
Autotuning GEMMs for Fermi ∗

Jakub Kurzak
Electrical Engineering
and Computer Science
University of Tennessee

Knoxville, TN, USA
kurzak@eecs.utk.edu

Stanimire Tomov
Electrical Engineering
and Computer Science
University of Tennessee

Knoxville, TN, USA
tomov@eecs.utk.edu

Jack Dongarra
Electrical Engineering
and Computer Science
University of Tennessee

Knoxville, TN, USA
dongarra@eecs.utk.edu

ABSTRACT
In recent years, the use of graphics chips has been recognized
as a viable way of accelerating scientific and engineering ap-
plications, even more so since the introduction of the Fermi
architecture by NVIDIA, with features essential to numeri-
cal computing, such as fast double precision arithmetic and
memory protected with error correction codes. Being the
crucial component of numerical software packages, such as
LAPACK and ScaLAPACK, the general dense matrix mul-
tiplication routine is one of the more important workloads
to be implemented on these devices. This article presents
a methodology for producing matrix multiplication kernels
tuned for a specific architecture, through a canonical process
of heuristic autotuning, based on generation of multiple code
variants and selecting the fastest ones through benchmark-
ing. The key contribution of this work is in the method
for generating the search space; specifically, pruning it to
a manageable size. Performance numbers match or exceed
other available implementations.

Categories and Subject Descriptors
G.4 [MATHEMATICAL SOFTWARE]: Parallel and
vector implementations; F.2.1 [Numerical Algorithms
and Problems]: Computations on matrices; C.1.2
[Multiple Data Stream Architectures (Multipro-
cessors)]: Single-instruction-stream, multiple-data-stream
processors (SIMD)

General Terms
Performance

Keywords
automatic generation, tuning, matrix multiplication, accel-
erator, GPU, CUDA, BLAS

∗This work was supported by the U. S. Department of En-
ergy, the National Science Foundation, NVIDIA and Mi-
crosoft.

1. INTRODUCTION
Graphics Processing Units (GPUs) maintain a strong lead
over more traditional multicore CPUs in peak floating-point
performance and memory bandwidth [27], which also trans-
lates to higher power efficiency. Hybrid, accelerator-based
systems, have also been identified as likely candidates to
deliver Exascale performance in the future [11, 19, 35]. To-
day, many key scientific and engineering applications rely
on GPUs to deliver performance in excess of what standard
multicores are capable of [20].

Due to its computational intensity and algorithmic regu-
larity, dense linear algebra is a perfect candidate for GPU
acceleration and matrix multiplication is the canonical GPU
programming example [27]. Although a large body of sci-
entific and engineering workloads deal with sparse systems,
such as those produced by unstructured irregular meshes of
finite element simulations, dense systems are also used in
these key areas: nuclear fusion, material science and radar
cross-section, just to name a few.

The hardware target of this article are the NVIDIA GF100
(Fermi) architecture GPUs [28, 29, 31], the first line
of GPUs with essential high performance computing fea-
tures, such as high performance in double precision arith-
metic and memory with Error Correction Code (ECC)
protection. NVIDIA’s Compute Unified Device Architec-
ture (CUDA) [27] is the programming environment of choice
here. The OpenCL standard [18] could be used as an al-
ternative, but currently its available implementations are
known to lag behind CUDA in performance [13].

The workload implemented here is general matrix multipli-
cation, referred to as GEMM, following the Basic Linear
Algebra Subroutines (BLAS) standard [5]. The GEMM rou-
tine is a building block of software packages such as LA-
PACK [3] and ScaLAPACK [7], absolutely essential to their
performance, and can also be used as the basis for imple-
menting all other Level-3 BLAS routines [17].

Not without significance is the fact that GEMM is also crit-
ical to the performance of the High Performance Linpack
Benchmark (HPL) [12], used to rate the systems on the
Top500 list of the fastest (disclosed) computers in the world.
Currently, the top spot is occupied by the Tianhe-1A super-
computer in China, a hybrid system based on Intel Xeon
processors and NVIDIA Fermi GPUs.

This work addresses the development of BLAS-compliant
GEMM, with support for all parameters specified by the
standard. Different variants of GEMM, with respect to
the floating-point precision (single/double) and the type
of arithmetic (real/complex), are referred to by their
BLAS names (SGEMM, DGEMM, CGEMM, ZGEMM).
Column-major matrix layout is used here, following the
“legacy” BLAS interface and the convention of LAPACK
and ScaLAPACK,

The software is being developed as a component of
the Matrix Algebra for GPUs and Multicore Architec-
tures (MAGMA) project [2]. The system is further referred
to as BACUGen, standing for A×B (BA) CUDA Generator,
with intentional similarity to the popular Bakugan Battle
Brawlers anime television series.

2. MOTIVATION
Initially, this work was motivated by the observation that,
while CUBLAS and MAGMA single precision GEMM
achieved much higher performance in complex arithmetic
than in real arithmetic, double precision did not. The higher
performance was due to the higher computational inten-
sity of complex arithmetic and should have manifested it-
self equally in both single precision and double precision.
Since this was not the case, a clear performance improve-
ment opportunity presented itself. At the same time, there
are important applications where complex double precision
GEMM is essential [4].

The main motivation for this work, however, was the deliv-
ery of optimized GEMM GPU kernels, produced automat-
ically through a robust process of code generation and au-
totuning. Until now, the GEMM kernels in MAGMA were
produced through exhaustive experimentation, rather than
a systematic autotuning process. With the new Kepler and
Maxwell architectures planned for 2011 and 2013 respec-
tively, as disclosed in NVIDIA’s roadmap, a much more sus-
tainable process was in high demand.

It is of big significance that the high level abstraction of
CUDA maps very well to the hardware architectures of
NVIDIA GPUs. It is remarkable that programmers never
resorted to lower level abstractions, such as the Paral-
lel Thread Execution (PTX) [30] (the pseudo-assembly of
CUDA), for the development of fast GEMM kernels for
NVIDIA cards. At the same time, CUDA GEMM codes
proved not to be “performance-portable”, as was shown by
efforts of porting kernels for the GT200 (Tesla) architecture
to the GF100 (Fermi) architecture. This combination of
factors makes NVIDIA GPUs ideal targets for autotuning
efforts.

3. RELATED WORK
The list of prominent autotuning software projects includes
packages such as: Automatically Tuned Linear Algebra Soft-
ware (ATLAS) [38], and its predecessor Portable High Per-
formance ANSI C (PHiPAC) [6], Optimized Sparse Ker-
nel Interface (OSKI) [37], Fastest Fourier Transform in the
West (FFTW) [15] and SPIRAL [33] (code generation for
digital signal processing transforms). All these projects ad-
dress autotuning for standard processors (not accelerators).

