_ On the Combination of
Silent Error Detection and Checkpointing

Guillaume Aupy', Anne Benoit'*, Thomas Hérault?, Yves Robert!2, Frédéric Vivien' and Dounia Zaidouni!

1. LIP, Ecole Normale Supérieure de Lyon, CNRS & INRIA, France
2. University of Tennessee Knoxville, USA
* Corresponding author: Anne Benoit, LIP, ENS Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France.
Phone: +33 47272 8758. Fax: +33 47272 8080. Email address: /Anne.Benoit@ens-lyon.fr

Abstract—In this paper, we revisit traditional check-
pointing and rollback recovery strategies, with a focus
on silent data corruption errors. Contrarily to fail-stop
failures, such latent errors cannot be detected immediately,
and a mechanism to detect them must be provided. We
consider two models: (i) errors are detected after some
delays following a probability distribution (typically, an
Exponential distribution); (ii) errors are detected through
some verification mechanism. In both cases, we compute
the optimal period in order to minimize the waste, i.e.,
the fraction of time where nodes do not perform use-
ful computations. In practice, only a fixed number of
checkpoints can be kept in memory, and the first model
may lead to an irrecoverable failure. In this case, we
compute the minimum period required for an acceptable
risk. For the second model, there is no risk of irrecoverable
failure, owing to the verification mechanism, but the
corresponding overhead is included in the waste. Finally,
both models are instantiated using realistic scenarios and
application/architecture parameters.

Keywords-High-performance computing, checkpointing,
silent data corruption, verification, error recovery.

I. INTRODUCTION

For several decades, the High Performance Computing
(HPC) community has been aiming at increasing the
computational capabilities of parallel and distributed
platforms, in order to fulfill expectations arising from
many fields of research, such as chemistry, biology,
medicine and aerospace. The core problem of delivering
more performance through ever larger systems is reli-
ability, because of the number of parallel components.
Even if each independent component is quite reliable,
the Mean Time Between Failures (MTBF) is expected
to drop drastically when considering an exascale sys-
tem [1]. Failures become a normal part of application
executions.

The de-facto general-purpose error recovery technique
in high performance computing is checkpoint and roll-
back recovery. Such protocols employ checkpoints to
periodically save the state of a parallel application, so
that when an error strikes some process, the application

can be restored into one of its former states. There are
several families of checkpointing protocols. We assume
in this work that each checkpoint forms a consistent
recovery line, i.e., when an error is detected, we can
rollback to the last checkpoint and resume execution,
after a downtime and a recovery time.

Most studies assume instantaneous error detection,
and therefore apply to fail-stop failures, such as for
instance the crash of a resource. In this work, we revisit
checkpoint protocols in the context of /atent errors, also
called silent data corruption. In HPC, it has been shown
recently that such errors are not unusual, and must also
be accounted for [2]. The cause may be for instance soft
efforts in L1 cache, or double bit flips. The problem
is that the detection of a latent error is not immediate,
because the error is identified only when the corrupted
data is activated. One must then account for the detection
interval required to detect the error in the error recovery
protocol. Indeed, if the last checkpoint saved an already
corrupted state, it may not be possible to recover from
the error. Hence the necessity to keep several checkpoints
so that one can rollback to the last correct state.

This work is motivated by a recent paper by Lu, Zheng
and Chien [3], who introduce a multiple checkpointing
model to compute the optimal checkpointing period with
error detection latency. More precisely, Lu, Zheng and
Chien [3]] deal with the following problem: given errors
whose inter arrival times X, follow an Exponential
probability distribution of parameter \., and given error
detection times X, that follow an Exponential proba-
bility distribution of parameter)y, what is the optimal
checkpointing period 75y, in order to minimize the total
execution time? The problem is illustrated on Figure
the error is detected after a (random) time X4, and one
has to rollback up to the last checkpoint that precedes
the occurrence of the error. Let k be the number of
checkpoints that can be simultaneously kept in memory.
Lu, Zheng and Chien [3]] derive a formula for the optimal
checkpointing period 15 in the (simplified) case where

Anne.Benoit@ens-lyon.fr

} Detection

Figure 1: Error and detection latency.

Errorj

Xe Xq

Time

k is unbounded (kK = o0), and they propose some
numerical simulations to explore the case where k is
a fixed constant.

The first major contribution of this paper is to correct
the formula of [3] when k is unbounded, and to provide
an analytical approach when k is a fixed constant. The
latter approach is a first-order approximation but applies
to any probability distribution of errors.

While it is very natural and interesting to consider
the latency of error detection, the model of [3]] suffers
from an important limitation: it is not clear how one can
determine when the error has indeed occurred, and hence
to identify the last valid checkpoint, unless some verifi-
cation system is enforced. Another major contribution of
this paper is to introduce a model coupling verification
and checkpointing, and to analytically determine the best
balance between checkpoints and verifications so as to
optimize platform throughput.

The rest of the paper is organized as follows. First
we revisit the multiple checkpointing model of [3] in
Section [T} we tackle both the case where all checkpoints
are kept, and the case with at most k& checkpoints. In
Section we define and analyze a model coupling
checkpoints and verifications. Then, we evaluate the
various models in Section [[V] by instantiating the models
with realistic parameters derived from future exascale
platforms. Related work is discussed in Section [V] Fi-
nally, we conclude and discuss future research directions
in Section [VII

II. REVISITING THE MULTIPLE CHECKPOINTING
MODEL

In this section, we revisit the approach of [3[]. We show
that their analysis with unbounded memory is incorrect
and provide the exact solution (Section [[I-A). We also
extend their approach to deal with the case where a given
(constant) number of checkpoints can be simultaneously

kept in memory (Section [lI-B).

