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We have discussed numerical issues concernedwiththe computationof invariant subspaces

andproposedtwomethods relatedto their computation. The methoddiscussed for swapping

diagonal blocks canreadilybe extendedtothe generalizedeigenvalue problem.
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Forexample, supposewegroup( �9; �8), �6, (�4; �3), where( �9; �8) and( �4; �3) arecomplex

pairs. We have

(x3; x4; x6; x8; x9) =

0BBBBBBBBBBBBBBBBBBBBBB@

� � � � �
� � � � �
1 0 0 0 0

0 1 0 0 0

0 0 � � �
0 0 1 0 0

0 0 0 � �
0 0 0 1 0

0 0 0 0 1

0 0 0 0 0
...

...
...

...
...

0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCA
and�nally

T (x3; x4; x6; x8; x9) =(x 3; x4; x6; x8; x9)

0BBBBB@
t33 t34 d36 d38 d39
t43 t44 d46 d48 d49

t66 d68 d69
t88 t89
t98 t99

1CCCCCA :

The elements named d 36 and d 46 wouldhave been determined when computing x 6 whenwe

reachedrows 3 and4; the elements d 68 andd 69 wouldhave beendeterminedwhencomputing

x8 and x 9 when we reached element 6; and the elements d 48, d49, d38, d39 wouldhave been

determinedwhenwe reachedelements 4and3.

If we havemade a gooddecision about our grouping, rows of the vectors will not be large,

thoughthis wouldnot be su�cient todecide that the groupingis complete. First, theremaybe

some� i whichshouldalsobe associatedwiththese �ve. Second, the vectorsx 3, x4, x6, x8, and

x9 might not be as linearly independent as wewouldlike.

Other approaches have been suggested for computing the invariant subspace directly, see

[6, 5, 4]. These aremost likelymore stable but more expensive tocompute.

5 Conclusions

The methods described inSection2has been improvedandgeneralizedbyNgandParlett [7 ]

andimplementedinLAPACK[1 ]. The LAPACKimplementationincludes tolerance checks and

scalingtoensurenumerical stability[2 ]. This is essentiallyachievedbynot swappingblocks that

are regardedas being tooclose.
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twoeigenvectors are close, providedthe earlier eigenvalues arewell separatedfromthem. Thus,

for 0B@ 3 1 2

0 1 1

0 �10 �10 1

1CA
0B@ x1 y2

1 0

0 1

1CA =

0B@ x1 y1
1 0

0 1

1CA 1 1

�10 �10 1

!
;

theeigenvalues are1�i10 �5; theyareclose, butwell separatedfromtheother eigenvalue� 1 =3.

The components x 1 andy 1 satisfy

3x 1 + 1 = x1 �10 �10y1
3y 1 +2 = x1 +y 1:

Toeight decimals, x 1 =�1=2andy 1 =�5=4. The vectors are extremelywell separatedand

T (x; y )�(x; y )

 
1 1

�10 �10 1

!
=O(10 �10):

If, whencomputing the twovectors corresponding toa complexpair, we encounter another

2� 2block, sayinposition i ; i +1, thencomponents i andi +1of x andy are determinedby

solving aset of four linear equations derivedbyequating rows i andi +1of (12). This will be

awell-conditioned4�4systemif � i, �i+1 are well separatedfrom� p, �p+1 .

Whenwewishtoassociate ( �p; �p+1 ) withsomeof the earlier eigenvalues (for whichwehave

already done the back substitution), the solution is quite clear. When we encounter a real

eigenvalue� i that is tobe associatedwiththem, we solve fromthat point on:

T (xp; xp+1 )=(x p; xp+1 )

 
tp;p tp;p+1
tp+1;p tp+1;p+1

!
+(x i)(d 1; d2)

andwe chosed 1 andd 2 sothat the i th component of x p andx p+1 are zero. This gives us apair

of equations for d 1 andd 2. If �p, �p+1 , and� i were the only three tobe associated, we would

have for the invariant 3-space

T (x i; xp; xp+1 ) =

0B@ ti;i d1 d2
0 tp;p tp;p+1
0 tp+1;p tp+1;p+1

1CA :

If during the back substitution for x p; xp+1 we encounter a pair � i; �i+1 which we wish to

associate withthem, we solve fromthat point on

T (xp; xp+1 ) =(x p; xp+1 )

 
tp;p tp;p+1
tp+1;p tp+1;p+1

!
+(x i; xi+1 )

 
di;i di;i+1
di+1;i di+1;i+1

!
;

where the four d's are chosensoas tomakecomponents i andi +1of x p andx p+1 equal tozero.
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diagonal elements to associate together. Wemayneedto associate eigenvalues that are byno

means pathologically close. If wehavedecidedwhicheigenvalues wewishtoassociate, thenwe

proceedexactlyas described.

So far in this section we have tacitly assumed that T is exactly triangular, but the QR

algorithmmaygive 2�2's onthe diagonal. If a2�2corresponds toapair of real eigenvalues,

we canget ridof it byanorthogonal transformation. If it corresponds toacomplexconjugate

pair, we cannot. Weassume thenthat all 2�2's correspondtocomplexconjugate eigenvalues.