Early work on tuning GEMMs in CUDA for NVIDIA GPUs
targeted the previous generation of GPUs, of the GT200
architecture, such as the popular GTX 280. Pioneering
work was done by Volkov and Demmel [36]. Similar ef-
forts followed in the MAGMA project [21]. The introduction
of the NVIDIA Fermi architecture triggered the develop-
ment of MAGMA GEMM kernels tuned for that architec-
ture [24, 25]. Although tuning was an important part of this
work, it was accomplished through exhaustive experimenta-
tion rather than a systematic autotuning effort.

One important development in MAGMA was the implemen-
tation of complex GEMM routines by expressing the com-
plex matrix multiplication through three real matrix multi-
plications and five real matrix additions [14], which results
in up to 25 % decrease in the number of floating-point op-
erations [25]. However, Higham observes that this method
has a fundamental numerical weakness, since the “imaginary
part may be contaminated by relative errors much larger
than those for conventional multiplication” [16]. Although,
Higham also notes that “if the errors are measured relative
to ‖A‖ ‖B ‖ [...], then they are just as small as for conven-
tional multiplication” [16]. The method simply employs the
SGEMM and DGEMM routines for an implementation of
the CGEMM and ZGEMM routines with a reduced number
of floating-point operations and different numerical proper-
ties. Since it does not involve implementation of any new
kernels, it will not be further discussed here.

Recently, Nakasato presented GEMM kernels for the Cy-
press GPU from ATI [23]. Single and double precision A×B
and AT ×B kernels were developed in real arithmetic (using
row-major layout). An astounding performance of 2 Tflop/s
in single precision and 470 Gflop/s in double precision was
shown. The kernels were coded using AMD Intermediate
Language (IL), an assembly-like language for the AMD IL
virtual instruction set architecture [1].

An important approach to the development of optimized
GEMM routines is code generation through compiler trans-
formations. Rudy et al. [34] presented the CUDA-CHiLL
source-to-source compiler transformation and code genera-
tion framework, which transforms sequential loop nests to
high-performance GPU code, based on a polyhedral trans-
formation system CHiLL [8]. Autotuning was used to ex-
plore a small parameter space (tiling in multiples of 16, up
to 128). Fermi SGEMM A × B kernel was produced with
performance slightly lower than CUBLAS, due to not using
texture caches (which has been remedied since then, accord-
ing to the authors).

Cui et al. [10] presented a similar system built using the
Open64 compiler [32] and the WRaP-IT/URUK/URGenT
polyhedral toolchain [9]. Here the authors started with op-
timized MAGMA/CUBLAS Fermi SGEMM kernels (A×B,
AT × B, A × BT , AT × BT) and used automatic code
transformations to extrapolate the SGEMM performance to
the other three Level 3 BLAS kernels (STRMM, STRSM,
SSYMM) with all combinations of inputs covered (left/right,
lower/upper). Indeed, performance very close to SGEMM
was reported for all the other kernels, greatly outperforming
CUBLAS.

4. ORIGINAL CONTRIBUTION
One contribution of this work is the introduction of a uni-
versal code stencil for producing all variants of the GEMM
routine included in the BLAS standard. This universal code
supports: real and complex arithmetic, single and double
precision, transposed, non-transposed and conjugate trans-
posed layout of input matrices. The code also supports
memory access with and without using texture caches, with
texture reads implemented as both 1D texture reads and 2D
texture reads.

The main contribution of this work is in the search space
generator, specifically in the mechanism for pruning the
search space. Especially important is the fact that the size
of the search space can easily be controlled and adjusted to
a smaller size for quicker searches or to a bigger size for more
exhaustive searches. At the same time, the parameters con-
trolling the size of the search space are intuitive to anyone
with basic understanding of the Single Instruction Multiple
Threads (SIMT) GPU programming model.

Finally, the desired product of this work are GEMM kernels
for the NVIDIA Fermi architecture that match or exceed
existing CUBLAS kernels and previous MAGMA kernels in
all cases, with significant improvement in the case of the
complex, double precision kernel (ZGEMM).

5. SOLUTION
5.1 Hardware Target
A number of articles are available with the details of the
Fermi architecture [28, 29, 31] Here, the most important
differences from the previous generation of NVIDIA GPUs
are briefly discussed. The crucial new features include: fast
double precision, L2 and L1 caches and ECC protection.

The most important feature, from the standpoint of numer-
ical computing, is double precision performance on a par
with single precision performance. Double precision oper-
ations consume twice the storage of single precision opera-
tions (two 32-bit registers per element) and execute at half
the throughput of single precision operations (16 operations
per multiprocessor per cycle), which is the desired behav-
ior. The Fused Multiply-Add (FMA) operation is available,
which offers extra precision over the Multiply-Add (MAD)
operation. Also, the floating-point hardware supports de-
normalized numbers and all four IEEE 754-2008 rounding
modes (nearest, zero, positive infinity, negative infinity).

Fermi contains a 768 KB L2 cache shared by all multiproces-
sors and a 64 KB L1 cache per multiprocessor. The L1 can
be configured as 16 KB of (hardware-controlled) cache and
48 KB of (software-controlled) shared memory or the other
way around. Shared memory is more useful with more regu-
lar (more predictable) memory access patterns, while hard-
ware cache is more useful with less regular (less predictable)
access patterns. Since matrix multiplication is a very regu-
lar and predictable workload, the first option is always used
in this work, with 48 KB of shared memory and 16 KB of
L1 cache. The L1 cache still plays a vital role in achiev-
ing performance by caching register spill, which would go to
DRAM without the cache hierarchy.

Finally, Fermi is the first GPU to support ECC protection
against bit flips caused by cosmic rays [26]. Fermi’s register
files, shared memory, L1 cache, L2 cache and DRAM are
all ECC protected. One exception to the rule is Fermi’s
texture cache. The texture cache has two parts: a 12 KB
L1 cache in each SM and a larger L2 cache. While the
L2 is ECC protected, the L1 is not. However, since the
L1 is quite small, and the the lifetime of data in the L1 is
very low, silent errors are very unlikely in all but the largest
installations. Also, the issue is expected to be fixed in the
Kepler architecture [22].