A. Unlimited checkpoint storage

Let C be the time needed for a checkpoint, R the time
for recovery, and D the downtime. Although R and C
are a function of the size of the memory footprint of the
process, D is a constant that represents the unavoidable
costs to rejuvenate a process after an error (e.g., stopping

the failed process and restoring a new one that will load
the checkpoint image). We assume that errors can take
place during checkpoint and recovery but not during
downtime (otherwise, the downtime could be considered
part of the recovery).

Let p. = /\i be the mean time between errors.
With no error detection latency and no downtime, well-
known formulas for the optimal period (useful work
plus checkpointing time that minimizes the execution
time) are Top ~ +/2C e + C' (as given by Young [4])
and Toy ~ /2C(pe + R) + C (as given by Daly [3]).
These formulas are first-order approximations and are
valid only if C, R < p. (in which case they collapse).

With error detection latency, things are more compli-
cated, even with the assumption that one can track the
source of the error (and hence identify the last valid
checkpoint). Indeed, the amount of rollback will depend
upon the sum X, + X ;. For Exponential distributions of
X, and X4, Lu, Zheng and Chien [33]] derive that Top ~

2C(pte + pra) + C, where pg = 5 is the mean of
error detection times. However, although this result may
seem intuitive, it is wrong, and we prove that the correct
answer is Ty ~ 1/2C' 1. +C, even when accounting for
the downtime: this first-order approximation is the same
as Young’s formula. We give an intuitive explanation
after the proofs provided in Section Then in
Section we extend this result to arbitrary laws, but
under the additional constraint that pg + D + R < jte.

1) Exponential distributions: In this section, we as-
sume that X, and X, follow Exponential distributions
of mean p. and pg respectively.

Proposition 1. The expected time needed to successfully
execute a work of size w followed by its checkpoint is

B(T(w)) = P (D + pe -+ pua) (>0 — 1)

Proof: Let T(w) be the time needed for successfully
executing a work of duration w. There are two cases: (i)
if there is no error during execution and checkpointing,
then the time needed is exactly w + C; (ii) if there is an
error before successfully completing the work and its
checkpoint, then some additional delays are incurred.
These delays come from three sources: the time spent
computing by the processors before the error occurs,
the time spent before the error is detected, and the
time spent for downtime and recovery. Regardless, once
a successful recovery has been completed, there still
remain w units of work to execute. Thus, we can write
the following recursion:

E(T(w)) = e T (w +C)
+(1- e_ke(w-i_c))(E(zjlost) +E(Xy)
4 E(Te) + E(T(w))). (1)

Here, Tj,s; denotes the amount of time spent by the
processors before the first error, knowing that this error
occurs within the next w + C' units of time. In other
terms, it is the time that is wasted because computation
and checkpoint were not both completed before the
error occurred. The random variable X; represents the
time needed for error detection, and its expectation is
E(Xy) = pa = /\% The last variable T;... represents
the amount of time needed by the system to perform a
recovery. Equation (I) simplifies to:

E(T(w)) = w+C+ (T 1) (E(Tiost) + pa+E(Trec)).-

@)
We have
E(Tiost) = / 2P(X = z|X < w+ C)dz
0
1 w+C s
“sw<aray), o
ad PX <w+C)=1-— e~ Ae(w+C)
Integrating by parts, we derive that
1 w+C
E(Tiost) = — 3)

N r@r0) 17

Next, to compute E(7...), we have a recursive equation
quite similar to Equation (1}) (remember that we assumed
that no error can take place during the downtime):

E(Trec) = e_AeR(D + R)

+(1 — e YV (E(Riost) + E(Xa) + D + E(Tree)).

Here, E(R),st) is the expected amount of time lost to
executing the recovery before an error happens, knowing
that this error occurs within the next R units of time.
Replacing w + C by R in Equation (3), we obtain
1 R
Ae eMF—17

The expression for E(7}...) simplifies to

]E(Rlost) =

E(Trec) = DGAER + (eAeR -]‘)(HB + ,LLd) (4)
Plugging the values of E(7},s:) and E(T,...) into Equa-
tion (2) leads to the desired value. |

Proposition 2. The optimal strategy to execute a work
of size W is to divide it into n equal-size chunks, each
followed by a checkpoint, where n is equal either to
max(1, [n*|) or to [n*]. The value of n* is uniquely

derived from y =)‘fl—w — 1, where L(y) = —e ¢!
(L, the Lambert function, defined as L(x)e]l‘(“") =x). The
optimal strategy does not depend on the value of pg.

Proof: Using n chunks of size w; (with
Z?:l w; = W), by linearity of the expectation, we
have E(T(W)) = K Y"1 (e*(i*+9) — 1) where K =
e*® (D + e + pq) is a constant. By convexity, the sum
is minimum when all the w;s are equal (to %). Now,
E(T(W)) is a convex function of n, hence it admits a
unique minimum n* such that the derivative is zero:

re(rey g _ 2 W
e (1 .)=1. @)
Let y = 2% _ 1 we have ye¥ = —e*<C~1 hence
L(y) = —e *<“~l. Then, since we need an integer

number of chunks, the optimal strategy is to split W/
into max(1, [n*|) or [n*] same-size chunks, whichever
leads to the smaller value. As stated, the value of y,
hence of n*, is independent of 4. |

Proposition 3. A first-order approximation for the opti-
mal checkpointing period (that minimizes total execution
time) is Top = /2Cue + C. This value is identical to
Young’s formula, and does not depend on the value of
Hd-

Proof: We use Proposition [2| and Taylor expansions
when z = y+1 = 2 js small: from ye¥ = —e~*<C 1,
we derive (2 — 1)e* = —e~*<C. We have (z — 1)e* =~
é —1, and —e *¢ ~ —1 4+ \.C, hence 22 =~ 2).C.