We turnnowtothe case of 2�2blocks. If we associate onlyreal eigenvalues inaninvariant

subspace, therearenoreal newpoints. Wemerelyneedtoknowhowtoget the twocomponents

of anyof our vectors in the position of a 2�2block in the matrix. Clearlywe solve a 2�2

systemof equations for the twocomponents. The technique for getting the generators andthe

M is unchanged.

Now, consider obtaining a pair of vectors spanning the two-space associatedwith complex

conjugate pairs of eigenvalues, assumingfor themoment thatweare not associatingit withany

other eigenvalues. ForT , illustratedby

T =

0BBBBBBB@

� � � � � �
� � � � �
� � � �
� � �
� � �

�

1CCCCCCCA
;

wemerelysolve the equations

T (xp; xp+1 ) =(x p; xp+1 )

 
tp;p tp;p+1
tp+1;p tp+1;p+1

!
(12)

andtake

(xp; xp+1 ) =

0BBBBBBBBBB@

� �
� �
� �
1 0

0 1

0 0
...

...

1CCCCCCCCCCA
so that they are certainly independent. The two back substitutions for determining x p and

xp+1 are done as before. We determine x
(p)
i andx

(p+1)
i fromthe pair of equations obtainedby

equating rowi onbothsides of (12). This gives awell-separatedpair of vectors evenwhenthe
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or

(T ��I)(x; y ; z)=(x; y ; z )

0B@ � d f

� e

�

1CA =(x; y ; z )T�: (11)

x = (x1; x2; � � �; xp�1 ; 1; 0; 0; � � �0; 0; 0; � � �; 0)T

y = (y1; y2; � � �; yp�1 ; 0; yp+1 ; yp+2 ; � � �yq�1; 1; 0; � � �; 0)
T

z = (z1; z2; � � �; zp�1 ; 0; zp+1 ; zp+2 ; � � �zq�1 ; 0; zq+1 ; � � �; zr�1; 1; 0; � � �; 0)
T :

Clearly, x; y ; z are linearly independent, andtheyspanthe three-dimensional invariant sub-

spaceassociatedwith�. Theyarenotorthogonal, ingeneral, butwecoulddevelopanorthogonal

basis fromthis. Speci�cally, if

(x; y ; z )=(q1; q2; q3)

0B@ r11 r12 r13
r22 r23

r33

1CA � Q3R3

(T ��I ) Q3R3 =Q 3R3T�

or

(T ��I ) Q3 =Q 3[R3T�R
�1
3 ] =Q 3M:

Q3 is nowanorthogonal basis, andMhas � as atriple eigenvalue.

Aderogatorymatrixwill be revealedbyzerovalues amongd; e ; f . Thus if d =e =f =0, we

get three independent eigenvectors, and

T (x; y ; z )=(x; y ; z )

0B@ �

�

�

1CA :

If d =f =0ande 6=0, wehave

T (x; y ; z )=(x; y ; z )

0B@ �

� e

�

1CA :

Thenwehave alinear divisor ( ���) andone quadratic, ( ���) 2.

If all computations are exact andT comes fromexact computation, thenwe associate only

the eigenvalues that are trulyequal, andthe vectors obtainedinthewaywehavedescribedare

truly independent. Inpractice, however, T will rarelybe anexact matrix. Usually it will have

beenobtainedfromamatrixA by, say, theQRalgorithm. Evenif Ahaddefective eigenvalues,

T will usually not have any repeated diagonal elements. Areal problemis to decide which
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giving

0y p =0:

Againy p is arbitrary, andit is simplest to take y p tobe zero. There are no further problems,

andwehave

x = (x1; x2; � � �; xp�1 ; 1; 0; � � �0; 0; 0; � � �; 0)T

y = (y1; y2; � � �; yp�1 ; 0; yp+1 ; � � �yq�1 ; 1; 0; � � �; 0)
T

with( T ��I ) x =0, ( T ��I ) y =dx, or

T (x; y )=(x; y )

 
� d

�

!
:

Nowfor thethirdvector, weshall ignorethepossibilityof its beingderogatoryforthemoment.

Weattempt tosolve

(Trr ��I ) z =0

startingwithz r =1. Weproceedas usual until we reachz q. At this stagewehave

0z q +t q;q+1 zq+1 +� � �+t q;r�1 zr�1 +t q;r = 0; sothat

tq;q+1 zq+1 +� � �+t q;r�1 zr�1 +t q;r = e :

Hence, we solve

(T rr ��I )z =ey :

This does not a�ect the components alreadycomputedsince y i =0, ( i > q ).

For conveniencewe thentakez q =0. Wecontinue until reachingz p. We nowhave

0z p +t p;p+1 zp+1 +� � �+t p;r�1 zr�1 +t p;r =ey p

i.e.,

tp;p+1 zp+1 +� � �+t p;r�1 zr�1 +t p;r =f :

If f 6 =0, wewouldget z p =0. Toavoidthis situation, we solve

(Trr ��I ) z =ey +f x:

This does not a�ect previous components since x i =0 for i > p. The equation for z p then

becomes

0z p =0:

If we takez p =0andthendetermine z p�1 ; zp�2 ; � � �; z1, we thenhave

(T ��I )x = 0

(T ��I )y = dx

(T ��I )z = ey +f x
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It is simplest totakey p =0. Hence, whend =0, we obtain

x = (x1; x2; � � �; xp�1 ; 1; 0; � � �0; 0; � � �; 0)T

y = (y1; y2; � � �; yp�1 ; 0; yp+1 ; � � �yq�1 ; 1; � � �; 0)
T

These twovectors are obviously linearly independent. Hence we have twoeigenvectors corre-

sponding to�. Bothsatisfy(T ��I )x =0, and(T ��I )y =0.