5.2 Universal GEMM Stencil
5.2.1 General Structure

A GPU is a data-parallel device with the barrier being the
only mechanism for synchronization. Therefore, paralleliza-
tion relies on identifying independent work. Parallelization
at the device level is shown on Figure 1. Matrix mul-
tiplication of the general form C = C + A × B of size
Mdev × Ndev × Kdev is parallelized by spanning matrix C
with a two dimensional grid of tiles. Each tile is processed
by one thread block. Each thread block passes through a
Mblk ×Kdev stripe of A and a Kdev ×Nblk stripe of B and
produces the final result for a Mblk ×Nblk tile of C. In one
iteration of the outermost loop a thread block produces the
partial result of a Mblk ×Nblk ×Kblk matrix multiplication.
(While Kdev is the loop boundary for the outermost loop,
Kblk is the tiling factor for that loop.) The tile of C is read
from the device memory and kept in registers throughout
the duration of thread block’s operation. Mblk×Kblk stripe
of A and Kblk×Nblk stripe of B are placed in shared memory
for each iteration of the outermost loop.

Mdev

Ndev

Kdev

Kdev

NblkKblk

Kblk

Mblk

A

B

C

Figure 1: GEMM at the device level.

Figure 2 shows how a Mblk × Nblk × Kblk partial result is
produced in one iteration of the outermost loop of the thread
block’s code. The figure shows parallelization at the thread
level. The light shade shows the shape of the thread grid and
the dark shade shows the elements involved in the operations
of a single thread.

Figure 3 shows the operation from the perspective of one
thread. Each thread streams in elements of A and B from
the shared memory to the registers and accumulates the
matrix multiplication results in C, residing in registers. This
is the ideal situation. Whether it actually is the case depends
on the actual tiling factors at each level. Whenever the
compiler runs out of registers, register spills to memory will
occur. (Which on Fermi is mitigated to some extent by the
existence of the L1 cache.)

Nblk

Mblk

Kblk

Kblk blockDim.y

bl
oc

kD
im

.x

A

B

C

Figure 2: GEMM at the block level.

Two comments about the use of shared memory are in place
here. One important detail is that the shared memory is
allocated in a skewed fashion, i.e. an array of size M ×
N is declared as M × N + 1, which is the usual “trick” to
eliminate bank conflicts whether a warp accesses the matrix
by rows or by columns. Skewing is required for matrix A if
it is transposed and always required for matrix B. Here, for
simplicity, skewing is always applied to both matrices.

Kblk

Kblk

Mthr = Mblk / blockDim.x

Nthr

Mthr

Nthr = Nblk / blockDim.y

A

B

C

Figure 3: GEMM at the thread level.

Another comment concerns the use of the shared memory
in general. For some GPU architectures the shared mem-
ory can be bypassed altogether, for one of the input ma-

trices [23, 36]. This turns out not to be the case on the
Fermi, where the use of shared memory is required to mit-
igate strided access to the device memory and redundant
reads from the device memory by multiple threads in the
same block. Here matrices A and B are always placed in
the shared memory. (Which also immensely simplifies the
coding of different transposed/non-transposed scenarios).

5.2.2 Pipelined Loop
Algorithm 1 shows the pseudocode for the generic GEMM
stencil. (Adherence to any strict notation is traded for clar-
ity here.) The code follows the classic pipelined loop scheme
with a prologue and epilogue. The pipelined loop body per-
forms odd iteration loads of A and B from the device mem-
ory to registers (lines 6, 7), “consumes” even iteration A and
B in shared memory (lines 8-12) and drops odd iteration A
and B to shared memory. The factors alpha and beta are
applied when storing the results in the device memory (line
23). This pipelining scheme, developed for the MAGMA
project by Nath et al. [25] proves to be the fastest.

Algorithm 1 Generic GEMM stencil pseudocode.

1: Cregs ⇐ 0
2: A0 dev ⇒ shmem
3: B0 dev ⇒ shmem
4: syncthreads();
5: for K = 0 to Kdev −Kblk step Kblk do
6: Aodd dev ⇒ regs
7: Bodd dev ⇒ regs
8: for k = 0 to Kblk step 1 do
9: Aeven[k] shmem⇒ regs

10: Beven[k] shmem⇒ regs
11: C = C + Aeven[k]×Beven[k]
12: end for
13: syncthreads();
14: Aodd regs⇒ shmem
15: Bodd regs⇒ shmem
16: syncthreads();
17: end for
18: for k = 0 to Kblk step 1 do
19: Aodd[k] shmem⇒ regs
20: Bodd[k] shmem⇒ regs
21: C = C + Aeven[k]×Beven[k]
22: end for
23: Cdev = alpha× Cregs + beta× Cdev

regs - registers
shmem - shared memory
dev - device memory
odd - even iteration
even - odd iteration

5.2.3 Parametrization
The code is generalized to handle: double and single pre-
cision, real and complex arithmetic and transposition (and
conjugation) of A and B. It also allows for reading the de-
vice memory with or without the use of texture caches. If
texture caches are used matrices A and B can be accessed
either as 1D textures or 2D textures. (Further on, only the
use of 1D textures is discussed, since this is the fastest per-
forming scenario.) All options are controlled using the C
preprocessor’s macro definitions (#define) and the C lan-
guage type definitions (typedef). Altogether the code can be

compiled to 78 different variants. This does not result in
a code bloat, because for the most part, different options
are orthogonal. The entire stencil is roughly 500 lines long.
Such small size is also due to the fact that unrolling is left
entirely to the compiler. Only #pragma unroll directives are
used. All loops are unrolled, except for the outermost loop
(line 5). Such aggressive unrolling is a common practice on
GPUs. The volume of resulting code very rarely prevents
the compiler from unrolling it.

Different precisions (single/double) are handled by macros
with type definitions. Complex arithmetic is handled by
inline functions defined in the CUBLAS library (cuCadd(),
cuCmul(), cuCfma(), etc.), which are cast to additions and
multiplications for real arithmetic. (So is conjugation of an
input matrix if it is conjugate-transposed.) Different ways of
accessing the device memory (texture caches or no texture
caches) are implemented through conditional compilation of
the address translation blocks. Transposition of A and B is
handled when loading from device memory to registers and
shared memory (lines 2, 3; 6, 7 and 14, 15). The innermost
loops performing the actual computation (lines 8-12) are
oblivious to the layout of the input matrices.

Finally, the size of work for a thread block is parametrized
(Mblk, Nblk, Kblk), as well as the shape of the thread grid
(blockDim.x, blockDim.y). It can also be observed that the
thread grid can be reshaped for reading of A and B as long as
each of the three shapes perfectly overlay the corresponding
matrix (Figure 4). Therefore the values MdimA, NdimA,
MdimB , NdimB are also the stencil’s parameters (subject
to preprocessor correctness checks). Also, for consistency,
blockDim.x and blockDim.y will be referred to, from now
on, as Mdim and Ndim.

Ndim

M
di

m

A

B

C

M
di

m
B

NdimB

NdimA

M
di

m
A

Figure 4: Reshaping the thread block for reading A
and B.

