
Scalable Tile Communication-Avoiding QR
Factorization on Multicore Cluster Systems

Fengguang Song∗, Hatem Ltaief∗, Bilel Hadri† and Jack Dongarra‡
∗EECS, University of Tennessee, Knoxville, TN, USA

{song, ltaief}@eecs.utk.edu
†NICS, Oak Ridge National Laboratory, Oak Ridge, TN, USA

bhadri@utk.edu
‡University of Tennessee, Knoxville, TN, USA

Oak Ridge National Laboratory, Oak Ridge, TN, USA
University of Manchester, Manchester, UK

dongarra@eecs.utk.edu

Abstract—As tile linear algebra algorithms continue achieving
high performance on shared-memory multicore architectures, it is
a challenging task to make them scalable on distributed-memory
multicore cluster machines. The main contribution of this paper
is the extension to the distributed-memory environment of the
previous work done by Hadri et al. on Communication-Avoiding
QR (CA-QR) factorizations using tile algorithms for tall and
skinny matrices (initially done on shared-memory multicore
systems). The fine granularity of tile algorithms associated with
communication-avoiding techniques for the QR factorization
presents a high degree of parallelism where multiple tasks can
be concurrently executed and computation steps fully pipelined.
A decentralized dynamic scheduler has then been integrated as a
runtime system to efficiently schedule tasks across the distributed
resources. Our experimental results performed on two Beowulf
clusters (with dual-core and 8-core nodes, respectively) and a
Cray XT5 system with 12-core nodes show that the tile CA-
QR factorization is able to outperform the de facto ScaLAPACK
library by up to 4 times for tall and skinny matrices, and has
good scalability on up to 3,072 cores.

I. INTRODUCTION

The method of least squares has been used in many scientific
fields such as mathematics, physics, statistics, and economics
where applications of data fitting, regression analysis, and
production function modeling happen frequently. The problem
is to find the solution of an overdetermined system of linear
equations Ax = b with more equations than unknowns. The
shape of the matrix A is tall and skinny. The modern classical
method to solve such a system is based upon QR factorization
by first computing A = QR followed by solving the upper-
triangular system Rx = Q∗b for x.
Various numerical libraries have supplied the QR factoriza-

tion subroutine. LAPACK [1] provides a collection of linear
algebra software for shared-memory systems. ScaLAPACK
[2], [3] includes a subset of LAPACK subroutines that is
redesigned for distributed-memory message-passing systems.
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In addition, a number of vendors provide libraries optimized
for their own hardware such as Intel MKL, AMD ACML, IBM
ESSL (PESSL), and Cray XT LibSci. All the vendor libraries
include the subroutines of LAPACK and ScaLAPACK.
However, with the increment of the number of cores on

each chip, these existing libraries start to see degrading
performance on multicore (or manycore) architectures. One
important reason is that the libraries use the fork-join approach
for parallelism to implement their routines. The join operation
works as a barrier and increases the task graph’s critical
path length substantially. Assuming a fixed number of tasks,
increasing the length of the critical path can seriously affect
the program performance. For instance, the subroutine for QR
factorization in LAPACK uses a block algorithm. Given an
m× n matrix A that is partitioned as follows:

A =

(

A1:b,1:b A1:b,b+1,n

Ab+1:m,1:b Ab+1:m,b+1:n

)

,

where b is the block size, the block algorithm 1) first fac-
torizes the left column panel A1:m,1:b; 2) applies the panel
factorization result to the top row panel A1:b,b+1,n; 3) then
to the trailing submatrix of Ab+1:m,b+1:n. All the three steps
are executed in a fork-join manner for which the length of
the critical path is increased. The same set of steps will be
applied recursively to the submatrix of Ab+1:m,b+1:n until
the submatrix merely consists of a single column panel. The
ScaLAPACK QR factorization subroutine uses the same block
algorithm as LAPACK. In this paper, we use the term “block
QR factorization” to refer to this algorithm.
During the last several years we have been working on