The period is

ToptZ%JFC:AiJrcm/zcuﬁa

|
An intuitive explanation of the result is the following:
error detection latency is paid for every error, and can be
viewed as an additional downtime, which has no impact
on the optimal period.
2) Arbitrary distributions: Here we extend the previ-
ous result to arbitrary distribution laws for X. and X,
(of mean p, and g respectively):

Proposition 4. When C < p. and g+ D+ R < e, a
first-order approximation for the optimal checkpointing

period is Tppy = /2Cpe + C.

Proof: Let Tiase be the base time of the application
without any overhead due to resilience techniques. First,
assume a fault-free execution of the application: every
period of length T, only Work =T — C' units of work
are executed, hence the time T} for a fault-free execution
is Ty = LTbm. Now, let T denote the expectation

Work
of the execution time with errors taken into account. In

average, eIrors occur every .. time-units, and for each
Thin

of them we lose F time-units, so there are =i errors
during the execution. Hence we derive that ‘
Thinal
Thinal = Ty + ——F, (6)
He
which we rewrite as
(]—_WASTE) Thinal = Tba537
F C
with WASTE=1— (1 — —)(1—=). (7)
(1-0)-7)

The waste is the fraction of time where nodes do not
perform useful computations. Minimizing execution time
is equivalent to minimizing the waste. In Equation (7)),
we identify the two sources of overhead: (i) the term
WASTEy = % which is the waste due to checkpointing
in a fault-free execution, by construction of the algo-
rithm; and (ii) the term WASTEg; = %, which is the
waste due to errors striking during execution. With these
notations, we have

WASTE = WASTEf,;] + WASTEg — WASTE¢,j WASTE¢g. (8)

There remains to determine the (expected) value of F.
Assuming at most one error per period, we lose F = %—F
a+ D+ R per error: % for the average work lost before
the error occurs, ug for detecting the error, and D + R
for downtime and recovery. Note that the assumption is
valid only if pg + D + R < pe and T' < pi.. Plugging
back this value into Equation (8], we obtain

T CO- D+R+pa—§

D+R+pg)
— He
2/1,6 T He

WASTE(T)

©)

which is minimal for
Topt = V/2C(pte — D — R — p1a) ~ \/2Cuc.

We point out that this approach based on the waste leads
to a different approximation formula for the optimal pe-
riod, but Ty = /2C (e — D — R — pg) ~ /2Ch, =
v2C 11.+C up to second-order terms, when g, is large in
front of the other parameters, includig p4. For example,
this approach does not allow us to handle the case
g = Me; in such a case, the optimal period is known
only for Exponential distributions, and is independent of
Iid, as proven by Proposition [|

To summarize, the exact value of the optimal period is
only known for Exponential distributions and is provided
by Proposition |2} while Young’s formula can be used as
a first-order approximation for any other distributions.
Indeed, the optimal period is a trade-off between the
overhead due to checkpointing (%) and the expected time
lost per error (2—5& plus some constant). Up to second-
order terms, the waste is minimum when both factors

10)

are equal, which leads to Young’s formula, and which
remains valid regardless of error detection latencies.

B. Saving only k checkpoints

Lu, Zheng and Chien [3]] propose a set of simulations
to assess the overhead induced when keeping only the
last k£ checkpoints (because of storage limitations). In
the following, we derive an analytical approach to nu-
merically solve the problem. The main difficulty is that
when error detection latency is too large, it is impossible
to recover from a valid checkpoint, and one must resume
the execution from scratch. We consider this scenario as
an irrecoverable failure, and we aim at guaranteeing that
the risk of irrecoverable failure remains under a user-
given threshold.

Assume that a job of total size W is partitioned into n
chunks. What is the risk of irrecoverable failure during
the execution of one chunk of size % followed by its
checkpoint? Let T' = % + C be the length of the
period. Intuitively, the longer the period, the smaller the
probability that an error that has just been detected took
place more than k periods ago, thereby leading to an
irrecoverable failure because the last valid checkpoint is
not one of the & most recent ones.

Formally, there is an irrecoverable failure if: (i) there
is an error detected during the period (probability Pry),
and (ii) the sum of Tj,s, the time elapsed since the
last checkpoint, and of X4, the error detection latency,
exceeds k7T (probability Pj). The value of Ppy =
P(X. < T) is easy to compute from the error dis-
tribution law. For instance with an Exponential law,
Pt = 1 — e *<T. As for P, we use an upper bound:
Pt = P(Tiost + Xa > kT) < P(T' + Xq > kT) =
P(X4 > (k—1)T). The latter value is easy to compute
from the error distribution law. For instance with an
Exponential law, P = e~ (k=T Of course, if there
is an error and the error detection latency does not exceed
kT (probability (1-P,)), we have to restart execution
and face the same risk as before. Therefore, the prob-
ability of irrecoverable failure Pj... can be recursively
evaluated as Pirec = Pt (Prag + (1 — Plag) Pisrec), hence
Pirrec %. Now that we have computed
Pirec, the probability of irrecoverable failure for a single
chunk, we can compute the probability of irrecoverable
failure for n chunks as Py = 1 — (1 — Pigec)™
In full rigor, these expressions for Pi. and Pg are
valid only for Exponential distributions, because of the
memoryless property, but they are a good approximation
for arbitrary laws. Given a prescribed risk threshold ¢,
solving numerically the equation Pyg < € leads to a
lower bound Ti,;, on T'. Let Ty, be the optimal period
given in Theorem [3| for an unbounded number of saved

checkpoints. The best strategy is then to use the period
max(Tmin, Topt) to minimize the waste while enforcing
a risk below threshold.

In case of irrecoverable failure, we have to resume
execution from the very beginning. The number of
re-executions due to consecutive irrecoverable failures
follows a geometric law of parameter 1 —Pj, so that the
expected number of executions until success is 1— P —.
We refer to Section [[V-A] for an example of how to
instantiate this model to compute the best period with
a fixed number of checkpoints, under a prescribed risk
threshold.