If wehadtakeny p tobem insteadof zero, the solutionwouldhavebeeny +mx. This is �ne

since y +mx is alsoaneigenvector. We couldhavechoseny +mx orthogonal tox,

xH(y +mx)=0; m=(�x Hy =xHx):

That the matrixwill be derogatoryis muchless probable thanthat it will be defective. In

fact, even if A were exactly derogatory, T would probably not be, even if it still had exact

multiple eigenvalues.

Suppose nowd 6 =0. Toget y p, wewouldneedtosolve

0y p =�d:

Hencewecannot get asecondeigenvector. Notice that if � q were� p+� insteadof � p, wewould

be solving

� yp =�d

at this stage, giving anerroneous value of y p. Obviously, inthis case the �rst p components of

y wouldbe essentially �d
�
x +(vector that is not toolarge) . As � ! 0, the vector y tends toa

multiple of x witharelativelynegligible amount of interference. Inthe limit we�ndthat y and

x are inexactlythe samedirection; the last q �p components of y arenegligible comparedwith

the rest whenq is small, andarbitrarilyvanishaltogether inthe normalizedy .

We cannot �ndasecondeigenvector. We can, however, �ndavector y suchthat

(T �� qI )y =dx:

Hence the determination of y proceeds as before, fromy q to y p+1 , since x is zero in these

components. Wenowhave

0y p +t p;p+1 yp+1 +� � �+t p;q�1 yq�1 +t p;q =dx p = d; sothat

tp;p+1 yp+1 +� � �+t p;q�1 yq�1 +t p;q = d;

17



of the matrixT . We assume that the matrixT is derivedfromsome square general matrixA.

Suppose � k is the k th eigenvalue alongthe diagonal of T andT kk is the leadingk �k minor in

thematrixT .

If �k is asimple eigenvalue, we just solve

(T �� kI )x =0:

This gives x k+1 ; xk+2 ; � � �; xn =0. Next, we takex k =1andsolve

(Tkk �� kI )x =0

for x k�1 ; xk�2 ; � � �; x2; x1, sothe vector x will have the form

x =( x1; x2; � � �; xk�1 ; 1; 0; � � �; 0)T :

Nowsuppose� is amultiple eigenvalue, sayatriple, suchthat

� =� p =� q =� r; (p < q <r ):

Ingeneral, therewill be onlyoneeigenvector correspondingto� (unless T is derogatory). First,

we�ndthe eigenvector x correspondingto� p bysolving

(Tpp ��I ) x =0:

Next, we attempt to�ndy correspondingto� q bytakingy q =1andattemptingtosolve

(Tqq �� qI )y =0; i.e., (Tqq ��I ) y =0:

All is �ne until we reachthe determinationof y p. Wehave

0y p +t p;p+1 yp+1 +� � � +t p;q�1 yq�1 +t p;q =0:

If we let

tp;p+1 yp+1 +� � �+t p;q�1 yq�1 +t p;q =d;

then

0y p +d =0:

If d happens tobe zero, theny p is arbitrary.
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i.e.,

T

 
QTD�1

0

!
=

 
QTD�1

0

!
T22:

The columns of

 
QTD�1

0

!
are orthogonal, but not orthonormal. It looks as thoughwehave

anorthogonal basis of aninvariant subspace \belongingtoT 22," but weshouldnot reallyspeak

inthese terms.

Nevertheless, if we consider

T (� )=

0BBBB@
1 �1 0 0

1 �1 1 0

0 1

�� 2 0

1CCCCA =

 
T11 T12

T22(� )

!
; �1; �2 =0; � 3; �4 =�i � ;

thenthere is asubspaceof the form

 
X(� )

I

!
whichwecouldjusti�ablydescribe as \belonging

toT 22(� ),"provided� 6 =0. Theelements ofX( � )will tendto1 as � !0sothatanynormalized

versionof this invariant subspace will haveverysmall components inits lower 2�2matrix. In

fact, since T (� )

 
QTD�1

0

!
�T

 
QTD�1

0

!
, we observe that

T (� )

 
QTD�1

0

!
�

 
QTD�1

0

!
T22(� )

=T

 
QTD�1

0

!
�

 
QTD�1

0

!
T22(� )

=T

 
QTD�1

0

!
�

 
QTD�1

0

! 
T22 +

 
0 0

�� 2 0

!!

=

 
QTD�1

0

! 
0 0

�� 2 0

!
:

When� is small, this invariant subspace gives negligible residuals \correspondingtoT 22 (� )".

