
High Performance Linear System Solver with Resilience to Multiple Soft Errors

Peng Du∗, Piotr Luszczek∗, Jack Dongarra†
∗ EECS, University of Tennessee; 1122 Volunteer Blvd., Knoxville, TN 37996-3450, USA

Email: {du, luszczek}@eecs.utk.edu
† University of Tennessee; Oak Ridge National Laboratory, Oak Ridge, TN, USA; University of Manchester, Manchester, UK

Email: dongarra@eecs.utk.edu

Abstract—In the multi-peta-flop era for supercomputers, the
number of computing cores is growing exponentially. However,
with integrated circuit technology scaling below 65 nm, the
critical charge required to flip a gate or a memory cell is
dangerously reduced. Combined with higher vulnerability to
cosmic radiation, soft errors are expected to become anything
but inevitable for modern supercomputer systems. As a result,
for long running applications on high-end machines, including
linear solvers for dense matrices, soft errors have become a
serious concern. Classical checkpoint and restart (C/R) scheme
loses effectiveness against this threat because of the difficulty to
detect soft errors in the form of transient bit flips that do not
interrupt program execution and therefore leave no trace of
error occurrence. Current research of soft errors resilience for
dense linear solvers offers limited capability when faced with
large scale computing systems that suffer both round-off error
from floating point arithmetic and the presence followed by
propagation of multiple soft errors. The use of error correcting
codes based on Galois fields requires high computing cost
for recovery. This work proposes a fault tolernat algorithm
for dense linear system solver that is resilient to multiple
spatial and temporal soft errors. This algorithm is designed
to work with floating point data and is capable of recovering
the solution of Ax = b from multiple soft errors that affect
any part of the matrix during computation. Additionally, the
computational complexity of the error detection and recovery
is optimized through novel methods. Experimental results on
cluster systems confirm that the proposed fault tolerance
functionality can successfully detect and locate soft errors and
recover the solution of the linear system. The performance
impact is negligible and the soft errors resilient algorithm’s
performance scales well on large scale systems.

Keywords-soft error; fault tolerance; multiple errors; dense
linear system solver;

I. INTRODUCTION

Soft errors, normally in the form of bit flips, are events in
microelectronic circuit that result in transient modification
without permanently damaging the device. They corrupt
computed data, however, and produce erroneous results
without leaving a trace. High-end computer systems are
especially susceptible to such errors due to the ever in-
creasing chip density and shrinking assembly scale. Between
2002 and 2003, the 2048-node ASC Q supercomputer for
scientific computing in Los Alamos National Laboratorys
experienced failure from extensive soft errors [23]. By com-
paring the error logs with a radiation experiment conducted

in a lab, the cause was soon identified to be the cosmic ray
striking its parity-protected cache tag array. The Q computer
is more vulnerable to soft errors because it is located at
about 7500 feet above the sea level, and the neutrons from
cosmic-rays are roughly 6.4 times stronger than the ones
occuring at sea level. A similar incident has also appeared
in a commercial computing system from Sun Microsystems
that caused outages for many of its customers due to cosmic
ray soft errors [20]. These incidents signify that soft errors
are a real issue that both hardware and software developers
must face.

Soft error rate (SER) in memory is usually quantified
using FIT (failure in time) per MB, 1 FIT is 1 failure
per 109 operation hours per 10

6

bits. Google has reported
between 778 and 25,000 FIT from errors in the DRAMs
of their server fleet, an order of magnitude higher than
previously expected [28]. As CMOS technology scales the
feature size down with more transistors per chip and lower
critical charge [14], [30], the threat of soft errors will keep
haunting the computing community.

In order to mitigate the impact of soft errors, modern HPC
systems rely heavily on ECC (error correcting code) [3].
Nowadays the most commonly used ECC is SECDED (Sin-
gle Error Correction, Double Error Detection). For multi-bit
errors precipitated by the progress of the integrated circuit
technology [29], a more powerful form of ECC has become
too expensive due to the higher encoding and decoding
overhead and the resulting memory performance loss. In
addition, many parts of the chip that are not protected by
ECC, like caches, register files and other less commonly
known logic circuits, may also fall victim of soft errors.
This raises the question on whether soft error resilience can
be achieved with less cost from the application side [13].
Among HPC applications that could benefit from such fault
tolerance capability, dense linear algebra applications such
as the HPL benchmark for the TOP500 competition [22]
and the AORSA fusion energy simulation program [5],
are representative examples. These applications normally
involve solving a dense system of equations of the form
Ax = b on large scale HPC systems with matrix sizes of
A as large as 500,000. Soft errors that occur during such
long running applications produce incorrect solution with



no apparent reason. This lowers productivity by wasting
valuable time and energy in error tracing with little chance
of locating the error.

Until now, most of the soft error resilience techniques
for dense linear solvers are limited to small scale comput-
ing installations, such as on systolic arrays, assuming that
the error correcting code does not seriously affect system
performance and the encoding can be carried out with
exact arithmetic [12], [18]. Unfortunately, none of these
assumptions hold true for today’s Pflop/s supercomputer
systems. In previous work [9], we have demonstrated the
first attempt to take on the challenge of recovering the
solution from a dense linear system solver of Ax = b
with a single error occurrence in both L and U of the
LU factorization. This work further extends that effort into
multiple soft errors resilience as a more performance friendly
alternative to the complex hardware ECC. The proposed
algorithms consider the spatial and temporal distribution
of multiple errors. Spatial soft errors occur at different
time, whereas temporal soft errors manifest as simultaneous
multiple bit flips in disparate locations. Experiments on
the Kraken supercomputer from Cray at the University of
Tennessee verified our design for both the error detection and
correction capability as well as low performance complexity.
The proposed method may also be extended to other one-
sided factorizations for the recovery of linear system solution
and factorization matrices.

The rest of the paper is organized as follows. Section II
introduces an LU based dense linear solver on distributed
memory system. The impact of soft error on the linear solver
is then analyzed and the general work flow of the proposed
soft error resilience algorithm is shown in Section III. Sec-
tions IV and V develop the protection method for both the
left factor L and right factor U . Section VI proposes a block
protection method to reduce the computational complexity
of the non-blocking protection algorithm for U . Finally,
the recovery algorithm is discussed in Section VII and the
experimental results are shown in Section VIII. Related work
is described in Section IX while Section X concludes the
paper.

II. HIGH PERFORMANCE LINEAR SYSTEM SOLVER

For dense matrix A, the LU factorization produces PA =
LU (or P = ALU ), where P is a pivoting matrix, L and U
are unit lower triangular matrix and upper triangular matrix
respectively. LU factorization is popular for solving systems
of linear equations. With L and U , the linear system Ax = b
is solved by Ly = b and then Ux = y. ScaLAPACK
implements the right-looking version of LU with partial
pivoting based on a block algorithm and 2D block cyclic
data distribution. Without loss of generality, this distribution
is described with an N ×N matrix (or submatrix) A.