III. COUPLING VERIFICATION AND CHECKPOINTING

In this section, we move to a more realistic model
where silent errors are detected only when some ver-
ification mechanism (checksum, error correcting code,
coherence tests, etc.) is executed. Our approach is ag-
nostic of the nature of this verification mechanism. We
aim at solving the following optimization problem: given
the cost of checkpointing C, downtime D, recovery
R, and verification V, what is the optimal strategy to
minimize the expected waste as a function of the mean
time between errors p.? Depending upon the relative
costs of checkpointing and verifying, we may have more
checkpoints than verifications, or the other way round.
In both cases, we target a periodic pattern that repeats
over time.

Consider first the scenario where the cost of a check-
point is smaller than the cost of a verification: then
the periodic pattern will include k checkpoints and 1
verification, where k is some parameter to determine.
Figure [2(a) provides an illustration with k& = 5. We
assume that the verification is directly followed by the
last checkpoint in the pattern, so as to save results
just after they have been verified (and before they get
corrupted). In this scenario, the objective is to determine
the value of k that leads to the minimum platform waste.
This problem is addressed in Section

Because our approach is agnostic of the cost of the
verification, we also envision scenarios where the cost
of a checkpoint is higher than the cost of a verification.
In such a framework, the periodic pattern will include k
verifications and 1 checkpoint, where k is some parame-
ter to determine. See Figure [2{b) for an illustration with
k = 5. Again, the objective is to determine the value of k
that leads to the minimum platform waste. This problem
is addressed in Section

We point out that combining verification and check-
pointing guarantees that no irrecoverable failure will
kill the application: the last checkpoint of any period
pattern is always correct, because a verification always

takes place right before this checkpoint is taken. If that
verification reveals an error, we roll back until reaching
a correct verification point, maybe up to the end of the
previous pattern, but never further back, and re-execute
the work. The amount of roll-back and re-execution
depends upon the shape of the pattern, and we show
how to compute it in Sections and below.

O O v RO) A o

w w w w w Time

(a) 5 checkpoints for 1 verification

s I N I A

| w w w w w

(b) 5 verifications for 1 checkpoint

Figure 2: Periodic pattern.

A. With k checkpoints and 1 verification

We use the same approach as in the proof of Propo-
sition 4| and compute a first-order approximation of the
waste (see Equations (7) and (8)). We compute the two
sources of overhead: (i) WASTEy, the waste incurred in
a fault-free execution, by construction of the algorithm,
and (ii)) WASTEg,;, the waste due to errors striking during
execution.

Let S = kw + kC' + V be the length of the periodic
pattern. We easily derive that WASTEy = ECEV Ag
for WASTEg;, we still have WASTEg; = w
However, in this context, the time lost because of the
error depends upon the location of this error within
the periodic pattern, so we compute averaged values as
follows. Recall (see Figure [2a)) that checkpoint k is
the one preceded by a verification. Here is the analysis
when an error is detected during the verification that
takes place in the pattern:

o If the error took place in the (last) segment k: we

recover from checkpoint k£ — 1, and verify it; we get
a correct result because the error took place later
on. Then we re-execute the last piece of work and
redo the verification. The time that has been lost is
Tiost(k) = R+V +w+ V. (We assume that there
is at most one error per pattern.)

o If the error took place in segment 7, 2 < ¢ <

k — 1: we recover from checkpoint k£ — 1, verify
it, get a wrong result; we iterate, going back up
to checkpoint ¢ — 1, verify it, and get a correct
result because the error took place later on. Then
we re-execute k — i + 1 pieces of work and k — ¢
checkpoints, together with the last verification. We
get Tiost (1) = (k—i+1)(R+V+w)+(k—i)C+V.

o If the error took place in (first) segment 1: this
is almost the same as above, except that the first
recovery at the beginning of the pattern need not
be verified, because the verification was made just
before the corresponding checkpoint at the end
of the previous pattern. We have the same for-
mula with ¢ = 1 but with one fewer verification:
Tiost(1) =k(R+w)+ (k-1)(C+V)+ V.

Therefore, the formula for WASTEg,;; writes
1 k .
WASTEfail = D+ k Zi:l TlOSt(Z) s
He
and (after some manipulation using a computer algebra
system) the formula simplifies to

1)

WasTEG = 5 (RV)RHRDHRI2VAS-20)45-3V)

(12)
Using WASTEg = and Equation (8)), we compute
the total waste and derive that WASTE = aS + b + é,
where a, b, and ¢ are some constants. The optimal value
of Sis Sopt = \/g, provided that this value is at least
kC + V. We point out that this formula only is a first-
order approximation. We have assumed a single error
per pattern. We have also assumed that errors did not
occur during checkpoints following verifications. Now,
once we have found WASTE(S,,;), the value of the waste
obtained for the optimal period S,,:, we can minimize
this quantity as a function of k, and numerically derive
the optimal value k,,; that provides the best value (and
hence the best platform usage).

Due to lack of space, computational details are avail-
able in [6]], which is a Maple sheet that we have to instan-
tiate the model. This Maple sheet is publicly available
for users to experiment with their own parameters. We
provide two example scenarios to illustrate the model in
Section

Finally, note that in order to minimize the waste,
one could do a binary search in order to find the last
checkpoint before the fault. Then we can upper-bound
Tiost(i) by (k—i+1)w+log(k)(R+V)+(k—i)C+V,
and Equation (T2) becomes WASTEg; = ﬁ((R +
V)2klog(k) + 2D+ R+2V +S—2C)k+S —3V).

kC+V
S

B. With k verifications and 1 checkpoint

We use a similar line of reasoning for this scenario
and compute a first-order approximation of the waste
for the case with k verifications and 1 checkpoint per
pattern. The length of the periodic pattern is now S =
kw + kV + C. As before, for 1 < i < k, let segment
i denote the period of work before verification ¢, and
assume (see Figure b)) that verification k is preceded
by a checkpoint. The analysis is somewhat simpler here.