Canwe expect X( � ) tobe Q TD�1 apart froma scale factor? Unfortunatelywe cannot. In

fact, wehave

�2

 
X(� )

I

!
=

0BBB@
1 0

1 �1
�2 0

0 �2

1CCCA :

4 A Di rect ethod f or Computi ng Invari ant Subspaces

Inthis sectionweconsider the constructionof aninvariant subspace byadirect computationof

the vectors, rather thanbyapplying transformations tomovethe desiredeigenvalues tothe top
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inthe lower pair toagreewithone inthe upper pair. If, for convenience, wedenote the relevant

4�4matrixandthe invariant subspace by  
T11 T12
0 T22

!
and

 
X

I

!
;

respectively, whereT 11, T12, T22 andX are 2�2matrices, thenwehave

T11X+T 12 =XT 22:

It is well knownthat if T 11 andT 22 have noeigenvalue incommon, thenthis is anon-singular

system.

For the case whenT 11 andT 22 share aneigenvalue, consider the matrix

T =

 
T11 T12

T22

!
=

0BBBB@
1 �1 0 0

1 �1 1 0

0 1

0 0

1CCCCA �i =0; i =1; . . . ; 4:

If we try to �nd an invariant subspace of the form

 
X

I

!
, we fail; the elements of X turn

out tobe in�nite. There is no invariant subspace of dimensiontwoof the requiredform. (The

particular formchosenfor T 12 is not critical|though, of course, if we takeT 12 tobe null, such

aninvariant subspace does exist withX=0; T is thenderogatory.) However,

T

 
I

0

!
=

 
T11
0

!
=

 
I

0

!
T11;

andhence wenowhaveaninvariant subspace whichwe thinkof as belonging toT 11. But

QT 11Q
T =

 
0 �2
0 0

!
when Q=

1
p
2

 
1 1

�1 1

!
(arotation).

Hence

T

 
I

0

!
QT =

 
I

0

!
QT (QT 11Q

T );

i.e.,

T

 
QT

0

!
=

 
QT

0

! 
0 �2
0 0

!
�

 
QT

0

!
M:

But  
�1

2

1

!
M

 
�2

1

!
=

 
0 1
0 0

!
=T 22; i.e.,DMD �1 =T 22

andhence

T

 
QT

0

!
D�1 =

 
QT

0

!
D�1(DMD �1) =

 
QT

0

!
D�1T22;
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9 of [11 ]. This is a stable de
ation in that provided the eigenvector has negligible residuals

(independent of its absolute accuracy); the de
atedmatrix is exactlyorthogonallysimilar toa

matrixthat di�ers fromthe original byamatrixE, whichis at noise level relative toit. This is

trueevenwhenweinsert (withoutcomputation) thecomputedeigenvalue inthe leadingposition

andzero in the rest of the �rst column. Sucha result is the most we canreasonably expect,

thoughit falls somewhat short of the super-stabilityof the single past single case.

Wehavenaturallyconcentratedonthecasewhenweareattemptingtomoveareal eigenvalue

�3 past a complex conjugate pair eachof which is near � 3, because numerical stability there

needs serious investigation. Of course, when � 3 is \too close," we usually include all three

eigenvalues in the same space. However, whenwemove asingle eigenvalue � 3 past acomplex

conjugate pair � �i � such that � �� 3 is not small but � is small, that pair will be close,

andhence, ingeneral, verysensitive toperturbations. The 2�2blockwill itself be subjected

toa similarity transformation, andsmall rounding errors will make substantial changes in the

eigenvalues. Thus, if wehave thematrix  
: 431263 : 516325

�: 000003 : 431937

!

withthe ill-conditionedeigenvalues : 431600�i (: 001198), andsubject it toaplane rotationwith

angle �=4, the exact transformgives  
: 689761 : 258501

�: 257827 : 173439

!

with, of course, precisely the same eigenvalues. If roundingerrors produced 
: 689760 : 258501

�: 257827 : 173440

!

(i.e., changes of {1 and+1 in the last �gures of the (1,1) and(2,2) elements) the eigenvalues

become : 431600�i (: 001397), a substantial change inthe imaginaryparts. Yet inthis example

wehaveusedanorthogonal similaritytransformationthat is favorabletonumerical stability. In

general, the bypassedmatrixwill be subjectedtoanon-orthogonal similaritytransformation.

3.3 Double past doubl e

Finally, we turnto the problemof movingadouble past adouble. Since twopairs of complex

conjugateeigenvalues � 1�� 1 and� 2�i �2 are involved, it is not possible for just one eigenvalue

13



and2, and� 3 is not involved. Nevertheless, the transformedmatrixis0B@ 0 �1 0

0 0 1

0 0 0

1CA ;

andour \objective"(inappropriate thoughit is) has beenachieved.

Therelevanceof thisdiscussiontotheperformanceof ouralgorithmis thefollowing. Whenwe

attempt tobringasingle past adouble havingeigenvalues that are fairlyclose toit, the danger

arises that toomuchreliance is placedonthe e�ect achievedbythe verysmall thirdcomponent

inthe normalizedversionof theunique eigenvector correspondingto� 3. Inthe analogous single

past single case, the solutionwas determinedwith considerable accuracy. Here, however, the

solution is not nearly as simple. Moreover, when the transformationhas been computed, we

shall needtoapplyit tothe3�3matrixitself, as well as tothe remainder of those relevant rows

andcolumns, since the new2�2is not determinedinatrivial manner as were the elements in

the single past single case.