designing new parallel linear algebra software for multicore
architectures. We believe that the new software for multicore
architectures should have the following characteristics: fine-
grain tasks for a higher degree of parallelism, asynchronous
execution to eliminate synchronization points, and good local-
ity to improve data reuse. The tile algorithms designed in our
Parallel Linear Algebra Software for Multicore Architectures
(PLASMA) project [4] exhibit the three desirable characteris-
tics. The subroutine for QR factorization in PLASMA adopts
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Fig. 1. Tile QR factorization on a square matrix with 5× 5 tiles. Each tile
is of size b× b and corresponds to a fine grain task. The arcs show the data
dependencies between the tasks.

an updating-based algorithm that operates on matrices stored
in a tile data layout [5]. A tile is a b × b square submatrix
and is stored in memory contiguously. In this paper, we use
the term “tile QR factorization” to refer to the updating-based
QR factorization.
Unlike the block QR factorization that operates on panels,

the tile QR factorization operates on much smaller tiles (hence
more fine-grained). Given a matrix A consisting of mb × nb

tiles, matrix A can be expressed as follows:

A =











A1,1 A1,2 . . . A1,nb

A2,1 A2,2 . . . A2,nb

...
...

. . .
...

Amb,1 Amb,2 . . . Amb,nb











,

where Ai,j is a square tile of size b× b. In the first iteration,
the tile QR factorization computes the QR factorization for tile
A1,1. The factorization output of A1,1 is then used to update
the set of tiles on A1,1’s right hand side in an embarrassingly
parallel fashion, that is, {A1,2, . . . , A1,nb

}. As soon as the
update on any tile A1,j is finished, the update on tile A2,j can
read the modified A1,j and proceed. In other words, whenever
a tile-update on the i-th row completes, its below tile on
the (i + 1)-th row can start if Ai+1,1 also completes. After
updating the tiles on the last mb-th row, tile QR applies the
same steps to the trailing submatrix A2:mb,2:nb

recursively.
Figure 1 illustrates the data dependency relationships between
tasks during the first iteration given a 5 × 5 tiled matrix.
Each tile located at [i, j] corresponds to a task that reads a
couple of inputs and modifies A[i, j]. For instance, tile A[2,
4] corresponds to a task that reads the output of two tasks
located at [1, 4] and [2, 1] and then modifies A[2, 4]. In
the tile QR factorization, the tasks within each row can be
executed in embarrassingly parallel. However, the sequential
dependency between tasks along a column clearly makes the
algorithm inefficient, especially for tall and skinny matrices.
Hadri et al. recently presented a strategy to compute the QR

factorization on shared-memory multicore machines for tall
and skinny matrices [6]. Their approach considerably increases
the number of parallel tasks located in the same column. Their

work was inspired by the tile QR factorization (available in
PLASMA) and a communication-avoiding technique (known
as CAQR) that was introduced by Demmel [7]. However,
this algorithm has never been explored on distributed-memory
systems. We investigate and extend the algorithm to modern
large-scale distribute-memory machines and demonstrate its
high efficiency and scalability. We call the distributed-version
algorithm “distributed tile communication-avoiding QR fac-
torization”. In short, we refer to it as “distributed tile CA-QR
factorization.”
In this paper, we also analyze the tile CA-QR factor-

ization in terms of operation count, number of messages,
and communication volume. We then compare the algorithm
to previous work such as LAPACK, ScaLAPACK, tile QR
(PLASMA), TSQR [7], as well as CAQR [7]. Tile CA-QR
has an operation count that is between tile QR and TSQR
and could be comparable to that of LAPACK/ScaLAPACK
by choosing appropriate parameters. Same as TSQR, tile CA-
QR’s communication volume is also optimal. Furthermore, its
number of messages is much less than that of tile QR.
The distributed tile CA-QR factorization partitions a ma-

trix’s rows into D blocks of rows (i.e., D domains). Then
on a distributed-memory system with P compute nodes, it
continues to partition the D domains into P subsets (one
subset per node) using a 1D block distribution, where D ≥ P .
Each node runs a single MPI process and is responsible for
computing a number D