If an error takes place in segment i, 1 < ¢ < k, we
detect the error during verification i, we recover from
the last checkpoint, and redo the first ¢ segments and
verifications: therefore Tj,5:(k) = R + i(V + w). The
formula for WASTEg,; is the same as in Equation (I 1]
and (after some manipulation) we derive

k+1

1
WASTEg; = ﬂ (D + R+ W (S — C)) . (13)

Using WASTEg = k—Vgﬁ and Equation (), we proceed
just as in Section [[TI-A] to compute the optimal value S,
of the periodic pattern, and then the optimal value %,
that minimizes the waste. Details are available within the

Maple sheet [6].

1V. EVALUATION

This section provides some examples for instantiating
the various models. We aimed at choosing realistic
parameters in the context of future exascale platforms,
but we had to restrict to a limited set of scenarios, which
do not intend to cover the whole spectrum of possible
parameters. The Maple sheet [6] is available to explore
other scenarios.

A. Best period with k checkpoints under a given risk
threshold

We first evaluate Py, the risk of irrecoverable failure,
as defined in Section Figures [3] and [present, for
different scenarios, the probability P as a function of
the checkpointing period 7" on the left. On the right, the
figures present the corresponding waste with & check-
points and in the absence of irrecoverable failures. This
waste can be computed following the same reasoning
as in Equation (9). For each figure, the left diagram
represents the risk implied by a given period 7', showing
the value 75, of the optimal checkpoint interval (optimal
with respect to waste minimization and in the absence
of irrecoverable failures, see Equation (I0)) as a blue
vertical line. The right diagram on the figure represents
the corresponding waste, highlighting the trade-off be-
tween an increased irrecoverable-failure-free waste and
a reduced risk. As stated in Section [[I-Bl it does not
make sense to select a value for 7" lower than T, since
the waste would be increased, for an increased risk.

Figure considers a machine consisting of 10°
components, and a component MTBF of 100 years.
This component MTBF corresponds to the optimistic
assumption on the reliability of computers made in
the literature [7]], [1]. The platform MTBF g, is thus
100 x 365 x 24/100,000 ~ 8.76 hours. The times to
checkpoint and recover (10 min) correspond to reason-
able mean values for systems at this size [8]], [9]. At

0.0010 0.239

0.238
0.0008

0.237

0.0006
0.236

Waste

0.0004 Risk at Opt.: .3776958e-3

0.235

0.0002 0.234

Probability of Critical Failure

0.233

5500 6000 6500 7000 7500
Period T (seconds)

0.
5500 6000 6500 7000 7500
Period T (seconds)

Figure 3: Risk of irrecoverable failure as a function of the
checkpointing period, and corresponding waste. (k = 3,

,\E:%,,\d = 30X, w = 10d,C = R = 600s, and D = 0s.)

0.13.

o
@

0.12-

o
)

Risk at Opt.: .5362607188

Waste

0.11

Probability of Critical Failure
o
IS

o
v

0.10-

5000 1000 2000 3000 4000 5000
Period T (seconds)

2000 3000 4000
Period T (seconds)

Figure 4: Risk of irrecoverable failure as a function of the
checkpointing period, and corresponding waste. (k = 3,
Ae = %,,\d — 30)\e,w = 10d,C = R = 60s, and D = 0s.)
this scale, process rejuvenation is small, and we set the
downtime to Os. For these average values to have a
meaning, we consider a run that is long enough (10 days
of work), and in order to illustrate the trade-off, we take
a rather low (but reasonable) value k = 3 of intervals,
and a mean time error detection 4 significantly smaller
(30 times) than the MTBF p, itself.

With these parameters, Ty, is around 100 minutes,
and the risk of irrecoverable failure at this checkpoint
interval can be evaluated at 1/2617 ~ 38-1075, inducing
an irrecoverable-failure-free waste of 23.45%. To reduce
the risk to 1074, a Tn of 8000 seconds is sufficient,
increasing the waste by only 0.6%. In this case, the
benefit of fixing the period to max(Top, Tmin) is obvi-
ous. Naturally, keeping a bigger amount of checkpoints
(increasing k) would also reduce the risk, at constant
waste, if memory can be afforded.

We also consider in Figure a more optimistic
scenario where the checkpointing technology and avail-
ability of resources is increased by a factor 10: the
time to checkpoint, recover, and allocate new computing
resources is divided by 10 compared to the previous
scenario. Other parameters are kept similar. One can
observe that Tqy is largely reduced (down to less than
35 minutes between checkpoints), as well as the optimal

0.25

Waste

0.23

1é345k676910

Figure 5: Case with k verifications, and one checkpoint
per periodic pattern. Waste as function of k, and poten-
tially of V, using the optimal period. (V =20s,C = R =
600s, D = 0s, and u = To¥.)

irrecoverable-failure-free waste (9.55%). This is unsur-
prising, and mostly due to the reduction of failure-free
waste implied by the reduction of checkpointing time.
But because the period between checkpoints becomes
smaller, while the latency to detect an error is unchanged
(pq 1is still 30 times smaller than p.), the risk that
an error happens at the interval ¢ but is detected after
interval i + k is increased. Thus, the risk climbs to 1/2,
an unacceptable value. To reduce the risk to 10~* as
previously, it becomes necessary to consider a 7,,,;, of
6650 seconds, which implies an irrecoverable-failure-
free waste of 15%, significantly higher than the optimal
one, which is below 10%, but still much lower than the
24% when checkpoint and availability costs are 10 times
higher.