Clearlythe set of equationsmust be solvedwithsomecare. It is essential that thenormalized

versionof

(x1; x2; 1) i.e., (~x1; ~x2; ~x3)

shouldbe suchthat

(t11 �� 3)~x1 +t 12~x2 +t 13~x3 = �1
t21~x1 +t 22~x2 +t 23~x3 = �2

be true with� 1 and� 2, whichare at noise level relative tothe coe�cients onthe left-handside

(�1 and � 2 wouldbe zero with exact computation). The solution of the systembyGaussian

elimination with pivoting ensures just that; it produces x 1 and x 2 with errors that are so

correlatedthat the normalizedversions give residuals at noise level.

In place of Gaussian elimination with pivoting, we could use any stable direct method to

solve the system|e.g., Givens triangulation. However, if we were to solve the systembyan

unstable methodsuchas Cramer's rule instandard
oating-point arithmetic, wewouldobtain

acomputedx 1 andx 2 witherrors that are uncorrelated, andthe residual correspondingtothe

normalizedvector wouldnot thenbe at noise level.

Assuming, then, thatwehaveanormalizedeigenvectorgivingnegligible residuals, theprocess

is satisfactory. Indeed, it is merelythemethodof de
ationbyorthogonal similaritytransforma-

tions that is usedafter �ndinganeigenvector of ageneral matrix(see, e.g., Section20, Chapter

12



The matrix is in the required form, with� 3 in the leading position, zeros in the �rst column,

andC givenby

C=

 
0 1=

p
2

0 0

!
; (10)

whichis similar totheoriginal 2�2, but certainlynotorthogonallysimilar since it hasadi�erent

Euclideannorm. However, whenone considers howit has come about, it wouldbe perverse to

describe it as \bringing� 3 past the 2�2."

Suppose nowwepertubthe (2,1) entryof thematrixby� 2 togive0B@ 1 �1 0

1+� 2 �1 1

0 0 0

1CA ; �1; �2 =�i � ; �3 =0:

Thenthere is aneigenvector x correspondingto� 3 of the form

xT = (�1=� 2; �1=�2; 1)
= (�1=� 2)(1; 1; �� 2):

The normalized version of this vector has a very small third component. If we performour

algorithmexactly, it gives a (2,3) rotationwithanangle of order � 2 (the correspondingmatrix

is almost the identitymatrix) while the (1,2) rotationhas anangle of almost exactly�=4. The

resultingmatrixhas � 3 =0inthe leadingpositionandthe 2�2matrixC is almost exactlyas

in(10), but has small perturbations that make its eigenvalues�� .

The simplicityof this discussion is slightlyobscuredbythe use of plane rotations andtheir

introduction of irrationals. If we think in terms of nonorthogonal transformations, then to

convert

(1; 1; �� 2) to (1; 0; 0);

weperformasimilaritywiththe unit lower triangular matrix

M=

0B@ 1

�1 1

�2 0 1

1CA
andobtainas our transformedmatrix 0B@ 0 �1 0

0 0 1

0 �� 2 0

1CA :

The zero eigenvalue is brought to the topandthe eigenvalues �i � movedto the bottomin a

transparentlyobviousway. When� =0, the transformationoperates onlyonrowandcolumn1

11



thenT 3x =� 3x gives

(t11 �� 3)x1 +t 12x2 +t 13 = 0 (9)

t21x1 +(t 22 �� 3)x2 +t 23 = 0:

Thematrixof coe�cients bT of this systemof equations is

bT =

 
t11 �� 3 t12
t21 t22 �� 3

!
;

whichcanbesingular onlyif � 3 is aneigenvalueof theleading2�2matrixof T 3. This possibility

is speci�callyexcludedsince� 3 is real andthe2�2has complexeigenvalues (otherwisewewould

have triangularized it). When� 3 is verywell separated fromthe twocomplex eigenvalues, bT
will be verywell conditionedandx 1 andx 2 will not be large; hence, inthe normalizedversion

of x the thirdcomponent will not be small. If we compute the transformationandapply it to

the full 3�3matrix, the topelement will be � 3 tohighaccuracy, the twocomplexeigenvalues

will be accuratelypreserved, andthe (3,1) and(3,2) elements will be negligible. The computed

results will be veryclose tothose derivedbyexact arithmetic.

As � 3 approaches an eigenvalue of the 2�2 block, however (notice that this means that

the imaginary parts of the complex eigenvalues must be small since � 3 is real, andhence we

are reallymovingtowards a triple eigenvalue), the matrix bT will become progressivelymore ill

conditioned, andingeneral x 1 andx 2 will be larger. Inthe limiting situation, the eigenvector

will have azerothirdcomponent andwill be aneigenvector of the leading 2�2matrixrather

thanone corresponding to� 3 inthe 3�3matrix. ThematrixQ is merelyaplane rotationin

the (1,2) plane anddoes not a�ect � 3. It is di�cult toviewthis interms of bringing the (3,3)

element into the leading position! Indeed, we are merely recognizing the fact that the upper