Split A into 2×2 blocks with block size NB. A11 has size
NB×NB, A12 is NB×(N−NB), A21 is (N−NB)×NB,

and A22 is (N −NB)× (N −NB), which is also known
as the “trailing matrix”. Decompose A as[

A11 A12

A21 A22

]
=

[
L11 0
L21 L22

] [
U11 U12

0 L22

]
and therefore

[
A11

A21

]
=

[
L11

L21

]
U11 → PDGETF2

A12 = L11U12 → PDTRSM
L22U22 = A22 − L21U12 → PDGEMM

(1)

This poses as one iteration (step) of the factorization, and
pivoting is applied on the left and right of the current panel.
The routines names in the ScaLAPACK LU are listed after
“→”. For description, we use Ū to represent the area of U12

modified by PDTRSM, and Ũ for A22 in PDGEMM.
Block algorithms offer good granularity to benefit from

high performance BLAS routines, while 2D block-cyclic
distribution ensures scalability with load balancing.

III. SOFT ERROR RESILIENCE FRAMEWORK

Since soft errors occur at times and locations unknown
to the host algorithm, different methodologies are required
to provide resilience to different part of the matrix. In
this section, the error propagation in LU factorization is
discussed and a general work flow of error detection and
recovery is given. Details of each steps are explained in
later sections.

A. Error Pattern in the Block LU Algorithm

During the process of LU factorization, the left factor L
and right factor U have different “dynamics” with regard
to the frequency of data change. For L, once a panel
is factorized, the resulted data stored under the diagonal
comes to the final form without undergoing any further
changes. Soft errors occurred in the factorized L area do
not propagate. This offers an opportunity to use traditional
diskless checkpointing method to protect these data. ABFT
cannot be applied to the panel factorization since otherwise
checksum rows for the panel could be moved into data
causing erroneous result. In LU, partial pivoting that swaps
rows of both L and U is normally adopted for better stability,
but this pivoting operation could break the static feature
of the L data as explained in [9], and therefore in this
work the pivoting to the factorized L is delayed to the
end of factorization. Since soft errors could strike at any
moment, checkpointing frequency as high as once per panel
factorization is necessary, but this also potentially leads to
high performance overhead and therefore should be used
economically. For example, even though the factorized Ū
(result of PDTRSM) also stays static once produced, it can
be protected by ABFT checksum and therefore causes less
overhead.
Ũ differs from L and Ū in that it undergoes changes

constantly from trailing matrix update. If soft errors alter



Figure 1. Example of error propagation in the U result of a 30 × 30
matrix

data within Ũ , and the erroneous data are carried along
with computation to update the Ũ , even a single-bit soft
error could propagate into large area of Ũ , let alone multiple
errors at different time of the factorization.

Figure 1 shows an example of error propagation in a small
matrix. Gaussian elimination is applied to a 30× 30 matrix.
To simplify the illustration, no pivoting nor block algorithm
is used. Each step of the Gaussian elimination zeros out
elements below the diagonal in one column. The color in
the figure is related to the difference between the correct
and incorrect upper triangular results. Higher brightness
means larger absolute difference in value and black means
no difference. During the elimination, Two soft errors are
injected at step 1 and 3 at location (6,13) and (12, 18) using
addition. Since both errors occur below the row 3, these
errors fall in the Ũ area of steps 1 to 3. The two white
dots at (6,13) and (12, 18) are the initial injection locations.
Starting from step 4, the trailing matrix update which is
GEMM(matrix-matrix multiple) picks up the erroneous data
for computation. As the iteration continues, the errors grow
downward into the trailing matrix (in yellow). When it
reaches the diagonal, the erroneous data starts to participate
in the vertical scaling of zeroing out values below diagonals,
and immediately the errors take over the entire trailing
matrix shown in red dots. Both of the two errors follow
the same propagation pattern. In the red lower right section,
propagated errors from both initial errors merge. Since the
propagation occurs silently, it is challenging to detect and
recover from such situation without any sign of error.

B. General Work Flow

We proposed an ABFT based method to protect LU based
linear solver. This method can tolerant multiple occurrences
of soft error in the whole area of factorization result and
restore the correct solution x to the linear system of equa-
tions Ax = b. The general work flow of error detection and
recovery is in Algorithm 1.

Algorithm 1 Fault Tolerant System Work Flow
Require: Ax = b; Generator matrix G; Check matrix H

Step 1: Checkpointing A by Ac =
[
A A×G

]
Step 2: Perform LU factorization LcUc = P × Ac in
block algorithm of block size nb with partial pivoting;
Panel factorization result in each step is checkpointed
immediately once produced
Step 3: Detect error occurrence by δ = ‖Uc ×H‖
if Found error(s) from δ > 0 then

Step 3.1: Locate initial error(s) using δ
Step 3.2: Detect and eliminate error(s) in L
Step 3.3: Calculate x̂ by x̂ = Û(\L̂\(P × b)), and
Step 3.4: Adjust x̂ to the correct solution x = x̂+ ∆

else
Step 4: Reach the correct solution x = U\(L\(P × b))

end if

IV. ENCODING FOR MULTIPLE ERRORS IN L

The first step of the work flow in Algorithm 1 is to
checkpoint the input matrix A with a generator matrix G.
For the single error case, it has been demonstrated in [9]
that generator matrix

G1 =

[
1 · · · 1
w1 · · · wn

]
and check matrix

H1 =

[
1 · · · 1 −1
w1 · · · wn −1

]
work for the entire area of factorization result. In this section,
we extend this idea to more than one errors cases for L, and
later sections further develop it for protecting U . Only the
encoding issue is discussed. For a scalable implementation,
we continues to use the local checkpointing method in [9]
where each process checkpoints its local participating blocks
in the current panel area.

For any column of the factorized panel [l1, l2, · · · , lk]T

in L, the objective of checkpointing is to allow recovery
from errors that occur to a certain number of items silently
altered in the column. First the errors are located, and then
the correct values are restored.

For any column of the factorized panel in L,
[l1, l2, · · · , lk]T , the vertical checkpointing produces the
following three checksums c1 to c3: l1 + l2 + · · ·+ lk = c1

w1l1 + w2l2 + · · ·+ wklk = c2
u1l1 + u2l2 + · · ·+ uklk = c3

(2)

Since all computation are carried out in floating point
number with a fixed number of digits for exponent and frac-
tion, the selection of wi and ui should avoid causing large
contrast between operands during computing that encourages



the accumulation of round-off errors. As an opposite exam-
ple, in [12], the use of Vandermonde matrix where wi = j
and ui = j2 incur fast increase of checkpointing weight
magnitude and causes notable precision loss from round-off
errors. When this method is used with large matrices, the
resulted error locations are ambiguously in between integers.

To work with round-off errors, we propose to choose wi

and ui from random numbers between 0 and 1. Suppose
soft errors change li and lj to l̂i and l̂j respectively, i < j.
During the error detection step (step 3.2) in Algorithm 1,
re-generating the checksum gives:

l1 + · · ·+ l̂i + · · ·+ l̂j + · · ·+ lk = ĉ1
w1l1 + · · ·+ wi l̂i + · · ·+ wj l̂j + · · ·+ wklk = ĉ2
u1l1 + · · ·+ ui l̂i + · · ·+ uj l̂j + · · ·+ uklk = ĉ3

(3)

Subtract (3) from (2), we have
ĉ1 − c1 = l̂i − li + l̂j − lj

ĉ2 − c2 = wi(l̂i − li) + wj(l̂j − lj)
ĉ3 − c3 = ui(l̂i − li) + uj(l̂j − lj)

(4)

This system of equations is defined as the “symptom equa-
tions”. The symptom equations establish the relationship
between soft errors and checksum, however it cannot be
solved “as is” since the six unknowns l̂i, l̂j , wi, wj and ui,
uj outnumber the available three equations.