B. Periodic pattern with k verifications and 1 checkpoint

We now focus on the waste induced by the different
ways of coupling periodic verification and checkpoint-
ing. We first consider the case of a periodic pattern with
more verifications than checkpoints: every k verifications
of the current state of the application, a checkpoint is
taken. The duration of the work interval S, between two
verifications in this case, is optimized to minimize the
waste. We consider two scenarios. For each scenario, we
represent two diagrams: the left diagram shows the waste
as a function of k for a given verification cost V, and
the right diagram shows the waste as a function of k£ and
V' using a 3D surface representation.

In the first scenario, we consider the same setup as
above in Section The waste is computed in its
general form, so we do not need to define the duration
of the work. As represented in Figure [5] for a given
verification cost, the waste can be optimized by making
more than one verifications. When k£ > 1, there are
intermediate verifications that can enable to detect an
error before a periodic pattern (of length S) is completed,
hence, that can reduce the time lost due to an error.
However, introducing too many verifications induces an

0.086

0.084-

0.082

0.080

Waste

0.078

0.076

0.074

22
‘23455739
k

34
12 3 4 5 6 7 8 9 10 10 2 (sec.)
k

Figure 6: Case with k verifications, and one checkpoint
per periodic pattern. Waste as function of %, and poten-
tially of V, using the optimal period. (V =2s,C = R =

60s, D = 0Os, anduflos)

overhead that eventually dominates the waste. The 3D
surface shows that the waste reduction is significant
when increasing the number of verifications, until the
optimal number is reached. Then, the waste starts to
increase again slowly. Intuitively, the lower the cost for
V', the higher the optimal value for k.

When considering the second scenario (Figure [6),
with an improved checkpointing and availability setup,
the same conclusions can be reached, with an absolute
value of the waste greatly diminished. Since forced
verifications allow to detect the occurrence of errors at
a controllable rate (depending on S and k), the risk
of non-recoverable errors is nonexistent in this case,
and the waste can be greatly diminished, with very few
checkpoints taken and kept during the execution.

C. Periodic pattern with k checkpoints and 1 verification

The last set of experiments considers the opposite case
of periodic patterns: checkpoints are taken more often
than verifications. Every k checkpoints, a verification of
the data consistency is done. Intuitively, this could be
useful if the cost of verification is large compared to the
cost of checkpointing itself. In that case, when rolling
back after an error is discovered, each checkpoint that
was not validated before is validated at rollback time,
potentially invalidating up to £ — 1 checkpoints.

Because this pattern has potential only when the cost
of checkpoint is much lower than the cost of verification,
we considered the case of a greatly improved checkpoint
/ availability setup: the checkpoint and recovery times are
only 6 seconds in Figure [/l One can observe that in this
extreme case, it can still make sense to consider multiple
checkpoints between two verifications (when V = 100
seconds, a verification is done only every 3 checkpoints
optimally); however the 3D surface demonstrates that the
waste is still dominated by the cost of the verification,
and little improvement can be achieved by taking the
optimal value for k. The cost of verification must be

0.120.
0.118-
0.116
© 0.114-
@ 0.112
g0
0.110-
0.108

0.106-

0.104

12 3 4 5 6 7 8 9 10
k

Figure 7: Case with k checkpoints, and one verification
per periodic pattern. Waste as function of &, and poten-
tially of V, using the optimal period. (V' = 100s,C = R =
6s,D = 0s, and p = 19%))

0.29
0.28
0.27
0.26

2025

So2
0.23
0.22
0.21

0.20-

12 3 4 5 6 7 8 9 10
k

Figure 8: Case with k checkpoints, and one verification
per periodic pattern. Waste as function of %, and poten-
tially of V, using the optimal period. (V = 300s,C = R =
60s, D = 0s, and p = 105)

incurred when rolling back, and this shows on the overall
performance if the verification is costly.

This is illustrated even more clearly with Figure [3]
where the checkpoint costs and machine availability are
set to the second scenario of Sections [V-A] and [V-Bl As
soon as the checkpoint cost is not negligible compared to
the verification cost (only 5 times smaller in this case), it
is more efficient to validate every other checkpoint than
to validate only after £ > 2 checkpoints. The 3D surface
shows that this holds true for rather large values of V.

All the rollback / recovery techniques that we have
evaluated above, using various parameters for the differ-
ent costs, and stressing the different approaches to their
limits, expose a waste that remains, in the vast majority
of the cases, largely below 66%. This is noticeable,
because the traditional hardware based technique, which
relies on triple modular redundancy and voting [10],
mechanically presents a waste that is at least equal to
66% (two-thirds of resources are wasted, and neglecting
the cost of voting).

V. RELATED WORK

As already mentioned, this work is motivated by the
recent paper by Lu, Zheng and Chien [3]], who introduce
a multiple checkpointing model to compute the optimal
checkpointing period with error detection latency. We

start with a brief overview of traditional checkpointing
approaches before discussing error detection and recov-
ery mechanisms.

A. Checkpointing

Traditional (coordinated) checkpointing has been stud-
ied for many years. The major appeal of the coordinated
approach is its simplicity, because a parallel job using
n processors of individual MTBF M;,, 4 can be viewed
as a single processor job with MTBF pu = %
Given the value of p, an approximation of the optimal
checkpointing period can be computed as a function
of the key parameters (downtime D, checkpoint time
C, and recovery time R). The first estimate had been
given by Young [4] and later refined by Daly [3].
Both use a first-order approximation for Exponential
failure distributions; their derivation is similar to the ap-
proach in Equations (6) and (7). More accurate formulas
for Weibull failure distributions are provided in [11],
[12], [13]. The optimal checkpointing period is known
only for Exponential failure distributions [8]]. Dynamic
programming heuristics for arbitrary distributions are
proposed in [[14], [15], [8].