5.3 Search Space Generator
The search space generator is a brute-force machinery that
runs through all possible values of parameters Mblk, Nblk,
Kblk, Mdim, Ndim, MdimA, NdimA, MdimB , NdimB and re-
jects the combinations that produce invalid code and the
combinations that do not meet certain performance guide-
lines, e.g., minimum occupancy requirement. To start
with, the 9-dimensional parameter space is enormous. Con-
straints come from a few different sources. Here the follow-
ing categories of constraints are identified: queryable hard-

ware constraints, non-queryable hardware constraints, hard
implementation constraints and soft implementation con-
straints.

5.3.1 Hardware and Implementation Constraints
Queryable hardware constraints are hardware constraints
which can be queried at runtime using calls to the CUDA
runtime library (specifically the cuDeviceGetAttribute()
function). Non-queryable hardware constraints are hard-
ware constraints which cannot be queried like that, but
are tied to the GPU compute capability and defined in
CUDA documentation (e.g. “NVIDIA CUDA C Program-
ming Guide” [27], Appendix G). Hard implementation con-
straints are constraints that would make the implementation
invalid if violated and soft implementation constraints are
constraints that would make the implementation perform
poorly if violated, but not make it invalid.

The following device parameters are queried:

• WARP SIZE,

• MAX THREADS PER BLOCK,

• MAX REGISTERS PER BLOCK,

• MAX SHARED MEMORY PER BLOCK.

Then the compute capability is checked using the cuDevice-
ComputeCapability() function and the following parameters
are set using a table lookup:

• MAX WARPS PER SM ,

• MAX BLOCKS PER SM .

Here, a few simplifying assumptions are made, that seem
to hold for all compute capabilities so far. It is assumed
that the maximum number of threads per multiprocessor is
defined by the maximum number of warps:

MAX THREADS PER SM =

MAX WARPS PER SM ×WARP SIZE,

the number of 32-bit registers per multiprocessor equals the
maximum number of registers per block, i.e.

MAX REGS PER SM =

MAX REGISTERS PER BLOCK,

and the amount of shared memory per multiprocessor equals
the maximum amount of shared memory per block, i.e.

MAX SHMEM PER SM =

MAX SHARED MEMORY PER BLOCK.

5.3.2 Performance Guidelines
Performance guidelines are provided to the generator as in-
put and allow for adjusting the amount of generated com-
binations. Three such guidelines are used here: minimum
occupancy, minimum number of blocks per multiprocessor
and minimum register reuse. Minimum occupancy states
the minimum number of threads per multiprocessor that
the kernel has to allow for. The SIMT computation model
of the GPU relies on a massive number of simultaneously
active threads to deliver performance, so it is reasonable to
specify that a kernel should allow for, e.g., the minimum
of 512 threads (out of 1536) to be active at the same time
in a multiprocessor. This constraint eliminates kernels that

consume resources, such as register and shared memory, too
aggressively. Similarly, the minimum number of blocks per
multiprocessor requirement eliminates kernels that consume
resources too heavily to allow for at least the given number of
blocks to reside in one multiprocessor. Finally, the register
reuse requirement forces a given number of floating-point
operations to be performed per single memory operation.
This constraint eliminates kernels that move data too much
and do not compute enough. To be precise, the value is a
floating-point ratio of FMAs to loads in the innermost loop
of the kernel (Algorith 1, lines 8-12).

5.3.3 Generation and Pruning
Algorithm 2 shows the nested loops of the search space gen-
erator. The two outermost loops iterate over the sizes of
the thread grid. The three innermost loops iterate over the
sizes of the block’s working space. The steps for Mblk and
Nblk are Mdim and Ndim respectively (the thread grid has
to overlay a tile of C). Kblk does not have to be constrained
in any way. (The step is 1.)

Algorithm 2 Search space generator pseudocode.

for Ndim = 1 to NdimMAX step 1 do
for Mdim = 1 to MdimMAX step 1 do

for Kblk = 1 to KblkMAX step 1 do
for Nblk = Ndim to NblkMAX step Ndim do

for Mblk = Mdim to MblkMAX step Mdim do

if parameters meet constraints then
generate all variants
(MdimA, NdimA,MdimB , NdimB)
such that:
MdimA ×NdimA == Mdim ×Ndim

MdimA%Mblk == 0
NdimA%Kblk == 0
MdimB ×NdimB == Mdim ×Ndim

MdimB%Kblk == 0
NdimB%Nblk == 0

end if

end for
end for

end for
end for

end for

In principle, the loops upper boundaries could be set to some
device parameters, e.g., the upper boundaries for the two
outermost loops could be set to MAX BLOCK DIM X
and MAX BLOCK DIM Y . Here the boundaries are set
to 256 for MdimMAX , NdimMAX , MblkMAX and NblkMAX ,
and to 64 for KblkMAX . The choice was made experimen-
tally, such that no combinations are missed because of the
loop boundaries being too low. I.e., increasing the bound-
aries does not produce any more valid combinations. (All
such combinations are eliminated by the constraints dis-
cussed further.) At the same time, the running time of the
generator is kept short (on the order of seconds).

Algorithm 3 shows the set of constraints enforced inside the
nested loops of Algorithm 2. It is divided into four sec-
tions. The first section enforces a mixed set of hardware

and implementation (hard and soft) constraints. The sec-
ond section enforces the minimum occupancy performance
guideline, based on the amount of available shared memory.
The third section enforces the minimum occupancy perfor-
mance guideline, based on the number of available registers.
Finally, the fourth section enforces the minimum register
reuse performance guideline. Next, each block is discussed
in detail.

The first block applies a set of straightforward checks. Line
one verifies if the thread grid does not exceed the maximum
number of threads. Line two checks if the the thread grid
is divisible into warps. Line three checks if the thread grid
can be used (regardless of its shape) to read a stripe of A,
without any threads being idle. Similarly, line four checks if
the thread grid can be used (regardless of its shape) to read
a stripe of B, without any threads being idle.

The second block enforces the minimum occupancy based on
shared memory consumption. First, the amount of shared
memory required by the kernel is calculated. This equals
the amount of shared memory required to store a stripe of
A and a stripe of B (Algorithm 1, lines 2, 3 and 14, 15).
Then, the number of possible thread blocks per multipro-
cessor is calculated and filtered though the hardware max-
imum. Next, the number of warps is calculated and also
filtered through the hardware maximum. Finally, the num-
ber of possible blocks per multiprocessor and the number
of possible threads per multiprocessor are recalculated and
checked against the corresponding performance guidelines.
Admittedly, some checks are redundant.