To reduce the number of knowns, let ui = w2
i , i =

1, · · · , k. Combine the first and second equation in (4):

l̂j − lj =
1

wj − wi
((ĉ2 − c2)− wi(ĉ1 − c1)) (5)

And similarly combine the first and third equation:

l̂j − lj =
(ĉ3 − c3)− w2

i (ĉ1 − c1)

w2
j − w2

i

(6)

Eliminate l̂j − lj from (5) and (6) by connecting the right
hand sides, (4) can be eventually reduced to

(ĉ3 − c3)− (wi + wj)(ĉ2 − c2) + wiwj(ĉ1 − c1) = 0 (7)

This equation is, in this work, defined as the “check equa-
tion”. wi, wj can be determined by iterating through all
possibilities in w with O(n2) complexity because i < j,
and for each i, n− i pairs of wi wj are tested in (7).

This checkpointing method also applies to one-error re-
covery. Suppose an error occurs to li only, and (2) becomes

c̃1 − c1 = l̃i − li
c̃2 − c2 = wi(l̃i − li)
c̃3 − c3 = ui(l̃i − li)

(8)

The same method in [9] can be used to determine li from
the first two equations of (8).

Using (4), the error detection and recovery algorithm is
summarized in Algorithm 2. Note that this error protection
for L applies for each column of L.

Algorithm 2 Error detection and recovery in L

Require: Ã, error column l and generator row w of length
N , wi, wj ∈ w and wi 6= wj , i, j ∈ {1 · · ·N}
Calculate či = ĉi − ci, i = 1, 2, 3
if či == 0, i = 1, 2, 3 then

No error
else if č2/č1 == č3/č2 == wi then

One error in row i, column l of the output matrix
Recover by solving ĉ1 − c1 = l̂i − li

else
At least two errors in column l of the output matrix
Iterate all possible pairs wi, wj ∈ w
if (ĉ3− c3)− (wi +wj)(ĉ2− c2) +wiwj(ĉ1− c1) = 0
then

Two errors are in rows i and j, column l of the output
matrix
Recover by solving the overdetermined least square
equations in (4) with wi and wj as known constants
and x = l̂i − li and y = l̂j − lj as unknowns

else
More than two errors occurs

end if
end if

The error detection and recovery algorithm can be ex-
tended to t errors with complexity O(nt) to determine the
locations of errors. For example, when t = 3, symptom
equation 4 becomes

ĉ1 − c1 = l̂i − li + l̂j − lj + l̂k − lk
ĉ2 − c2 = wi(l̂i − li) + wj(l̂j − lj) + wk(l̂k − lk)

ĉ3 − c3 = ui(l̂i − li) + uj(l̂j − lj) + uk(l̂k − lk)

ĉ4 − c4 = hi(l̂i − li) + hj(l̂j − lj) + hk(l̂k − lk)

(9)

Here i, j and k correspond to the three errors’ locations.
Similar to the double-error case, we use ui = w2

i and hi =
w3

i , i = 1 · · · k. The symptom equations in (9) is simplified
to: 

C1 = x+ y + z
C2 = wix+ wjy + wkz
C3 = w2

i x+ w2
jy + w2

kz
C4 = w3

i x+ w3
jy + w3

kz

(10)

where Ci = ĉi− ci, i = 1 · · · 4, and x = l̂i− li, y = l̂j − lj ,
and z = l̂k − lk. The task is to determine wi, wj and wk.

Represent x and y as functions of z using the first two
equations from (10):{

x =
wjC1C2−(wj−wk)z

wj−wi

y = wiC1C2−(wi−wk)z
wi−wj

(11)

Replace x and y in the 3rd and 4th equations of (10)



with (11) and reduce z, the check equation is formed as:

C4(wi − wj) + w3
i (wjC1 − C2)− w3

j (wiC1 − C2)

(wi − wj)w3
k − (wi − wk)w3

j + (wj − wk)w3
i

=
C3(wi − wj) + w2

i (wjC1 − C2)− w2
j (wiC1 − C2)

(wi − wj)w2
k − (wi − wk)w2

j + (wj − wk)w2
i

(12)

By iterating through all possible pairs of wi, wj and wk

using the check equation, the three error locations can be
determined and the error value can be found accordingly.

V. ENCODING FOR MULTIPLE ERRORS IN Ū AND Ũ

Soft errors in Ū and Ũ differ from those in L because
they participate in the computation and therefore propagate
to large areas. The case with two errors are discussed in
detail and is then shown how to extend to t > 2 errors.

A. Soft Errors Modeling

For temporal multiple soft errors, Luk et al. has proposed
to cast soft error to an initial erroneous matrix to avoid
considering the timing of soft error [18]. Soft error is treated
as rank-one perturbation to the original matrix. Fitzpatrick
et al. applied this method to double error modeling for
Gaussian elimination [12]. We extended it to LU with partial
pivoting using the round-off error resilient encoding method
in section IV. This model is used in later sections for error
detection and solution recovery.

LU factorization is viewed as multiplying a set of tri-
angularization matrices from the left on the input matrix
A to get the final triangular form. Let A0 = A, and
At = Lt−1Pt−1At−1. Pt−1 is the partial pivoting matrix
at step t− 1.

At the end of the factorization, PA0 = LU , where U is
an upper triangular matrix.

Suppose two soft errors occur in the Ū or Ũ area at
locations (i1, j1) and (i2, j2) in step s1 and s2. In the most
general case, s1 6= s2, i1 6= i2 and j1 6= j2. Without loss of
generality, let s1 < s2.

At step s2, express the soft error as a perturbation to the
matrix at location (i2, j2):

Âs2 = As2 − δei2eTj2
As2 is the state of the matrix at step s2 before soft error
occurs, and Âs2 is outcome of As2 modified by a soft error
of magnitude δ at location (i2, j2). ei2 and ej2 are zero
column vectors with 1s at rows i2 and j2 respectively.