2�2 nowhas a double real root, andwe are triangularizing it. Since the real roots that it

has are the same as � 3, however, the illusion of havingmoved� 3 into the leading position is

preserved. Thus, if

T3 =

0B@ 1 -1 0

1 -1 1

0 0 0

1CA ; �1 =� 2 =� 3 =0;

the onlyeigenvector is (1; 1; 0) T ; there is noeigenvector of the form(x; x; 1) T . For the rotation

inthe (1,2) plane � =�=4andthe transformedmatrixis0B@ 0 �2 1=
p
2

0 0 1=
p
2

0 0 0

1CA =

0B@ �3 x x

0

0

1CA :
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�1 =1�� , � 2 =1, � 1 =1+� , and� =10 �6. Aperturbationevenas small as 10 �12 in (3,1)

gives three eigenvalues of the form1+O
�
10 �4

�
. This problemis discussedinconsiderable detail

in [10 , 12 , 13 ]. Clearly, decidingwhicheigenvalues shouldbe groupedtogether cannot be done

onthe super�cial basis of \lookingat the separations."

The remarkable fact is that in the single past single case, the cos � and sin � are always

givenwithverylowrelative errors onacomputer withcorrect rounding or chopping. Onsuch

computers, � �� is always computedwithout rounding errors evenwhen severe cancellation

takes place. Thus, if  
: 832567 : 912863

0 : 832569

!
;

we have on a six-digit computer � �� =: 000002, and this has no error. (This will be true

evenwhen, e.g., � =: 999999and� =10 1(: 100001), that is, whenclose � and� have di�erent

exponents.) Six-�gure 
oating-point computationusing(3) gives

cos � =10 1(: 100000); sin � =10 �5(: 219091);

andbothof thesehaverelativeerrors ontheorder of machineprecision(10 �12) inspiteof severe

cancellationhavingtakenplace. Hence, if we actuallydothe computationof the 2�2matrix

(inpracticewewouldnot, wecouldmerelyinsert �, �, and� intheappropriate places), we�nd

that the coupled(1,1), (1,2), and(2,2) elements are correct toworkingaccuracy andthat the

(2,1) element is well belowthe negligible level. This is comfortingbecause weshall be applying

the transformationtothe rest of thematrix.

This is animpressivelygoodresult. Inmanysituations, not dissimilar fromthis, one would

have tobe satis�edwithamatrixwhichis exactlysimilar toaT withaperturbationof order

10 �6 inits elements andsuchamatrixcouldhaveeigenvalues agreeingwith� and� inonlythe

�rst three �gures, adisaster fromthe point of viewof e�ectinganinterchangeof � and�!

3. 2 Singl e past doubl e or doubl e past s i ngl e

When we turn to the other three cases, the situation is not so simple. Let us consider the

algorithmfor movingasingle past adouble. If wedenote the eigenvector in(5) by

x =(x 1; x2; 1)
T ;

9



3. 1 Si ngl e past s i ngl e

Whentakingasingle past a single, the formulae giving the components of the vectors are of a

particularlysimple form. For consistencywiththe other three cases, the eigenvector inequation

(1) shouldperhaps havebeenexpressedinthe form

(�= (� ��) ; 1)T :

This emphasizes the fact that when��� is verysmall comparedwith�, the �rst component of

the eigenvector is verylarge|i.e., inthe normalizedform, the secondcomponent is verysmall.

However, in this case � and� should almost certainly have been associated together, andwe

shouldnot be tryingtointerchange them!

This remark has more force thanmight be imagined when the full n �n quasi-triangular

matrixhas beenproducedfromageneral matrixA byanorthogonal similaritytransformation.

In this case the elements belowthe diagonal elements are inno sense true zeros. They are at

best negligible toworkingaccuracy.

As anexample, consider thematrix 
1�� 1

0 1+�

!
; �1 =1�� ; � 2 =1+� : (8)

Aperturbation�� 2 inthe (2,1) element givesmodi�edeigenvalues ��1 = ��2 =1, andthematrix

is defective. Suppose we are workingona10-digit computer and� =10 �6. Wemaynot think

of 1�10 �6 as undulyclose, but aperturbationof �10 �12 gives coincident eigenvalues, andthis

perturbation is well belowthe negligible level. If we think in terms of perturbations of order

10 �10 (i.e., computer noise level), all we cansayis that the true eigenvalues are (roughly) ina

diskcenteredon� =1andof radius 10 �5. Thusaperturbation+10 �10 in(2,1)gives eigenvalues

1�i (: 99) 1=210 �5, while aperturbationof�10 �10 gives eigenvalues 1+(1: 01) 1=210 �5. Toattempt

todistinguishbetween1+10 �6 and1�10 �6, andtointerchange them, makes nosense. They

havenoseparate identity, anddi�erent roundingerrors inthe triangularizationprogramgiving

T might well have ledtocomplexeigenvalues andhavea2�2blockrather thanthat in(8).