The third block performs similar checks with respect to the
register consumption. First, the number of registers required
by the kernel is calculated. This equals the number of regis-
ters to “prefetch” odd iteration A and B (Algorithm 1, lines
6, 7), stream in even iteration A and B (lines 9, 10) and ac-
cumulate the results in C (line 11). What follows closely re-
sembles the preceding block. The number of possible thread
blocks per multiprocessor is calculated and filtered through
the hardware maximum. Next, the number of warps is cal-
culated and also filtered through the hardware maximum.
Finally, the number of possible blocks per multiprocessor
and the number of possible threads per multiprocessor are
recalculated and checked against the corresponding perfor-
mance guidelines. It has to be pointed out that the approach
is heristic. When compiled, the code will use more registers.
(Registers will be used for local variables, loop counters,
etc.)

The last block simply calculates the ratio of loads to FMAs
in the innermost loops (Algorithm 1, lines 9-11) and checks
it against the performance guideline. The conditional takes
into account the different ratio of memory operations to
computation for real arithmetic and complex arithmetic.
(Complex arithmetic is twice as compute intensive as real
arithmetic.)

6. RESULTS AND DISCUSSION
6.1 Generation Results
Table 1 shows the performance guidelines applied. The val-
ues were chosen experimentally to produce the number of
combinations for each of the 16 versions of the GEMM to

Algorithm 3 Search space generator constraints.

Require: Mdim ×Ndim ≤MAX THREADS PER BLOCK
Require: (Mdim ×Ndim)%WARP SIZE == 0
Require: (Mblk ×Kblk)%(Mdim ×Ndim) == 0
Require: (Kblk ×Nblk)%(Mdim ×Ndim) == 0

shmem per block = ((Mblk + 1)×K + (K + 1)×N)× sizeof(type)
blocks per sm = min(MAX SHMEM PER SM/shmem per block,MAX BLOCKS PER SM)
warps per block = (Mdim ×Ndim)/WARP SIZE
warps per sm = min(blocks per sm× warps per block,MAX WARPS PER SM)
blocks per sm = warps per sm/warps per block
Require: blocks per sm ≥MIN BLOCKS PER SM
threads per sm = Mdim ×Ndim × blocks per sm
Require: threads per sm ≥MIN THREADS PER SM

regs per thread = (Mthr ×Nthr) + (Mthr + Nthr)
regs per block = regs per thread× (Mdim ×Ndim)
regs per block += Mblk ×Kblk + Kblk ×Nblk

regs per block ×= sizeof(type)/sizeof(float)
blocks per sm = min(MAX REGS PER SM/regs per block,MAX BLOCKS PER SM)
warps per block = (Mdim ×Ndim)/WARP SIZE
warps per sm = min(blocks per sm× warps per block,MAX WARPS PER SM)
blocks per sm = warps per sm/warps per block
Require: blocks per sm ≥MIN BLOCKS PER SM
threads per sm = Mdim ×Ndim × blocks per sm
Require: threads per sm ≥MIN THREADS PER SM

if real arithmetic then
regs reuse = (Mthr ×Nthr)/(Mthr + Nthr)

else {complex arithmetic}
regs reuse = (4×Mthr ×Nthr)/(2× (Mthr + Nthr))

end if
Require: regs reuse ≥MIN REGS REUSE

be on the order of hundreds. Notably, the minimum occu-
pancy of 512 threads per multiprocessor (0.33) was always
used and the minimum number of blocks per multiproces-
sor of two. The only parameter that varied was the register
reuse, ranging from two to five. (Integer values were used,
although in principle, the ratio is a floating-point number.)

Table 1: Search space generator constraints for each
kernel type.

kernel type
min. min. reg. min. no.

occupancya reuseb blocksc

SGEMM 512 3.0 2
CGEMM 512 5.0 2
DGEMM 512 2.0 2
ZGEMM 512 2.0 2

aminimum number of threads
bminimum ratio of load instructions to fused
multiply-add instructions in the innermost loop

cminimum number of thread blocks per multiprocessor

Figure 5 shows the number of combinations produced for
each of the 16 versions of the GEMM when the guidelines
from Table 1 are applied. The number varies from slightly
below one hundred to slightly above four hundred. It should
be noted that the choice of performance guidelines and the
number of combinations produced is an arbitrary decision,
which trades off the range of the search sweep with the time
required to perform the sweep.

0 100 200 300 400 500

number of variants

A × B
A × BT

AT × BT

AT × B
A × B
A × BT

AT × BT

AT × B
A × B
A × BT

AT × BT

AT × B
A × B
A × BT

AT × BT

AT × B

SGEMM

CGEMM

DGEMM

ZGEMM

Figure 5: Number of variants generated for each
kernel type under the constraints listed in Table 1.

The pruning of the search space is a powerful and neces-
sary mechanism here. For instance, with the performance
guidelines taken away (and only hardware and implementa-
tion constraints applied) the generator will produce slightly
more than one million combinations of SGEMM A × B.

Take another example, using the guidelines from Table 1
for CGEMM A × B, but changing the minimum register
reuse from 5.0 to 6.0 will create only 6 combinations, which
do not include the fastest performing one. As a general ob-
servation, the generator produces many combinations with
very good characteristics, in terms of occupancy and regis-
ter reuse, which turn out not to perform the fastest. This
strengthens the hypothesis that autotuning is a necessary
component of GPU code development.

6.2 Selection Results
With all combinations generated, the next steps are runs,
performance measurements and selection of the fastest ker-
nels. A few words about the hardware/software setup are in
place here. The process of autotuning was conducted and
the final performance results were produced on an NVIDIA
Tesla S2050 system, with the Fermi GPU containing 14 mul-
tiprocessors and clocked at 1.147 GHz. CUDA SDK 4.0 re-
lease candidate 11 was used, the newest version at the time
of the experiments. Square matrices A, B and C were used
in all cases and problem sizes were chosen such that all data
would occupy 1 GB of the GPU memory. This results in the
dimensions of 10, 000 for SGEMM, 8, 000 for CGEMM and
DGEMM and 6, 000 for ZGEMM. Three runs were made
for each case and the maximum performance taken. This
was more of a precaution than an actual need, since per-
formance fluctuation was virtually inexistent. With roughly
three thousand cases to run, the process takes one day on a
single GPU.

The timing runs confirm that the generator with the pruning
mechanism could not be a selection tool on its own. As was
already mentioned, using strict performance guidelines does
not result in converging on the fastest case. Although, under
the constraints used, all tested kernels are good candidates
for fast kernels, their performance can vary wildly. Here,
ZGEMM showed the smallest performance variation. The
slowest of all ZGEMM kernels ran at 180 Gflop/s, which is
slightly more than half of the speed of the fastest, running at
340 Gflop/s. At the same time, the slowest SGEMM kernel
ran at 64 Gflop/s which is less than 10 % of the speed of the
fastest one, running at 662 Gflop/s.