The error at step s2 is cast back as a perturbation to the
matrix at step s1,

Âs2 = As2 − δei2eTj2
= Ls2−1Ps2−1Ls2−2Ps2−2 · · ·Ls1Ps1Âs1 − δei2eTj2

∴ (Ls2−1Ps2−1Ls2−2Ps2−2 · · ·Ls1Ps1)−1Âs2

= Âs1 − (Ls2−1Ps2−1Ls2−2Ps2−2 · · ·Ls1Ps1)−1δei2e
T
i2

Let

f = (Ls2−1Ps2−1Ls2−2Ps2−2 · · ·Ls1Ps1)−1δei2 ,

(Ls2−1Ps2−1Ls2−2Ps2−2 · · ·Ls1Ps1)−1Âs2 = Âs̄2

Therefore,

Âs̄2 = Âs1 − feTj2 (13)

Continue casting (13) to the soft error at step s1:

Âs̄2 = Âs1 − feTj2
= As1 − λei1eTj1 − fe

T
j2

= Ls1−1Ps1−1Ls1−2Ps1−2 · · ·L0P0A0 − λei1eTj1 − fe
T
j2

Let
d = (Ls1−1Ps1−1Ls1−2Ps1−2 · · ·L0P0)−1λei1 ,

(Ls1−1Ps1−1Ls1−2Ps1−2 · · ·L0P0)−1Âs̄2 = Âs̄1

And notice that
(Ls1−1Ps1−1Ls1−2Ps1−2 · · ·L0P0)−1 ×
(Ls2−1Ps2−1Ls2−2Ps2−2 · · ·Ls2Ps2)−1

= (Ls2−1Ps2−1Ls2−2Ps2−2 · · ·L0P0)−1

Let
g = (Ls1−1Ps1−1Ls1−2Ps1−2 · · ·L0P0)−1 × f

= (Ls2−1Ps2−1Ls2−2Ps2−2 · · ·L0P0)−1δei2

And we have
Âs̄1 = A0 − deTj1 − ge

T
j2 (14)

Through this modeling process, the two soft errors are cast
back to the input matrix A0 as perturbation to the columns
of j1 and j2. For more than 2 errors, the same process can
be repeated and the general model for t errors is

Â0 = A0 −
t∑

j=1

djie
T
ji (15)

B. Errors Detection

With the model for soft errors, errors’ locations can be
determined for recovery. This model is for the case where
soft errors occur only in matrix A. In fact checksum and
the right hand sides b of Ax = b are equally susceptible
to soft errors, however they can be protected by duplication
and cross check, and the protection method for L in section
IV can be directly applied to protect right hand sides.

In [12], four columns of checksum are used to locate
two soft errors. Instead, we show that for N errors, N + 1
columns are enough for error detection and data recovery.

For the input matrix A ∈ R N×N , checksum is generated
before the factorization using generator matrix

G =

 eT

wT

(w2)T

 =

 1 · · · 1
w1 · · · wN

w2
1 · · · w2

N

 (16)



and A is encoded as

[A,A×GT ] = [A,Ae,Aw,Aw2]

Note that the square operation is elementwise.
LU factorization is applied with the three additional

checksum columns on the right as

P [A, Ae, Aw, Aw2] = L[U, c, v, s]

c, v, s ∈ R N×1 are checksum after factorization.
Due to soft errors, A becomes erroneous. As shown in

the error model, the LU factorization infected with errors is
equal to an error-free LU factorization to a different initial
(erroneous) matrix Â0. Using A to represent the original
correct initial matrix and Â for the erroneous initial matrix,
(V-B) becomes:

P̂ [Â, Ae, Aw, Aw2] = L̂[Û , ĉ, v̂, ŝ]

And using relationship between ĉ and Ae:

ĉ = L̂−1P̂Ae = L̂−1P̂ (Â+ deTj1 + geTj2)e

= L̂−1(L̂Û + P̂ deTj1 + P̂ geTj2)e

= Ûe+ L̂−1P̂ d+ L̂−1P̂ g

Therefore

ĉ− Ûe = L̂−1P̂ d+ L̂−1P̂ g

By the same token,

v̂ − Ûw = wj1L̂
−1P̂ d+ wj2L̂

−1P̂ g

ŝ− Ûw2 = w2
j1L̂
−1P̂ d+ w2

j2L̂
−1P̂ g

Let x = L̂−1P̂ d ∈ R N×1, and y = L̂−1P̂ g ∈ R N×1, we
have 

ĉ− Ûe = x+ y

v̂ − Ûw = wj1x+ wj2y

ŝ− Ûw2 = w2
j1
x+ w2

j2
y

This system of equations is the vector form of (4), and
similarly can be reduced to the check equation:

(ŝ− Ûw2)− (wj1 + wj2)(v̂ − Ûw) + (17)

wj1wj2(ĉ− Ûe) = 0

wj1 and wj2 can be determined by iterating through all
possible N × (N − 1) combinations in w for a pair that
makes (17) hold. As a result, the error columns j1 and j2
are determined. Later, using the error columns, solution of
Ax = b can be recovered.

For t soft errors, with the error model in (15), the check
equation is:

c0 − Ûw0 = w0
j1
x1 + · · ·+ w0

jt
xt

c1 − Ûw1 = w1
j1
x1 + · · ·+ w1

jt
xt

...
ct−1 − Ûwt−1 = wt−1

j1
x1 + · · ·+ wt−1

jt
xt

(18)

All powers in (18) are elementwise. This general case of
check equation in vector form for t errors exhibits the same
structure as in the scalar form. For t = 3 it has been
shown that check equation (12) can be used to determine
error locations except the scalar residues Ci is replaced with
vector residues ci − Ûwi.

For two errors, the complexity of locating wj1 and wj2 is
O(N3) because for each pair of wj1 and wj2 a vector norm
is calculated to test for zero vector in (17) which takes O(N)
operations. For t > 2, the complexity to determine the error
columns matches the complexity of LU factorization itself,
making this method computationally impractical for real use.
The same problem exists for L protection too when t > 3.
The next section provides solution to this issue.

Since errors in Ū and Ũ propagate, the solution to (18)
alone is insufficient for recovering the right factor U as only
the columns of the initial errors can be determined. However
for system of linear equations, by using Sherman-Morrison-
Woodbury formula, the solution can be recovered.

VI. COMPLEXITY REDUCTION

As the number of tolerable errors t increases, the com-
plexity of locating initial error columns grows exponentially.
To mitigate this issue and provide multiple error resilience
capability with manageable overhead, this section offers
complexity reduction methods for L and U .

A. Reduction for L

As shown in (12), to tolerate three errors in a column of
L of length N , O(N3) operations are required. Even though
the search can be embarrassingly parallelized since each
search path is independent of others, the overall complexity
is still high when large t is desired.

In the complexity O(N t+1), N is the factor that deter-
mines the range of search. By breaking the search range into
smaller segments and therefore reducing N , the complexity
can be decreased to an affordable level.

There exist many ways of segmenting N but since each
segment requires storage for checksum, the segmenting
method should minimize the overall storage requirement.
Use Nk to represent the segment size, the kth root of the
vector length is chosen in this work as the segment size
where k is integer and , k ≥ 1.

Split N into equal sized segments of length Nk = N
1
k .