For several moderatelyclose eigenvalues, the remarkhas evengreater force. Thus, if

T =

0B@ 1�� 1 0

1 1

1+�

1CA ;

8



The same general principle maybe used. We compute generators of the invariant subspace

correspondingtoC inthe form

(x; y )=

0BBB@
� �
� �
1 0

0 1

1CCCA
bysolving

T4(x; y )=(x; y )C=(x; y )

 
c1 c2
c3 c4

!
: (7)

This gives us four equations for the four topcomponents in (x; y ). If we nowdetermine aQ

suchthat

Q(x; y )=

0BBB@
� �
0 �
0 0

0 0

1CCCA =

 
R

0

!
;

thenQT 4Q
T will be of the required form. SuchaQmaybe determinedas the product of two

Householder matrices or four Givens rotations.

Tosee how eC is relatedtoC, we observe that (7) implies that

QT 4Q
TQ(x; y )=Q(x; y )C;

giving

QT 4Q
T

 
R

0

!
=

 
R

0

!
C;

that is,

QT 4Q
T

 
I

0

!
=

 
I

0

!
(RCR �1):

This last equationstates that the �rst twocolumns of QTQ T are 
RCR �1

0

!
;

andhence eC =RCR �1. We shall not, of course, compute eC viaR!

umeri cal Consi derati ons

Ineachof the four cases discussedabovewedetermine either aneigenvector or twoindependent

generators of aninvariant subspace.
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2. 3 Doubl e past s i ngl e

Whenapair of complexconjugate eigenvalues is included inthe selectedgroup, the associated

2�2 diagonal block has to be moved into a leading position on the diagonal. On the way

up it will, ingeneral, pass bothsingle eigenvalues and2�2blocks withwhichit is not tobe

associated. We consider �rst taking a complexpair past a real eigenvalue. Inother words, in

terms of the relevant 3�3matrix, we require anorthogonal Q suchthat

QTQ T =

0B@ �1 x x

0

0

1CAQT =

0B@ x

x

0 0 �1

1CA :

Here theselectedeigenvalues arethoseof B, acomplexconjugatepair. Theeigenvalues of Cwill

be the samepair, but ingeneral C andBwill be di�erentmatrices andwill not be orthogonally

similar. If we think interms of moving� 1 tothe bottomwemayuse muchthe same principle

as before but nowweworkinterms of a left-handeigenvector. If

yTT3 =�y
T ; with yT =(1; y 2; y3);

wedetermine aQ suchthat

yTQ=(0; 0; x):

ThenQ T T3Qhas (0; 0; � 1) as its last row, andthe objective has beenachieved.

2. 4 Doubl e past doubl e

Finally, wemayneedtomoveaselected2�2matrixpast anunrelated2�2. If wedenote the

relevant 4�4matrixT 4 by0BBBBB@
b1 b2 x x

b3 b4 x x

c1 c2

c3 c4

1CCCCCA =

 
B X

0 C

!
;

thenwe require anorthogonal Q sothat

eT4 =QT 4Q
T =

 eC eX
0 eB

!

whereB andC have the same eigenvalues as eB and eC, respectively.

6



2. 2 Si ngl e past doubl e

In bringing a selected real eigenvalue to a leading positionwe shall, in general, need to pass

2�2blocks onthe diagonal correspondingtocomplexconjugate pairs. Hence wemust be able

to interchange a real eigenvalue with a real 2�2 blockbymeans of anorthogonal similarity

transformation. Obviously, thetransformationis determinedbytherelevant3�3diagonal block

which, for simplicity, wewrite as 0B@ � � b

� � c

0 0 �3

1CA �
0B@ b

c

0 0 �3

1CA : (4)

The sameprinciple maybe usedas inthe single past single case. If0B@ x1
x2
1

1CA (5)

denotes the eigenvector correspondingto� 3 thenwe require aQ suchthat

Q

0B@ x1
x2
1

1CA =

0B@ r

0

0

1CA
andthen, as before,

QTQ T =

0B@ �3 x x

0 x x

0 x x

1CA =

0B@ �3 x x

0

0

1CA : (6)

Note that the general principle we are using is the one commonly employedto establish the

Schur canonical formby induction. The 2�2matrixC in the bottomof (6) is not the same

as B in (4), but it will, of course, have the same eigenvalues. However, B andC will not, in

general, be orthogonallysimilar.

ThematrixQcanbe determinedas oneHouseholder matrixor as the product of twoGivens

rotations. Since � 3 is real andB has complexconjugate eigenvalues, B canhavenoeigenvalues

incommonwith� 3; hence, auniqueeigenvectorof theform(5)will exist. As thetwoeigenvalues

of B approachthe real � 3, their imaginaryparts become small, andtheeigenvector (5)will have

progressivelylarger components inthe �rst twopositions; i.e., the normalizedversionwill have

aprogressivelysmaller thirdcomponent.
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i.e., (�; ���)T is the eigenvector correspondingto�. If Q is chosensothat

Q

 
�

� ��

!
=

 
r

0

!
; (2)

then

Q

 
� �

0 �

!
QTQ

 
�

� ��

!
=�Q

 
�

���

!
;

andhence, using (2) anddividingbyr , we have

Q

 
� �

0 �

!
QT

 
1

0

!
=�

 
1

0

!
=

 
�

0

!
:

This states that the�rst columnof the transformed2�2is inthe requiredform. Hencewemay

write

Q

 
� �

0 �

!
QT =

 
�

0 


!
:

Since the trace andFrobenius normare invariant,

�+� =� +
 ; � 2 +� 2 +� 2 =� 2 +
 2 + 2;

giving


 =� and =��:

Arotationgiving (2) is de�nedby

cos � =�=r ; sin� =( � ��) =r ; r =+
h
�2 +( � ��) 2

i1=2
; (3)

andit will readilybe veri�edthat this gives =+�.