Table 2 shows the final selection of the fastest kernels. It
needs to be pointed out that for each case there was a
large number of kernels with performance very close to
the fastest one (sometimes a couple of kernels within one
percent). Here, simply the fastest one in each case is re-
ported. The table shows comparison against CUBLAS and
MAGMA (whichever was faster for each case). Small im-
provements can be seen in almost all cases. Significant im-
provement can be observed for ZGEMM. While for CUBLAS
and MAGMA ZGEMM runs only as fast as DGEMM, the
new ZGEMM runs substantially faster. The autotuning pro-
cess revealed ZGEMM kernels that successfully take advan-
tage of its higher computational intensity versus DGEMM.
One distinct feature of the ZGEMM kernels is that, unlike
for all other cases, the tiles of the C matrix are not square.
This could be one reason that someone coding the kernels
by hand would not explore the case.

One reason for concern could be the fact that the timing
part of the process was performed for specific (large) sizes.

Table 2: Autotuning summary: parameters and performance of the fastest kernels.

kernel type tiling
thread arrangement performance previouslya

compute C load A load B [Gflop/s] [Gflop/s]
SGEMM A ×B 96× 96× 16 16× 16 32× 8 8× 32 654 650

A ×BT 96× 96× 16 16× 16 32× 8 32× 8 662 641
AT ×BT 96× 96× 16 16× 16 16× 16 32× 8 657 650
AT ×B 96× 96× 16 16× 16 16× 16 16× 16 650 650

CGEMM A ×B 64× 64× 16 16× 16 32× 8 16× 16 804 778
A ×BT 64× 64× 16 16× 16 16× 16 16× 16 804 783
AT ×BT 64× 64× 16 16× 16 16× 16 32× 8 805 792
AT ×B 64× 64× 16 16× 16 16× 16 16× 16 804 782

DGEMM A ×B 64× 64× 16 16× 16 16× 16 16× 16 300 303
A ×BT 64× 64× 16 16× 16 16× 16 16× 16 301 303
AT ×BT 64× 64× 16 16× 16 16× 16 16× 16 300 303
AT ×B 64× 64× 16 16× 16 16× 16 16× 16 300 302

ZGEMM A ×B 24× 16× 8 8× 8 8× 8 8× 8 340 306
A ×BT 16× 24× 8 8× 8 8× 8 8× 8 340 308
AT ×BT 16× 24× 8 8× 8 4× 16 8× 8 341 306
AT ×B 24× 16× 8 8× 8 8× 8 8× 8 340 304

aMAGMA or CUBLAS (whichever is faster)

One could speculate that the kernels are tuned specifically
for these sizes and performs suboptimally for other sizes.
Just to make sure that this is not the case, the performance
for the chosen kernels was measured across all matrix sizes.
Figure 6 shows the results. Square matrices are used with
sizes corresponding to the tiling factor, 96 for SGEMM, 64
for CGEMM and DGEMM and 48 for ZGEMM. Here it was
considered pointless to time cases with partially filled bor-
der tiles. Generally, the impact on performance is negative,
but negligible. (Very efficient method of dealing with such
scenarios was designed by Nath et al. [25].) Figure 6 shows
clearly that the kernels perform consistently across all prob-
lem sizes, rising quickly to asymptotic performance, with
the usual jitter at the beginning (more prominent for the
more bandwidth-limited cases of single precision SGEMM
and CGEMM).

7. CONCLUSIONS
It is the authors belief that this work proves that autotun-
ing is a crucial component in GPU code development. The
essential component in this process is the capability of gen-
erating and effectively pruning the search space. For ma-
trix multiplication, pruning turned out to be straightforward
with the use of hardware and implementation constraints
and constraints referred to as performance guidelines, such
as minimum required occupancy. The choice of constraints
allows for trading the thoroughness of the search with its
duration.

It also is the authors belief that the process can be easily gen-
eralized to other types of workloads, including more complex
kernels and more bandwidth-bound kernels. In principle,
this should be the case as long as the code can be parame-
terized and its properties, such as demand for registers and
shared memory, expressed as functions of the parameters.

It came as a surprise that this late into the process of BLAS
development for the Fermi architecture an autotuning pro-

0 2000 4000 6000 8000 10000

0

100

200

300

400

500

600

700

800

900

matrix size

G
fl

op
/s

SGEMM

CGEMM

ZGEMM
DGEMM

Figure 6: GEMM Performance on a 1.147 GHz
Fermi GPU

cess managed to prove superior to hand-tuned codes. Al-
though significant, the performance improvements were not
dramatic. Hopefully, the system will show its power with
the appearance of new architectures and also as a platform
for the development of more complex kernels.

8. FUTURE PLANS
There are areas where the usefulness of the system is im-
mediately applicable. The generation process revealed a
huge number of kernels with much smaller tiling factors,
performing nearly as good as kernels with larger tiling fac-
tors. The kernels with smaller tiles can readily replace the
other kernels for smaller matrix sizes, where the use of large

tiles limits the amount of parallelism, preventing the de-
vice from achieving good performance. For instance, for
the DGEMM A × B operation, the fastest kernel uses tiles
of 64 × 64 and asymptotically achieves the performance of
300 Gflop/s. The autotuning process revealed a kernel that
uses tiles of 32× 32 and asymptotically achieves the perfor-
mance of 286 Gflop/s. For small matrix sizes the use of the
latter kernel will quadruple parallelism at the loss of 5 % of
asymptotic kernel performance. Depending on the problem
size, this can result in a huge performance gain.

Another opportunity presents itself where one dimension
of the operation is significantly smaller than the other.
MAGMA is a great example here. For instance, in the
right-looking LU factorization, the GEMM is called with
the dimension K = 64, which is much smaller than M and
N . This causes the default GEMM kernel to only achieve
253 Gflop/s instead of the asymptotic 300 Gflop/s. When
tuned for this shape, a kernel was found by the autotuner
that delivers 268 Gflop/s. If K is further reduced to 32,
the default kernel’s performance drops to 204 Gflop/s, while
the autotuner is capable of finding a kernel that delivers
242 Gflop/s for that case.

9. ACKNOWLEDGMENTS
The authors would like to thank David Luebke, Steven
Parker and Massimiliano Fatica for their insightful com-
ments about the Fermi architecture.

10. SOFTWARE
Ultimately the software will be distributed as part of the
MAGMA project (http://icl.cs.utk.edu/magma/). Ini-
tial prototype snapshots will be posted on the authors’ web-
sites (http://icl.cs.utk.edu/people/). All code will be
released under the modified BSD license.

References
[1] Advanced Micro Devices, Inc. AMD Intermediate

Language, Version 2.0e, 2010. http://developer.

amd.com/gpu/AMDAPPSDK/assets/AMD_Intermediate_

Language_(IL)_Specification_v2.pdf.