Apply the encoding method in (2) to each of the N1− 1
k

segments. For each vector to tolerate t errors, t+1 checksum
items are required. Therefore for a vector of length N , the
total amount of space required to store checksums is

N1− 1
k × (t+ 1) (19)

And the storage overhead over that for the data vector has
the trend

lim
N→∞

(N1− 1
k × (t+ 1)× 1

N
) = lim

N→∞

t+ 1
k
√
N

= 0 (20)



0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

70	
  

80	
  

90	
  

100	
   150	
   200	
   250	
   300	
   350	
   400	
   450	
   500	
   550	
   600	
   650	
   700	
   750	
   800	
   850	
   900	
   950	
  1000	
  

St
or
ag
e	
  
ov
er
he

ad
	
  (c
he

ck
su
m
/d
at
a)
	
  

Vector	
  Size	
  

k=1	
  

k=2	
  

k=3	
  

Figure 2. Storage overhead (t = 3)

Based on the kth root segmenting method, the error
detection and recovery are performed following Algorithm
3 (Using t = 2 as an example). Since the expensive error

Algorithm 3 Error detection and recovery for one column
l of L
Require: Vector l of length N ; Segment length nb = k

√
N .

for i = 1→ N1− 1
k do

Using notation in (2),
In the ith segment with elements l1, · · · , lnb
if ‖(l1 + l2 + · · ·+ lnb)− c1‖ > 0 then

Locate errors using (7)
Fix errors by solving the symptom equations in (4)

end if
end for

locating procedure is now carried out within a smaller range,
the complexity of error detection is largely reduced. The
operation counts for Algorithm 3 includes N1− 1

K vector
norms of length k

√
N , and iterating in k

√
N for the correct

pair of wi and wj . The total overhead of locating t errors
in one segment is

O(N
1
k ×N1− 1

k ) +O((N
1
k )t)

= O(N) +O(N
t
k ) =

{
O(N) if t ≤ k
O(N

t
k ) if t > k

Note that the number of tolerable soft error t is for each
segment. Therefore for large total number of tolerable errors
per vector, each segment can select a smaller t, hence
reducing error locating overhead. For a fixed t, increasing
k has the same effect by reducing the range of search,
but comes at the cost of more extra storage according to
(19). To evaluate the effect that different k plays on storage
overhead and error locating time, a simulation is performed
for t = 3. Figure 2 and 3 show the result. In vector case,
t = 3 is the smallest “forbidden case” since the complexity
to locate errors is O(N3), already the same as that of LU

0.0001	
  

0.001	
  

0.01	
  

0.1	
  

1	
  

10	
  

100	
  

1000	
  

100	
   150	
   200	
   250	
   300	
   350	
   400	
   450	
   500	
   550	
   600	
   650	
   700	
   750	
   800	
   850	
   900	
   950	
  1000	
  

Er
ro
r	
  l
oc
a(

ng
	
  (
m
e	
  
(s
ec
)	
  

Vector	
  size	
  

k=1	
  
k=2	
  
k=3	
  

Figure 3. Error locating time (t = 3)

factorization. In this simulation, three errors are injected to
the farthest end of input vectors, making it the worst case
for error locating since all combinations of wi, wj and wk

have to be tried against (12) before a match can be found.
Compare the storage overhead and error locating time,

when k = 3, checksum uses the most (nearly 40%) extra
storage while finds error in less than 0.001 seconds, while
k = 2 only requires slightly over 10% extra storage but still
achieves over 104 speed up to locate errors at large sizes.
When k > 3 the storage overhead becomes unaffordable
with little improvement in error locating speed. Therefore
k = 2 is a fair choice compromising both storage overhead
and error locating speed, and the complexity when t = 3
and k = 2 is O(N

3
2 ) < O(N3).

B. Reduction for U
For Ū and Ũ , without any complexity management,

locating t soft errors requires O(N t+1) operations, one order
higher than the original complexity for L protection. To
reduce the complexity to an affordable level, the segmenting
method in section VI-A is extended to apply on blocked LU
algorithm for Ū and Ũ protection.

1) Block Encoding of Matrix: In blocked LU algorithm,
panel factorization itself is an LU factorization of a tall and
skinny panel, therefore the encoding technique in V can be
used to protect a panel or several panels too if the encoding
is performed accordingly.

Theorem 6.1: Block Encoding protects the trailing matrix
at the end of each iteration of LU factorization

Proof: Given a matrix A of size N ×N and generator
matrix G. Split A into equally sized block Nk×Nk and let
G have size Nk × (t+ 1), where t is the number of errors
tolerable by G. Matrix A is encoded as:

A11 A12 · · · A1n A11G · · · A1nG

A21 A22 · · · A2n A21G · · · A2nG
...

...
. . .

...
...

. . .
...

An1 An2 · · · Ann An1G · · · AnnG





Start by performing one iteration of LU factorization for the
first panel of block of size N × Nk, generating U11 and
Li,1 where 2 < i < n. Then perform triangular solving and
trailing matrix update making the encoded matrix into state:
L11\U11 U12 · · · U1n C11 · · · C1n

L21 Ã22 · · · Ã2n C21 · · · C2n

...
...

. . .
...

...
. . .

...
Ln1 Ãn2 · · · Ãnn Cn1 · · · Cnn

 (21)

Note that similar to ScaLAPACK storage format, the lower
triangular blocks Li,1, 2 < i < n are stored in the zeroed
out area in the first panel.

According to (1), we have
U1j = L−1

11 A1j

C1j = L−1
11 A1jG

Ãij = Aij − Li1 × U1j

Cij = Cij − Li1 × C1j

i = {2, · · · , n}
j = {1, · · · , n}

∴ C̃ij = AijG− Li1L
−1
11 AijG

= (Aij − Li1U1j)G = ÃijG

Similar method can be used in the rest iterations.
As an example, take a matrix A of 2× 2 blocks encoded

using the generator in (16):

Ac =

[
A11 A12 A11G A12G
A21 A22 A21G A22G

]
Carry out LU factorization to Ac and we have:

Ac =

[
L11 0
L21 L22

] [
U11 U12 C11 C12

0 U22 C21 C22

]
And C1 to C4 can be calculated as:{

C11 = U11G, C12 = U12G
C21 = ∅, C22 = U22G

(22)

This shows that after LU factorization, the added four
checksum blocks offer protection to the three data blocks
U11, U12 and U22 independently. Since G in (16) offers t
errors protection capability, the three data blocks in U each
can tolerate up to t soft errors.

In ScaLAPACK, matrix A is split into blocks of size
NB ×NB, therefore when k = 2, the encoding block size
Nk is N ×

√
N rounded to multiple of NB.

Error detection is performed on each
√
N ×

√
N blocks.

For U11, first ‖U11 ×G(:, 1)− C11(:, 1)‖ is checked and if
the norm is sufficiently large, the error detection procedure
in V-B is then activated for this

√
N ×

√
N block.

The complexity of performing blocked error detection and
locating includes the error check that is either full or upper
triangular matrix-vector multiplication and the error locating
operation within the block. Suppose Nk = N

1
k rounded to a

multiple of NB, and the generator matrix G has size Nk×t
for t error resilience capability. Since error checking is only
carried out in the upper triangular blocks of A, there are in

total 1 + 2 + · · ·+ N1− 1
k number of blocks. Therefore the

error checking complexity is

(1 + 2 + · · ·+N1− 1
k )×O((N

1
k )2)

=
N1− 1

k (N1− 1
k + 1)

2
×O(N

2
k )

And the error locating complexity is O(N
t
k ×N 1

k ). For
instance, when k = 2 and t = 2, the total overhead of error
detection and locating is
√
N(
√
N + 1)

2
×O(N) +O(N

3
2 ) = O(N2) < O(N3)

Therefore the overhead is affordable for LU factorization.
The total amount of extra storage for storing checksum

columns is

N ×N1− 1
k × (t+ 1)

And the storage overhead over that for the data vector has
the trend

lim
N→∞

(N ×N1− 1
k × (t+ 1)× 1

N2
) = lim

N→∞

t+ 1
k
√
N

= 0

Similar to the scalar case in VI-A, compromise has to be
made between t and k for number of error tolerated and
storage overhead for checksum. Following the evaluation in
Figure 3 and 2, t = k = 2 is chosen for the experiments in
this work.