P of domains. For each column panel (of
a tile width), the factorization algorithm performs independent
QR factorizations in each domain by different processes in
parallel. Then, each domains updates its trailing submatrix
concurrently. Third and last step, the local R factors from each
domain are reduced by different processes to the final R factor
and the corresponding block-rows are again updated.
The reduction operation among the domains adopts a

binary-tree to attain the final R factor. Due to the complex
binary-tree reduction residing on the critical path of the
computation’s task graph, we extended our dynamic schedul-
ing runtime system to support distributed tile CA-QR more
efficiently. We added new features such as look-ahead depth
and three levels of task priority to the runtime system. A
collection of trace analysis show that the new scheduling
runtime system has been improved significantly.
This paper evaluates the efficiency of distributed tile CA-QR

by comparing it to vendor optimized ScaLAPACK libraries.
We conducted both strong-scalability and weak-scalability
experiments on two Beowulf clusters and a Cray XT5 system
consisting of hundreds of thousands of 12-core nodes. The ex-
perimental results show that our program is able to outperform
ScaLAPACK by up to 4 times, and exhibits good scalability
from 1 to 3,072 cores (3,072 cores is the largest experiment
we have attempted).
This paper includes the following new and original work:

(1) A major extension and improvement from shared-memory
systems to distributed-memory systems. (2) First to analyze
the algorithm with respect to operation count, number of mes-
sages, and communication volume. (3) An extended runtime



system to enable an efficient implementation of the distributed
algorithm. (4) First to demonstrate good scalability of the
algorithm on modern large-scale distributed-memory systems
using up to 3,072 cores.
The rest of the paper is organized as follows. Section II

introduces the related work. Sections III and IV describe
the tile CA-QR factorization algorithm and the analysis of
the algorithm, respectively. Section V provides an overview
of the dynamic scheduling runtime system and explains our
extensions. Section VI presents the performance evaluation
on three distributed-memory systems. Section VII summarizes
our work.

II. RELATED WORK

In the mid 70s, Morven Gentleman introduced for sparse
matrices [8] the approach of splitting a matrix into submatrices
allowing the reduction to be done independently and recur-
sively for the submatrices. Then, Pothen and Raghavan [9]
developed the idea of parallelizing the factorization of a panel
by implementing distributed orthogonal factorizations using
Householder and Givens algorithms. Their approach divides
the columns into P subcolumns (where P is the number of
processors) and performs factorizations locally from which the
final triangular factors are merged.
Based on Pothen and Raghavan’s work, Demmel et al. [7]

proposed a class of QR factorizations with the parallel panel
factorization, called Communication-Avoiding QR (CAQR).
The approach consists of performing the panel factorization on
several columns thanks to a new algorithm called TSQR (Tall
Skinny QR). The panels are divided into block-rows, and they
are factorized independently and then merged using a binary
reduction tree, which is optimal in the parallel case [7]. An
estimate of the performance for CAQR has been provided by
the authors.
Assuming that the QR factorization of a tall and skinny

matrix can be represented as a reduction, Langou [10] im-
plemented a methodology to perform the reduction by using
user-defined MPI operation and MPI Reduce. Moreover, in
the context of grid computing, by identifying bottlenecks in
ScaLAPACK, Agullo et al. [11] developed an approach to
computing the QR factorization by articulating the CAQR
factorization with a topology-aware middleware in order to
confine intensive communications. Contrary to all the previous
work on QR, they have used more original trees instead of the
binary tree.

III. TILE CA-QR FACTORIZATION

Essentially the tile CA-QR factorization is an integration
(or mixed version) of the CAQR factorization and the tile
QR factorization. The basic idea is to store a matrix in
a tile data layout and divide the matrix into a number of
domains (i.e., blocks of rows). Each domain performs a local
QR factorization independently. After finishing the local QR
factorization, each domain participates in a global reduction
to compute the final R factor.