The literature proposes different works [16], [17],
[18], [19], [20] on the modeling of coordinated check-
pointing protocols. In particular, [17] and [16] focus on
the usage of available resources: some may be kept as
backup in order to replace the down ones, and others
may be even shutdown in order to decrease the failure
risk or to prevent storage consumption by saving fewer
checkpoint snapshots.

The major drawback of coordinated checkpointing
protocols is their lack of scalability at extreme-scale.
These protocols will lead to I/O congestion when too
many processes are checkpointing at the same time. Even
worse, transferring the whole memory footprint of an
HPC application onto stable storage may well take so
much time that a failure is likely to take place during the
transfer! A few papers [20], [21] propose a scalability
study to assess the impact of a small MTBF (i.e., of
a large number of processors). The mere conclusion is
that checkpoint time should be dramatically reduced for
platform waste to become acceptable, which motivated
the instantiation of optimistic scenarios in Section

All the above approaches maintain a single check-
point. If the checkpoint file includes errors, the appli-
cation faces an irrecoverable failure and must restart
from scratch. This is because error detection latency is
ignored in traditional rollback and recovery schemes.
These schemes assume instantaneous error detection
(therefore mainly targeting fail-stop failures) and are
unable to accommodate silent errors.

B. Error detection

Considerable efforts have been directed at error-
checking to reveal latent errors. Most techniques com-
bine redundancy at various levels, together with a variety
of verification mechanisms. The oldest and most drastic
approach is at the hardware level, where all computations
are executed in triplicate, and majority voting is enforced
in case of different results [10]. Error detection ap-
proaches include memory scrubbing [22], fault-tolerant
algorithms [23]], [24]], [25], ABFT techniques [26], [27]
and critical MPI message validation [28]]. We refer to Lu,
Zheng and Chien [3] for a comprehensive list of tech-
niques and references. As already mentioned, our work
is agnostic of the underlying error-detection technique
and takes the cost of verification as an input parameter
to the model (see Section |I1I).

VI. CONCLUSION

In this paper, we revisit traditional checkpointing and
rollback recovery strategies. Rather than considering fail-
stop failures, we focus on silent data corruption errors.
Such latent errors cannot be neglected anymore in High
Performance Computing, in particular in sensitive and
high precision simulations. The core difference with fail-
stop failures is that error detection is not immediate.

We discuss and analyze two models. In the first model,
errors are detected after some delay following a proba-
bility distribution (typically, an Exponential distribution).
We compute the optimal checkpointing period in order to
minimize the waste when all checkpoints can be kept in
memory, and we show that this period does not depend
on the distribution of detection times. In practice, only
a few checkpoints can be kept in memory, and hence
it may happen that an error was detected after the last
correct checkpoint was removed from storage. We derive
a minimum value of the period to guarantee, within a
risk threshold, that at least one valid checkpoint remains
when a latent error is detected.

A more realistic model assumes that errors are de-
tected through some verification mechanism. Periodi-
cally, one checks whether the current status is mean-
ingful or not, and then eventually detects a latent error.
We discuss both the case where the periodic pattern
includes k checkpoints for one verification (large cost of
verification), and the opposite case with k verifications
for one checkpoint (inexpensive cost for verification).
We express a formula for the waste in both cases, and,
from these formulas, we derive the optimal period.

The various models are instantiated with realistic
parameters, and the evaluation results clearly corrobo-
rate the theoretical analysis. For the first model, with

detection times, the tradeoff between waste and risk of
irrecoverable error clearly appears, hence showing that a
period larger than the one minimizing the irrecoverable-
failure-free waste should often be chosen to achieve
an acceptable risk. The advantage of the second model
is that there are no irrecoverable failures (within each
period, there is a verification followed by a checkpoint,
hence ensuring a valid checkpoint). We compute the
optimal pattern of checkpoints and verifications per
period, as a function of their respective cost, to mini-
mize the waste. The pattern with more checkpoints than
verification turns out to be usable only when the cost of
checkpoint is much lower than the cost of verification,
and the conclusion is that it is often more efficient to
verify the result every other checkpoint.

Overall, we provide a thorough analysis of check-
pointing models for latent errors, both analyzing the
models analytically, and evaluating them through dif-
ferent scenarios. A future research direction would be
to study more general scenarios of multiple check-
pointing, for instance by keeping not the consecutive
k last checkpoints in the first model, but rather some
older checkpoints to decrease the risk. In the second
model, more verification/checkpoint combinations could
be studied, while we focused on cases with an integer
number of checkpoints per verification (or the converse).

Acknowledgments. This work was supported in part by the
ANR RESCUE project. A. Benoit and Y. Robert are with the
Institut Universitaire de France.

REFERENCES

[1] J. Dongarra, P. Beckman, P. Aerts, F. Cappello, T. Lippert,
S. Matsuoka, P. Messina, T. Moore, R. Stevens, A. Trefethen, and
M. Valero, “The international exascale software project: a call
to cooperative action by the global high-performance commu-
nity,” Int. Journal of High Performance Computing Applications,
vol. 23, no. 4, pp. 309-322, 2009.

A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski,
“Design, Modeling, and Evaluation of a Scalable Multi-level
Checkpointing System,” in Proc. of the ACM/IEEE SC Conf.,
2010, pp. 1-11.

G. Lu, Z. Zheng, and A. A. Chien, “When is multi-version
checkpointing needed,” in 3rd Workshop for Fault-tolerance at
Extreme Scale (FTXS). ACM Press, 2013, https://sites.google.
com/site/uchicagolssg/lssg/research/gvr.

J. W. Young, “A first order approximation to the optimum
checkpoint interval,” Comm. of the ACM, vol. 17, no. 9, pp. 530—
531, 1974.