2) Reduction of ABFT Extra Flops: The additional ABFT
checksum columns to protect U participate in the trailing
matrix update (L22U22 = A22 − L21U12 in (1)) of LU
factorization, and since trailing matrix update takes up over
90% of the floating point operations (FLOPS) of LU, extra
FLOPS from the additional checksum columns contributes
significant overhead even if no errors occur at all. Block
encoding in section VI-B1 helps remove the error locating
overhead, but in fact it also offers an insight to lower the
error-free overhead.

In (22), encoding is performed within blocks [A11, A21]T

and [A12, A22] separately. For block A11, the checksum
C11’s relationship with U11 by C11 = U11×G is established
when panel [A11, A21]T is factorized. After this point, C11

are not subject to any further change and C21 remains zero
even though further operations (triangular solve with C21 as
right hand sides) are applied. The invariance of C11 and C21

after the first panel factorization indicates that [C11, C21]T

can be excluded from any later operations.
Corollary 6.2: After each step of LU factorization, one

panel of checksum columns corresponding to the panel
being factorized in this step can be excluded from further
operation.

Proof: In (21), U12 does not participate in any further
operation because the next iteration starts from Ã22 to the



matrix	
   checksum	
  

Figure 4. Checksum layout example of a 5× 5 blocks matrix

bottom-right corner of the encoded matrix.

∵ Li1 = Ai1 × U−1
11 , i = [2, · · · , n]

∴ Ci1 = Ai1G− Li1C11 = Ai1G− Li1U11G

= Li1U11G− Li1U11G = Ø

Since C21 is used as the right hand sides of the trian-
gular solve in the next iteration, which produces Ø as
result too, after the trailing matrix update of the next
iteration, C21, · · · , Cn1 are all still Ø. Therefore the panel
[C11, · · · , Cn1] are not subject to further change nor does it
contribute to any factorization result, hence this panel can
be excluded. In the next iteration, the actively participating
data is
L11\U11 U12 · · · U1n C12 · · · C1n

L21 Ã22 · · · Ã2n C22 · · · C2n

...
...

. . .
...

...
. . .

...
Ln1 Ãn2 · · · Ãnn Cn2 · · · Cnn


By the same process, in each iteration the panel of checksum
columns that corresponds to the just factorized matrix can
be left out of further operation.

In order to benefit from the complexity reduction of
Corollary 6.2, the layout of checksum columns is reversed
horizontally. Figure 4 shows an example of such design.
The block size is the Nk. Each Nk×Nk block has a Nk× t
block of checksum. The checksum blocks are labelled with
the same color as the data they serve, for example the green
blocks on the right end protects the green data blocks on
the left end. This layout makes it easy to implement the
complexity reduction in ScaLAPACK PDGESV by simply
reducing the scope of PDTRSM and PDGEMM. When panel
factorization finishes the green data blocks, the green check-
sum blocks are no longer touched in coming iterations and
therefore the extra FLOPS of updating the green blocks are
eliminated. The same process continues with each checksum
panels till the end of the factorization.

VII. RECOVERY ALGORITHM

After soft errors are detected and located by their columns,
the correct solution to the system of equations Ax = b
can be recovered. [12] suggested using Sherman-Morrison-
Woodbury formula. Here we first review the recovery pro-
cedure and then analyze the computational complexity.

A. Correction for x

As shown in Algorithm 1, factorization result L̂ and Û
are used to compute the solution x̂ even if the factorization
has been subject to soft errors. The solution x is corrected
later from x̂ when errors are detected.

From Ax = b, we have

x = A−1b = A−1(P̂−1P̂ )b

= (P̂A)−1P̂ b (23)

Both P̂ and b are known, so (P̂A)−1 is needed for x.
From (14), the erroneous initial matrix Âs̄1 differs from

the real initial matrix A0s by column j1 and j2, therefore

P̂A− P̂ Â = (P̂ a·j1 − L̂Û·j1)eTj1 + (P̂ a·j2 − L̂Û·j2)eTj2

∴ P̂A = L̂Û + (P̂ a·j1 − L̂Û·j1)eTj1 + (P̂ a·j2 − L̂Û·j2)eTj2

= L̂Û + L̂(L̂−1P̂ a·j1 − Û·j1)eTj1 + L̂(L̂−1P̂ a·j2 − Û·j2)eTj2

Let tj1 = L̂−1P̂ a·j1 − Û·j1 , and tj2 = L̂−1P̂ a·j2 − Û·j2 ,

∴ P̂A = L̂Û(I + Û−1tj1e
T
j1 + Û−1tj2e

T
j2)

Let vj1 = Û−1tj1 and vj2 = Û−1tj2 ,

∴ P̂A = L̂Û(I + vj1e
T
j1 + vj2e

T
j2)

= L̂Û(I +
[
vj1 vj2

] [
ej1 ej2

]T
)

Let Ux =
[
vj1 vj2

]
, Vx =

[
ej1 ej2

]
),

∴ (P̂A)−1 = (I + UxV
T
x )−1(L̂Û)−1 (24)

Apply the Sherman-Morrison-Woodbury formula [31],
[32] to (24):

x = (P̂A)−1P̂ b

= (I − Ux(I + VxU
−1
x V T

x )(L̂Û)−1P̂ b

= (I − Ux(I + V T
x Ux)−1V T

x )x̂ (25)

Hence the correct solution x can be corrected from x̂.

B. Computation Complexity

At the center of computing the correct solution is

Ux(I + V T
x Ux)−1V T

x

For t errors, V T
x Ux produces a t× t matrix. t is normally

selected as small integers such as 2 or 3 for the protection
from flips in 2× or 3× 64 bits, hence the inverse of t × t
can be solved directly. For example, when t = 2[

a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]



0	
  

20	
  

40	
  

60	
  

80	
  

100	
  

120	
  

5000	
   10000	
   15000	
   20000	
   25000	
   30000	
   35000	
   40000	
   45000	
   50000	
  

O
ve
rh
ea
d(
%
)	
  

Matrix	
  Size	
  

Nk=N	
  
Nk=sqrt(N)	
  

Figure 5. Overhead comparison result on Kraken (16× 16 grid)

resulting in eight FLOPS. And since Vx is filled with 0s
except the two 1s at row j1 and j2 of column one and two
respectively, four FLOPS are needed to generate V T

x Ux and
I plus the result of V T

x Ux, each. Let Y = (I + V T
x Ux)−1,

similarly due to the sparsity of Vx, Y × V T
x also requires

four FLOPS. Let Z = Y × V T
x , compute Z × x̂ yields a

2× 1 matrix costing six FLOPS, and at last 4×N FLOPS
are paid to update the solution on x̂. In summary, O(N)
overhead is required to calculate (25).