If theoriginal T has beendeterminedfromamatrixAbymeans of anorthogonal transforma-

tion, thematrixde�ningthis transformationmust be updatedbymultiplicationwiththe plane

rotations used in the reordering process. Note that in this method, wherever twoeigenvalues

thatwehavedecidedtoplace inthesamegroupare interchanged, aselectedeigenvalue ismoved

uponlypast eigenvalues withwhichit is not tobe associated. Moreover, havingdeterminedthe

rotation, we shall apply it to rows andcolumns p andp +1but not to the 2�2 itself. There

we shall merely interchange� and� anddonocomputation. Moving1�1blocks is discussed

in[8 ].
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Inthis paper, wepresent twoothermethods for constructingthe invariantsubspace. The�rst

involves applying transformations directly to interchange the eigenvalues. The secondmethod

involves direct computationof the vectors.

Interchangi ng i genval ues

The reordering of the eigenvalues can be achievedby successively interchanging neighboring

blocks inthe Schur factor T .

Suppose, inagivenT , onehas decidedtogroup� p; �q; �r together. Weknowthat thereexists

aunitarymatrix eQ suchthat eT = eQT eQH is still upper triangular but has � p; �q; �r inthe �rst

three positions. SuchaQcanbe readilydeterminedas the product of a�nite number of plane

rotations. Wemerelyneedanalgorithmwhichwill enable us to interchangeconsecutive blocks

onthe diagonal bymeans of aplane rotation. Repeatedapplicationof this algorithmcanthen

bringanyselectedset of eigenvalues intothe leadingpositions.

The algorithmwedescribe couldbe usedonacomplextriangular matrix. However, since we

are interestedhere inreal matrices, andsince complexconjugateeigenvalues will be represented

by2�2real diagonal blocks, wedescribe �rst the algorithmfor interchangingtwoconsecutive

real eigenvalues.

2. 1 Si ngl e past s i ngl e

Suppose � and� are inpositions p andp +1. Asimilarityrotationinplanes p andp +1will

alter only rows and columns p and p +1 andwill retain the triangular formapart fromthe

possible introductionof a non-zero inposition (p +1; p). The rotationcanbe chosenso as to

interchange � and� while retaining the zero in (p +1; p). Clearly the rotationis determined

solelybythe 2�2matrix, whichwedenote by  
� �

0 �

!
:

Wehave  
� �

0 �

! 
�

���

!
=�

 
�

� ��

!
(1)
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Let us denote the Schur factorizationof the real matrixA as

A=QTQ T ;

whereQ is orthogonal andT blockupper triangular, with1�1and2�2blocks onthediagonal,

the 2�2blocks corresponding tocomplexconjugate pairs of eigenvalues. Since

AQ=QT;

Q, of course, providesanorthonormal basis for the invariantsubspaceof thecomplete eigenvalue

spectrumof A. Numerically, Q is a muchmore satisfactory basis than the eigenvectors and

principal vectors of A, whichmaywell be almost linearlydependent. If wepartitionQandT as

Q=( Q1 Q2) ; T =

 
T11 T12
0 T22

!
then

AQ 1 =Q 1T11;

andQ 1 gives anorthonormal basis for the invariant subspace of A corresponding to the eigen-

values contained in T 11. It is therefore a common requirement to reorder T so that T 11 has

eigenvalues with some desiredproperty. For example, wemight require T 11 to containall the

stable eigenvalues.

Unfortunately, unless weknowthe requiredgroupof eigenvalues inadvance andaccordingly

modify the standard shift strategy of the QR algorithm, T 11 will not normally contain the

required eigenvalues on completion of the computation of the Schur factorization. We must

therefore performsome further computationtoreorder the eigenvalues. Indeedinmost applica-

tions weperformaninitial Schur factorizationinorder tocompute the eigenvalues, whichthen

gives us informationonthe requiredgrouping.

An example of the application is the computation of matrix functions via the blockdiago-

nal formof amatrix. In computing the blockdiagonal formit is essential to include \close"

eigenvalues inthe samediagonal block[3 ].

To this end, Stewart [9 ] has described an iterative algorithmfor interchanging consecutive

1�1 and2�2blocks of the blocktriangular matrix. The �rst block is usedtodetermine an

implicitQRshift. AnarbitraryQRstepis performedonbothblocks toeliminate theuncoupling

betweenthem. Thenasequence of QRsteps usingthe previouslydeterminedshift is performed

onbothblocks. Except inill-conditionedcases, the twoblocks will interchange their positions.
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are applied to interchange neighboringblocks. The blocks canbe either one by

one or twobytwo. The secondmethod involves the constructionof an invari-

ant subspace by a direct computation of the vectors, rather thanby applying

transformations tomovethe desiredeigenvalues tothe topof thematrix.

Introducti on

Inthis paper we consider the computationof the invariant subspace of amatrixcorresponding

tosome givengroupof eigenvalues.
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