J. T. Daly, “A higher order estimate of the optimum checkpoint
interval for restart dumps,” FGCS, vol. 22, no. 3, pp. 303-312,
2004.

“Maple sheets for the experiments,” http://graal.ens-lyon.fr/
~yrobert/error-detection/,

F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir,
“Toward Exascale Resilience,” Int. Journal of High Performance
Computing Applications, vol. 23, no. 4, pp. 374-388, 2009.

[2]

[3]

[5]

[6]
[7]

10

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

(27]

[28]

M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien,
“Checkpointing strategies for parallel jobs,” in Proc. of the
ACM/IEEE SC Conf., 2011.

K. Ferreira, J. Stearley, J. H. I. Laros, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold, “Evalu-
ating the Viability of Process Replication Reliability for Exascale
Systems,” in Proc. of the ACM/IEEE SC Conf., 2011.

R. E. Lyons and W. Vanderkulk, “The use of triple-modular
redundancy to improve computer reliability,” IBM J. Res. Dev.,
vol. 6, no. 2, pp. 200-209, 1962.

Y. Ling, J. Mi, and X. Lin, “A variational calculus approach to
optimal checkpoint placement,” IEEE Trans. on computers, pp.
699-708, 2001.

T. Ozaki, T. Dohi, H. Okamura, and N. Kaio, “Distribution-free
checkpoint placement algorithms based on min-max principle,”
IEEE TDSC, pp. 130-140, 2006.

M.-S. Bouguerra, T. Gautier, D. Trystram, and J.-M. Vincent,
“A flexible checkpoint/restart model in distributed systems,” in
PPAM, ser. LNCS, vol. 6067, 2010, pp. 206-215. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-14390-8_22!

S. Toueg and O. Babaoglu, “On the optimum checkpoint selection
problem,” SIAM J. Computing, vol. 13, no. 3, pp. 630-649, 1984.
M.-S. Bouguerra, D. Trystram, and F. Wagner, “Complexity
Analysis of Checkpoint Scheduling with Variable Costs,” IEEE
Transactions on Computers, vol. 99, no. PrePrints, 2012.

J. S. Plank and M. G. Thomason, ‘“Processor allocation and
checkpoint interval selection in cluster computing systems,” J.
of Parallel and Distributed Computing, vol. 61, p. 1590, 2001.
H. Jin, Y. Chen, H. Zhu, and X.-H. Sun, “Optimizing HPC Fault-
Tolerant Environment: An Analytical Approach,” in Parallel
Processing (ICPP), 2010, 2010, pp. 525-534.

L. Wang, P. Karthik, Z. Kalbarczyk, R. Iyer, L. Votta, C. Vick,
and A. Wood, “Modeling Coordinated Checkpointing for Large-
Scale Supercomputers,” in Proc. of ICDSN, 2005, pp. 812-821.
R. Oldfield, S. Arunagiri, P. Teller, S. Seelam, M. Varela,
R. Riesen, and P. Roth, “Modeling the impact of checkpoints
on next-generation systems,” in Proc. of IEEE MSST, 2007, pp.
30-46.

Z. Zheng and Z. Lan, “Reliability-aware scalability models for
high performance computing,” in Proc. of IEEE Cluster, 2009.
FE. Cappello, H. Casanova, and Y. Robert, “Preventive migration
vs. preventive checkpointing for extreme scale supercomputers,”
Parallel Processing Letters, vol. 21, no. 2, pp. 111-132, 2011.
A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic rays
don’t strike twice: understanding the nature of dram errors and
the implications for system design,” SIGARCH Comput. Archit.
News, vol. 40, no. 1, pp. 111-122, 2012.

G. Bronevetsky and B. de Supinski, “Soft error vulnerability of
iterative linear algebra methods,” in Proc. 22nd Int. Conf. on
Supercomputing, ser. ICS 08. ACM, 2008, pp. 155-164.

M. Heroux and M. Hoemmen, “Fault-tolerant iterative methods
via selective reliability,” Sandia National Laboratories, Research
report SAND2011-3915 C, 2011.

M. Shantharam, S. Srinivasmurthy, and P. Raghavan, “Character-
izing the impact of soft errors on iterative methods in scientific
computing,” in Proc. 25th Int. Conf. on Supercomputing, ser. ICS
’11. ACM, 2011, pp. 152-161.

K.-H. Huang and J. A. Abraham, “Algorithm-based fault toler-
ance for matrix operations,” IEEE Trans. Comput., vol. 33, no. 6,
pp. 518-528, 1984.

G. Bosilca, R. Delmas, J. Dongarra, and J. Langou, “Algorithm-
based fault tolerance applied to high performance computing,”
J. Parallel and Distributed Computing, vol. 69, no. 4, pp. 410
—416, 2009.

D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and
R. Brightwell, “Detection and correction of silent data corruption
for large-scale high-performance computing,” in Proc. of the
ACM/IEEE SC Int. Conf., 2012.

https://sites.google.com/site/uchicagolssg/lssg/research/gvr
https://sites.google.com/site/uchicagolssg/lssg/research/gvr
http://graal.ens-lyon.fr/~yrobert/error-detection/
http://graal.ens-lyon.fr/~yrobert/error-detection/
http://dx.doi.org/10.1007/978-3-642-14390-8_22

	Introduction
	Revisiting the multiple checkpointing model
	Unlimited checkpoint storage
	Exponential distributions
	Arbitrary distributions

	Saving only k checkpoints

	Coupling verification and checkpointing
	With k checkpoints and 1 verification
	With k verifications and 1 checkpoint

	Evaluation
	Best period with k checkpoints under a given risk threshold
	Periodic pattern with k verifications and 1 checkpoint
	Periodic pattern with k checkpoints and 1 verification

	Related work
	Checkpointing
	Error detection

	Conclusion
	References