Another part of operation overhead comes from com-
puting Ux, namely vj1 · · · vjt . Each of these vectors takes
O(N2) to compute by PDTRSM with Û , and also O(N2)
to generate the t right hand side vectors from tjk =
L̂−1P̂ a·jk − Û·jk , k ∈ [1 · · · t] for PDTRSM. Therefore, to
tolerate up to t soft errors, with t being a constant, O(N2)
is the computation complexity for the recovery of x from x̂.

VIII. PERFORMANCE EVALUATION

Soft errors in the left factor are static and the detection
and recovery in this area has been validated in [9], [10]
showing the scalability and small performance impact to the
host algorithm. The algorithms for multiple soft errors in the
right factor, on the other hand, have higher complexity and
are most effectively affected by the proposed encoding and
complexity reduction method. Therefore only the validation
for this part is shown.

The experiments are carried on a large scale distributed
memory system: the Kraken supercomputer by Cray Inc.
at the Oak Ridge National Lab. Kraken has 9,408 compute
nodes. Each node has two Istanbul 2.6 GHz six-core AMD
Opteron processors and 16 GB of memory. All the nodes are
Connected by the Cray SeaStar2+ interconnect. In the exper-
iments, two soft errors are injected into location (336, 361)
and (347, 359) at the beginning of the 2nd and 3rd panel
factorization, respectively. Data values are incremented with
random magnitudes to simulate the results of bit flips in

the memory slots that hold these data. The block size for
encoding is

√
N .

Figure 5 shows the effectiveness of the complexity reduc-
tion method for U with a 16× 16 process grid on Kraken,
and t = 2. The overhead is in Gflop/s and calculated as

FLOPSnon−FT − FLOPSFT

FLOPSnon−FT
%

When Nk = N , block encoding for soft errors in U is not
in effect. The whole matrix is encoded with a generator
matrix of size N × 3. In this case the overhead is close to
100% (the blue line), which means the error detection and
recovery combined take as much time as solving the linear
system of equation. This is consistent with the theoretical
complexity of O(N t+1) = O(N3). The red line, on the other
hand, is the result when Nk =

√
N . The overhead drops

quickly from a little less than 40% to 2%, which verifies that
block encoding largely reduces the error detection overhead.
The cost of this improvement is the extra space for storing
checksum which is roughly 1% of the input matrix for size
50,000.

Figure 6 shows the performance of different matrix sizes
on Kraken using 16,384 cores in a 128 × 128 grid. As
the matrix becomes larger, both the original ScaLAPACK
PDGESV and fault tolerant PDGESV with and without er-
rors exhibit close performance. At the largest size 1000,000,
the non-error case adds roughly 1.1% overhead, and with
error correction the overhead increases to 1.3%.

Figure 7 is the weak scalability experiment result where
both matrix size and grid dimension are doubled. Through-
out all the testing sizes from 64 to 16,384 cores, FT-
PDGESV declares around 1% overhead for both with and
without errors cases.

From the result in experiments, it can be confirmed that
the complexity of recovering the solution to Ax = b from
double soft errors in the right factor has been effectively
managed by the complexity reduction method, and soft er-
rors can be precisely detected and located with the presence
of round-off error. The fault tolerance functionalities can
recover the solution of the dense linear system with trivial
performance impact.

IX. RELATED WORK

In the field of fault tolerance for HPC systems,
checkpoint-restart (C/R) is the most commonly used method
[1]. The running state of the application is written to reliable
storage at certain intervals automatically by the message
passing middleware or at the request of the user application.
C/R requires the least user intervention but often has high
overhead from checkpointing through disk I/O.

To reduce the overhead, diskless checkpointing [26] turns
to system memory for checksum storage rather than disks.
It has seen good applications such as FFT [11] and matrix
factorizations [25].



100	
   200	
   300	
   400	
   500	
   600	
   700	
   800	
   900	
   1000	
  
ScaLAPACK	
  PDGESV	
   4.14	
   11.74	
   18.24	
   24.01	
   29.59	
   34.41	
   38.93	
   43.67	
   47.58	
   51.3	
  
FT-­‐PDGESV(no	
  error)	
   2.98	
   9.38	
   16.32	
   22.81	
   28.56	
   33.92	
   37.79	
   42.31	
   46.7	
   50.72	
  
FT-­‐PDGESV(2	
  errors	
  )	
   2.71	
   9.37	
   16.22	
   22.72	
   28.48	
   33.78	
   37.45	
   42.27	
   46.22	
   50.6	
  

0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  
Tfl

op
/s
	
  

Matrix	
  Size	
  (x1000)	
  

ScaLAPACK	
  PDGESV	
  
FT-­‐PDGESV(no	
  error)	
  
FT-­‐PDGESV(2	
  errors	
  )	
  

Figure 6. Result on Kraken with 16,384 (128× 128) cores

Both C/R and diskless checkpointing need the error
information for recovery, which is not available with soft
error. Algorithm based fault tolerance (ABFT) eliminates
the need for periodical checkpointing. This significantly
reduced checkpointing overhead during computing, and the
checksum by ABFT reflects the most current status of the
data and therefore offers clues for soft error detection and
recovery. ABFT was originally introduced to deal with silent
error in systolic arrays [2], [17]. Data is encoded before the
computation begins. Matrix algorithms are designed to work
on the encoded checksum along with matrix data, and the
correctness is checked after the matrix operation completes.

Using ABFT to mitigate single soft errors in dense matrix
factorization has been explored in [18], [19] Later, this
was extended to multiple errors [4], [12], [24] by adopting
methodology from finite-field based error correcting code
(Reed-Solomon [27], BCH [6], [16], etc.) where only the
right factor of factorization result is protected and compu-
tation is assumed to take place with exact arithmetics. In
reality, soft error could strike any area of matrix and modern
HPC systems use floating point operations which produce
round-off error. With the presence of round-off error, the
BCH code based error location determination method no
longer produces exact number as location, which renders
the result ambiguous and therefore useless.

Recently, iterative solvers were evaluated for soft error
vulnerability [7], [15], [21], signifying the recent awareness
of soft error for solving large scale problems. For dense
matrices, the effect of soft errors on linear algebra packages
like BLAS and LAPACK has also been studied [8], which
showed that their reliability can be improved by checking the
output of the routine, and the error patterns do not depend
on the problem size. Also, the possibility of predicting the
fault propagation is explored. For dense matrix factorization
based solver, method to mitigate single soft error has been

62500	
  (8x8)	
   125000	
  	
  (16x16)	
   250000	
  (32x32)	
   500000	
  (64x64)	
   1000000	
  (128x128)	
  
ScaLAPACK	
  PDGESV	
   0.4187	
   1.5925	
   5.5959	
   17.7025	
   51.295	
  
FT-­‐PDGESV(no	
  error)	
   0.4155	
   1.585	
   5.5731	
   17.5969	
   50.7183	
  
FT-­‐PDGESV(2	
  errors)	
   0.4086	
   1.5409	
   5.4418	
   17.0516	
   50.5969	
  

0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

Tfl
op

/s
	
  

Matrix	
  size	
  (process	
  grid)	
  

ScaLAPACK	
  PDGESV	
  

FT-­‐PDGESV(no	
  error)	
  

FT-­‐PDGESV(2	
  errors)	
  

Figure 7. Weak scalability result on Kraken

shown in [9] with implementation on large scale distributed
memory system, and the recovery of matrix factorization
was proposed in [10] using QR for demonstration.