[2] E. Agullo, J. Demmel, J. Dongarra, B. Hadri,
J. Kurzak, J. Langou, H. Ltaief, P. Luszczek, and
S. Tomov. Numerical linear algebra on emerging ar-
chitectures: The PLASMA and MAGMA projects. J.
Phys.: Conf. Ser., 180(1), 2009. DOI: 10.1088/1742-
6596/180/1/012037.

[3] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W.
Demmel, J. J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen. LA-
PACK Users’ Guide. SIAM, Philadelphia, PA, 1992.
http://www.netlib.org/lapack/lug/.

[4] R. F. Barrett, T. H. F. Chan, E. F. D’Azevedo, E. F.
Jaeger, K. Wong, and R. Y. Wong. Complex ver-
sion of high performance computing LINPACK bench-
mark (HPL). Concurrency Computat.: Pract. Exper.,
22(5):573–587, 2009. DOI: 10.1002/cpe.1476.

[5] Basic Linear Algebra Technical Forum. Basic
Linear Algebra Technical Forum Standard, August

2001. http://www.netlib.org/blas/blast-forum/

blas-report.pdf.

[6] J. Bilmes, K. Asanovic, J. Demmel, D. Lam, and C.-W.
Chin. LAPACK working note 111: Optimizing matrix
multiply using PHiPAC: A portable, high-performance,
ANSI C coding methodology. Technical Report UT-
CS-96-326, Computer Science Department, University
of Tennessee, 1996. http://www.netlib.org/lapack/

lawnspdf/lawn111.pdf.

[7] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo,
J. Demmel, I. Dhillon, J. J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK Users’ Guide. SIAM, Philadel-
phia, PA, 1997. http://www.netlib.org/scalapack/

slug/.

[8] C. Chen, J. Chame, and M. Hall. CHiLL: A frame-
work for composing high-level loop transformations.
Technical Report 08-897, Computer Science Depart-
ment, University of Southern California, 2008. http:

//www.cs.usc.edu/research/08-897.pdf.

[9] A. Cohen, M. Sigler, S. Girbal, O. Temam, D. Parello,
and N. Vasilache. Facilitating the search for compo-
sitions of program transformations. In Proceedings of
the International Conference on Supercomputing 2005,
ICS’05, pages 151–160, Cambridge, MA, June 18-21
2005. ACM. DOI: 10.1145/1088149.1088169.

[10] H. Cui, L. Wang, J. Xue, Y. Yang, and X. Feng. Auto-
matic library generation for BLAS3 on GPUs. In Pro-
ceedings of the 25th IEEE International Parallel & Dis-
tributed Processing Symposium, Anchorage, AK, May
16-20 2011. IEEE.

[11] J. Dongarra, P. Beckman, et al. The international ex-
ascale software roadmap. Int. J. High Perf. Comput.
Applic., 25(1), 2011. ISSN: 1094-3420 (to appear).

[12] J. J. Dongarra, P. Luszczek, and A. Petitet. The LIN-
PACK Benchmark: Past, Present and Future. Concur-
rency Computat.: Pract. Exper., 15(9):803–820, 2003.

[13] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson,
and J. Dongarra. From CUDA to OpenCL: Towards a
performance-portable solution for multi-platform GPU
programming. Technical Report CS-10-656, Electrical
Engineering and Computer Science Department, Uni-
versity of Tennessee, 2010. LAPACK Working Note
228.

[14] A. T. Fam. Efficient complex matrix multiplica-
tion. IEEE Trans. Comput., 37(7):877–879, 1988.
DOI: 10.1109/12.2236.

[15] M. Frigo and S. Johnson. The design and implementa-
tion of FFTW3. Proceedings of the IEEE, 93(2):216–
231, 2005. DOI: 10.1109/JPROC.2004.840301.

[16] N. J. Higham. Stability of a method for multiplying
complex matrices with three real matrix multiplica-
tions. SIAM. J. Matrix Anal. Appl., 13(3):681–687,
1992.

http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/people/
http://developer.amd.com/gpu/AMDAPPSDK/assets/AMD_Intermediate_Language_(IL)_Specification_v2.pdf
http://developer.amd.com/gpu/AMDAPPSDK/assets/AMD_Intermediate_Language_(IL)_Specification_v2.pdf
http://developer.amd.com/gpu/AMDAPPSDK/assets/AMD_Intermediate_Language_(IL)_Specification_v2.pdf
http://dx.doi.org/10.1088/1742-6596/180/1/012037
http://dx.doi.org/10.1088/1742-6596/180/1/012037
http://www.netlib.org/lapack/lug/
http://dx.doi.org/10.1002/cpe.1476
http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.netlib.org/lapack/lawnspdf/lawn111.pdf
http://www.netlib.org/lapack/lawnspdf/lawn111.pdf
http://www.netlib.org/scalapack/slug/
http://www.netlib.org/scalapack/slug/
http://www.cs.usc.edu/research/08-897.pdf
http://www.cs.usc.edu/research/08-897.pdf
http://dx.doi.org/10.1145/1088149.1088169
http://hpc.sagepub.com/
http://dx.doi.org/10.1002/cpe.728
http://dx.doi.org/10.1002/cpe.728
http://www.netlib.org/lapack/lawnspdf/lawn228.pdf
http://www.netlib.org/lapack/lawnspdf/lawn228.pdf
http://dx.doi.org/10.1109/12.2236
http://dx.doi.org/10.1109/JPROC.2004.840301

[17] B. K̊agström, P. Ling, and C. van Loan. GEMM-Based
Level 3 BLAS: High-Performance Model Implementa-
tions and Performance Evaluation Benchmark. ACM
Trans. Math. Soft., 24(3):268–302, 1998.

[18] Khronos Group. The OpenCL Specification, Version
1.1, 2010. http://www.khronos.org/registry/cl/

specs/opencl-1.1.pdf.

[19] P. Kogge (Editor & Study Lead). Exascale com-
puting study: Technology challenges in achiev-
ing exascale systems. Technical Report 278,
DARPA Information Processing Techniques Office,
2008. http://www.er.doe.gov/ascr/Research/CS/

DARPAexascale-hardware(2008).pdf.

[20] J. Kurzak, D. A. Bader, and J. Dongarra, editors.
Scientific Computing with Multicore and Accelerators.
Chapman & Hall/CRC Computational Science. Taylor
& Francis, 2010. ISBN: 1439825365.

[21] Y. Li, J. Dongarra, and S. Tomov. A note on
auto-tuning GEMM for GPUs. In Proceedings of
the 2009 International Conference on Computational
Science, ICCS’09, Baton Roube, LA, May 25-27
2009. Lecture Notes in Computer Science 5544:884-892.
DOI: 10.1007/978-3-642-01970-8 89.

