norm(A - Q*R)

residb = norm(B - Q*S*V)

function [Q,U,R,S] = grq(A,B)

%

% GRQ ---------------------------------------------------------

%

% Compute the generalized RQ factorization of A(nxm) and

% B(nxp):

%

% A = Q*R; B = Q*S*V;

%

% where n <= m, Q(nxn), V(pxp) are orthogonal matrices,

% R and S assumes one of the forms:

% if n <= p

%

% R = [ 0 R11 ] n S = [ S11 S12 ] n

% m-n n n p-n

%

% if n > p

%

% R = [ 0 R11 ] n S = [ S11 ] p

% m-n n [ 0 ] n-p

% p

%

% where n by n matrix R11 and min(n,p) by min(n,p) matrix

% S11 are upper triangular.

%

% -------------------------------------------------------------

%

[n,m] = size(A);

[n1,p] = size(B);

%

if n1 ~= n

error('Matrices A and B have different rows')

end

%

if n > m
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error('suggest to use GQR factorization')

end

%

% QR decomposition of B:

% Q'*B = S

%

[Q,S] = qr(B);

%

% RQ decomposition of Q'*A:

% Q'*A = R*U;

%

[R,U] = rq(Q'*A);

%

% Test the backward error

%

resida = norm(A - Q*R*U)

residb = norm(B - Q*S)

function [Q,P,V,R,S] = gqrp(A,B)

%

% GQRP ------------------------------------------------------------

%

% Generalized QR factorization with partial pivoting of

% matrices A(nxm) and B(nxp).

%

% Find orthogonal matrices Q, V and permutation matrix P

% such that

%

% A = Q*R*P'; B = Q*S*V';

%

% where

%

% R = [ R11 R12 ] q

% [ 0 0 ] n-q

% q m-q

%

% R11(qxq) is nonsingular upper trinagular,

% and if n <= p, then

%

% S = [ 0 S11 S12 ] q

% [ 0 0 S22 ] k

% [ 0 0 0 ] n-k-q

% p-n q n-q

%

% S22(kx(n-q)) is full row rank upper trapezoidal, if exists.

%
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% else if n > p, then

%

% S = [ S11 S12 ] q

% [ 0 S22 ] k

% [ 0 0 ] n-q-k

% p-n+q n-q

%

% where S21(kxp) is full row rank upper trapezoidal form.

%

% -----------------------------------------------------------------

%

[n,m] = size(A);

[n1,p] = size(B);

%

if n1 ~= n

error('Matrices A and B have different rows')

end

%

% QR decomposition with column pivoting of A:

% Q'*A*P = R

%

[Q,R,P] = qr(A);

q = rank(R);

%

if n<= p

[S,V] = rq(Q'*B);

V = V';

[Q1,S(q+1:n,p-n+q+1:p),P1] = qr(S(q+1:n,p-n+q+1:p));

S(1:q,p-n+q+1:p) = S(1:q,p-n+q+1:p)*P1;

Q(1:n,q+1:n) = Q(1:n,q+1:n)*Q1;

V(1:p,p-n+q+1:p) = V(1:p,p-n+q+1:p)*P1;

%

else % n > p case

if p <= n-q

S = Q'*B;

[Q1,S(q+1:n,1:p),P1] = qr(S(q+1:n,1:p));

S(1:q,1:p) = S(1:q,1:p)*P1;

Q(1:n,q+1:n) = Q(1:n,q+1:n)*Q1;

V = P1;

else % p > n-q

[S,V] = rq(Q'*B);

V = V';

[Q1,S(q+1:n,p-(n-q)+1:p),P1] = qr(S(q+1:n,p-(n-q)+1:p));

S(1:q,p-(n-q)+1:p) = S(1:q,p-(n-q)+1:p)*P1;

Q(1:n,q+1:n) = Q(1:n,q+1:n)*Q1;

V(1:p,p-(n-q)+1:p) = V(1:p,p-(n-q)+1:p)*P1;

end

end
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%

% Test the backward error if wanted.

%

resida = norm(A - Q*R*P')

residb = norm(B - Q*S*V')

function [R,Q] = rq(A)

%

% RQ -----------------------------------------------------------

%

% Compute RQ decomposition of matrix A.

%

% A = R*Q

%

% ---------------------------------------------------------------

%

[n,m] = size(A);

Q = eye(m);

%

if n <= m

for i = n:-1:1

x = A(i,1:m-n+i);

v = housen(x);

v = v';

A(1:i,1:m-n+i) = colhouse(A(1:i,1:m-n+i),v);

Q(1:m,1:m-n+i) = colhouse(Q(1:m,1:m-n+i),v);

end

else

for i = n:-1:n-m+2

x = A(i,1:m-n+i);

v = housen(x);

v = v';

A(1:i,1:m-n+i) = colhouse(A(1:i,1:m-n+i),v);

Q(1:m,1:m-n+i) = colhouse(Q(1:m,1:m-n+i),v);

end

end

%

R = A;

Q = Q';

%

function A = colhouse(A,v)

%

% Apply the Householder matrix from right left

% A <== A*H

%

beta = -2/(v'*v);
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w = beta*A*v;

A = A + w*v';

%

function v = house(x)

%

% HOUSE computes the Householdr vectors

%

n = max(size(x));

mu = norm(x);

v = x;

if mu ~= 0,

beta = x(1) + sign(x(1))*mu;

v(2:n) = v(2:n)/beta;

end

v(1) = 1;
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