X. CONCLUSION

Soft error resilient algorithm for LU factorization based
dense linear system solver is proposed in this work. Both
spatial and temporal multiple soft errors in the whole matrix
can be addressed with the existence of round-off errors from
floating point operation. Once errors are detected, the solu-
tion of Ax = b can be recovered with low overhead using the
complexity reduction technique. Experimental results on the
Kraken supercomputer confirm both the soft error mitigation
capability and the negligible performance overhead. The
proposed method can be extended to the protection of dense
matrix factorizations like LU and QR. Further research also
includes hardening the implementation for the case where
soft errors strike during the detection and recovery process.

REFERENCES

[1] Fault tolerance for extreme-scale computing workshop report,
2009.

[2] J. Abraham. Fault tolerance techniques for highly parallel
signal processing architectures. Highly parallel signal pro-
cessing architectures, pages 49–65, 1986.

[3] D. Abts, J. Thompson, and G. Schwoerer. Architectural
support for mitigating dram soft errors in large-scale super-
computers.

[4] C. Anfinson and F. Luk. A linear algebraic model of
algorithm-based fault tolerance. Computers, IEEE Transac-
tions on, 37(12):1599–1604, 1988.

[5] R. Barrett, T. Chan, E. D’Azevedo, E. Jaeger, K. Wong, and
R. Wong. Complex version of high performance computing
linpack benchmark (hpl). Concurrency and Computation:
Practice and Experience, 22(5):573–587, 2010.



[6] R. Bose and D. Ray-Chaudhuri. On a class of error correcting
binary group codes*. Information and control, 3(1):68–79,
1960.

[7] G. Bronevetsky and B. de Supinski. Soft error vulnerability of
iterative linear algebra methods. In Proceedings of the 22nd
annual international conference on Supercomputing, pages
155–164. ACM, 2008.

[8] G. Bronevetsky, B. de Supinski, and M. Schulz. A Foundation
for the Accurate Prediction of the Soft Error Vulnerability of
Scientific Applications. Technical report, Lawrence Liver-
more National Laboratory (LLNL), Livermore, CA, 2009.

[9] P. Du, P. Luszczek, and J. Dongarra. High performance dense
linear system solver with soft error resilience. In Proceedings
of the IEEE Cluster 2011. IEEE Computer Society Press,
2011.

[10] P. Du, P. Luszczek, S. Tomov, and J. Dongarra. Soft error
resilient QR factorization for hybrid system. Technical Report
252, LAPACK Working Note, July 2011.

[11] E. Elnozahy, D. Johnson, and W. Zwaenepoel. The perfor-
mance of consistent checkpointing. In Reliable Distributed
Systems, 1992. Proceedings., 11th Symposium on, pages 39–
47. IEEE, 1991.

[12] P. Fitzpatrick and C. Murphy. Fault tolerant matrix trian-
gularization and solution of linear systems of equations. In
Application Specific Array Processors, 1992. Proceedings of
the International Conference on, pages 469–480. IEEE, 1992.

[13] A. Gonzalez, S. Mahlke, S. Mukherjee, R. Sendag, D. Chiou,
and J. Yi. Reliability: Fallacy or reality? Micro, IEEE,
27(6):36–45, 2007.

[14] P. Hazucha and C. Svensson. Impact of cmos technology
scaling on the atmospheric neutron soft error rate. Nuclear
Science, IEEE Transactions on, 47(6):2586–2594, 2000.

[15] V. Heuveline, D. Lukarski, F. Oboril, M. Tahoori, and
J. Weiss. Numerical defect correction as an algorithm-based
fault tolerance technique for iterative solvers.

[16] A. Hocquenghem. Codes correcteurs derreurs. Chiffres,
2(2):147–56, 1959.

[17] K. Huang and J. Abraham. Algorithm-based fault tolerance
for matrix operations. Computers, IEEE Transactions on,
100(6):518–528, 1984.

[18] F. Luk and H. Park. An analysis of algorithm-based fault
tolerance techniques* 1. Journal of Parallel and Distributed
Computing, 5(2):172–184, 1988.

[19] F. Luk and H. Park. Fault-tolerant matrix triangulariza-
tions on systolic arrays. Computers, IEEE Transactions on,
37(11):1434–1438, 1988.

[20] D. Lyons. Sun screen, November 13 2000. Available at http:
//www.forbes.com/forbes/2000/1113/6613068a.html.

[21] K. Malkowski, P. Raghavan, and M. Kandemir. Analyzing
the soft error resilience of linear solvers on multicore mul-
tiprocessors. In Parallel & Distributed Processing (IPDPS),
2010 IEEE International Symposium on, pages 1–12. IEEE.

[22] H. W. Meuer, E. Strohmaier, J. J. Dongarra, and H. D. Simon.
TOP500 Supercomputer Sites, 36th edition, November 2010.
(The report can be downloaded from http://www.netlib.org/
benchmark/top500.html).

[23] S. Michalak, K. Harris, N. Hengartner, B. Takala, and
S. Wender. Predicting the number of fatal soft errors in los
alamos national laboratory’s asc q supercomputer. Device and
Materials Reliability, IEEE Transactions on, 5(3):329–335,
2005.

[24] H. Park. On multiple error detection in matrix triangular-
izations using checksum methods. Journal of Parallel and
Distributed Computing, 14(1):90–97, 1992.

[25] J. Plank, Y. Kim, and J. Dongarra. Algorithm-based diskless
checkpointing for fault-tolerant matrix operations. In ftcs,
page 0351. Published by the IEEE Computer Society, 1995.

[26] J. Plank, K. Li, and M. Puening. Diskless checkpointing.
Parallel and Distributed Systems, IEEE Transactions on,
9(10):972–986, 1998.

[27] I. Reed and G. Solomon. Polynomial codes over certain
finite fields. Journal of the Society for Industrial and Applied
Mathematics, 8(2):300–304, 1960.

[28] B. Schroeder, E. Pinheiro, and W. Weber. DRAM errors in the
wild: a large-scale field study. In Proceedings of the eleventh
international joint conference on Measurement and modeling
of computer systems, pages 193–204. ACM, 2009.

[29] A. Tipton, J. Pellish, R. Reed, R. Schrimpf, R. Weller,
M. Mendenhall, B. Sierawski, A. Sutton, R. Diestelhorst,
G. Espinel, et al. Multiple-bit upset in 130 nm cmos tech-
nology. Nuclear Science, IEEE Transactions on, 53(6):3259–
3264, 2006.

[30] M. White, J. Qin, and J. Bernstein. A study of scaling
effects on dram reliability. In Reliability and Maintainability
Symposium (RAMS), 2011 Proceedings-Annual, pages 1–6.
IEEE.

[31] M. Woodbury. The stability of out-input matrices. Chicago,
IL, 1949.

[32] M. Woodbury. Inverting modified matrices. Memorandum
report, 42:106, 1950.