[22] D. Luebke and S. Parker. email communication.

[23] N. Nakasato. A fast GEMM implementation on a Cy-
press GPU. In 1st International Workshop on Per-
formance Modeling, Benchmarking and Simulation of
High Performance Computing Systems, PMBS’10 (held
as part of SC’10), New Orleans, LA, November 13-19
2010. http://www.dcs.warwick.ac.uk/~sdh/pmbs10/

pmbs10/Workshop_Programme_files/fastgemm.pdf.

[24] R. Nath, S. Tomov, and J. Dongarra. Accelerating
GPU kernels for dense linear algebra. In Proceed-
ings of the 2010 International Meeting on High Per-
formance Computing for Computational Science, VEC-
PAR’10, Berkeley, CA, June 22-25 2010. Lecture Notes
in Computer Science 6449:83-92. DOI: 10.1007/978-3-
642-19328-6 10.

[25] R. Nath, S. Tomov, and J. Dongarra. An improved
MAGMA GEMM for Fermi graphics processing units.
Int. J. High Perf. Comput. Applic., 24(4):511–515,
2010. DOI: 10.1177/1094342010385729.

[26] E. Normand. Single event upset at ground level.
IEEE Transactions on Nuclear Science, 43(6):2742–
2750, 1996. DOI: 10.1109/23.556861.

[27] Nvidia. NVIDIA CUDA C Programming Guide, Ver-
sion 3.2, 2010. http://developer.download.nvidia.

com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_

Programming_Guide.pdf.

[28] NVIDIA Corporation. NVIDIA’s Next Genera-
tion CUDA Compute Architecture: Fermi, Ver-
sion 1.1, 2009. http://www.nvidia.com/content/

PDF/fermi_white_papers/NVIDIA_Fermi_Compute_

Architecture_Whitepaper.pdf.

[29] NVIDIA Corporation. NVIDIA GF100, World’s
Fastest GPU Delivering Great Gaming Performance
with True Geometric Realism, Version 1.5, 2010. http:
//www.nvidia.com/object/IO_89569.html.

[30] NVIDIA Corporation. PTX: Parallel Thread
Execution ISA, Version 2.1, 2010. http:

//developer.download.nvidia.com/compute/cuda/

3_1/toolkit/docs/ptx_isa_2.1.pdf.

[31] NVIDIA Corporation. Tuning CUDA Appli-
cations for Fermi, Version 1.0, 2010. http:

//developer.download.nvidia.com/compute/cuda/

3_0/toolkit/docs/NVIDIA_FermiTuningGuide.pdf.

[32] Open64. http://www.open64.net/.

[33] M. Puschel, J. M. F. Moura, J. R. Johnson, D. Padua,
M. M. Veloso, B. W. Singer, J. Xiong, F. Franchetti,
A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and
N. Rizzolo. SPIRAL: Code generation for DSP trans-
forms. Proceedings of the IEEE, 93(2):232–275, 2005.
DOI: 10.1109/JPROC.2004.840306.

[34] G. Rudy, M. M. Khan, M. Hall, C. Chen, and J. Chame.
A programming language interface to describe trans-
formations and code generation. In Proceedings of the
23rd International Workshop on Languages and Com-
pilers for Parallel Computing, LCPC’10, Houston, TX,
October 7-9 2010. Lecture Notes in Computer Science
6548:136-150. DOI: 10.1007/978-3-642-19595-2 10.

[35] V. Sarkar (Editor & Study Lead). Exascale software
study: Software challenges in extreme scale systems.
Technical Report 159, DARPA Information Processing
Techniques Office, 2008. http://users.ece.gatech.

edu/mrichard/ExascaleComputingStudyReports/

ECSSreport101909.pdf.

[36] V. Volkov and J. W. Demmel. Benchmarking GPUs
to tune dense linear algebra. In Proceedings of
the 2008 ACM/IEEE conference on Supercomputing,
SC’08, Austin, TX, November 15-21 2008. IEEE Press.
DOI: 10.1145/1413370.1413402.

[37] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI:
A library of automatically tuned sparse matrix ker-
nels. J. Phys.: Conf. Ser., 16(16):521–530, 2005.
DOI: 10.1088/1742-6596/16/1/071.

[38] R. C. Whaley, A. Petitet, and J. Dongarra. Auto-
mated empirical optimizations of software and the AT-
LAS project. Parellel Comput. Syst. Appl., 27(1-2):3–
35, 2001. DOI: 10.1016/S0167-8191(00)00087-9.

http://dx.doi.org/10.1145/292395.292412
http://dx.doi.org/10.1145/292395.292412
http://dx.doi.org/10.1145/292395.292412
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.er.doe.gov/ascr/Research/CS/DARPA exascale - hardware (2008).pdf
http://www.er.doe.gov/ascr/Research/CS/DARPA exascale - hardware (2008).pdf
http://www.amazon.com/dp/143982536X/
http://dx.doi.org/10.1007/978-3-642-01970-8_89
http://www.dcs.warwick.ac.uk/~sdh/pmbs10/pmbs10/Workshop_Programme_files/fastgemm.pdf
http://www.dcs.warwick.ac.uk/~sdh/pmbs10/pmbs10/Workshop_Programme_files/fastgemm.pdf
http://dx.doi.org/10.1007/978-3-642-19328-6_10
http://dx.doi.org/10.1007/978-3-642-19328-6_10
http://dx.doi.org/10.1177/1094342010385729
http://dx.doi.org/10.1109/23.556861
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/object/IO_89569.html
http://www.nvidia.com/object/IO_89569.html
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/ptx_isa_2.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/ptx_isa_2.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/ptx_isa_2.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_FermiTuningGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_FermiTuningGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_FermiTuningGuide.pdf
http://www.open64.net/
http://dx.doi.org/10.1109/JPROC.2004.840306
http://dx.doi.org/10.1007/978-3-642-19595-2_10
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS report 101909.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS report 101909.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS report 101909.pdf
http://dx.doi.org/10.1145/1413370.1413402
http://dx.doi.org/10.1088/1742-6596/16/1/071
http://dx.doi.org/10.1016/S0167-8191(00)00087-9

	Introduction
	Motivation
	Related Work
	Original Contribution
	Solution
	Hardware Target
	Universal GEMM Stencil
	General Structure
	Pipelined Loop
	Parametrization

	Search Space Generator
	Hardware and Implementation Constraints
	Performance Guidelines
	Generation and Pruning

	Results and Discussion
	Generation Results
	Selection Results

	Conclusions
	Future Plans
	Acknowledgments
	Software