Suppose an m×n matrix A consists of mb×nb tiles (m >
n), and b is the tile size for which mb = m

b and nb = n
b .

Tile CA-QR partitions the matrix’s m rows into D blocks:
A = [A1;A2; . . . ;AD], where Ai is of dimension m

D × n and
is called “Domain i.” Note that the matrix A is stored in b×
b tiles. The tiled matrix A that is divided into D horizontal
domains can be expressed as follows:

A =
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where Ai,j is a tile of size b × b. In the first step, all the
domains start to execute the tile QR factorization of the first
panel and the associated updates concurrently as shown in Fig.
1. There is no data dependency or communication between
different domains. That is, each domain is independent of
the other domains. After the QR factorization of the first
panel within each domain is finished, each domain i gets a
b×b upper triangular factor R̂i located at A(i−1)×

mb
D

+1,1. For
instance, R̂1 is located at A1,1 and R̂2 is located at Amb

D
+1,1.

Note that all the R̂i’s belong to the first block-column for
the first iteration. Next, the tile CA-QR factorization performs
a reduction among all the R̂i’s, where i ∈ {1, . . . , D}. The
output of the reduction is the final factor of R1,1 assuming
A = QR and R is stored in tiles. Then the final R1,1 will
be applied to the top block-row {A1,2, . . . , A1,nb

} to compute
{R1,2, . . . , R1,nb

}. The next step of the factorization can be
initiated on A2:mb,2:nb

while the previous step is still in pro-
cess as long as the dependencies are satisfied. The factorization
steps are therefore pipelined which can potentially hide the
light points of synchronizations required during the merging
procedure.
Before describing the distributed tile CA-QR factorization,

we briefly overview the six kernel subroutines used by the
factorization. For more details of these kernels, please refer to
Section 3 of the Hadri et al. paper [6].
The first four kernel subroutines are called locally within

each domain.
• dgeqrt: R[k,k], V[k,k], T[k,k] ← dgeqrt(A[k,k])
dgeqrt computes the QR factorization of a tile A[k,k]
and generates three outputs: an upper triangular tile
R[k,k], a unit lower triangular tile V[k,k] containing the
Householder reflectors, and an upper triangular tile T[k,k]
for storing the accumulated transformations.

• dtsqrt: R[k,k], V[i,k], T[i,k] ← dtsqrt(R[k,k], A[i,k])
After dgeqrt is called, dtsqrt stacks tile R[k,k] on top
of tile A[i,k] and computes an updated QR factorization.



The subroutine updates the tile R[k,k] and generates a tile
V[i,k] and an upper triangular tile T[i,k]. V[i,k] and T[i,k]
also store the Householder reflectors and accumulated
transformations, respectively.

• dormqr: R[k,j] ← dormqr(V[k,k], T[k,k], A[k,j])
dormqr applies dgeqrt’s output (i.e. V[k,k], T[k,k]) to
tile A[k,j] located on the right hand side of A[k,k] and
computes the R factor R[k,j].

• dtsssmqr: R[k,j], A[i,j] ← dtsssmqr(V[i,k], T[i,k],
R[k,j], A[i,j])

dtsssmqr applies dtsqrt’s output (i.e, V[i,k], T[i,k]) to a
stacked R[k,j] and A[i,j], and then updates the R factor
R[k,j] and A[i,j], respectively.

The algorithm Domain_Tile_QR applies the four kernel
subroutines to factorize a domain of size nrows × ncols tiles
starting from the position A[I, J]. For instance, Fig. 1 can be
viewed as a single domain that applies this algorithm. Note
that here I, J are indexed from 0.

Algorithm 1 Domain Tile QR Algorithm
Domain Tile QR(A, I, J, nrows, ncols)
R[I,J], V[I,J], T[I,J] ← dgeqrt(A[I,J])
for j ← J+1 to J+ncols-1 /*I-th row*/ do
A[I,j] ← dormqr(V[I,J], T[I,J], A[I,j])

end for
for i ← I+1 to I+nrows-1 /*J-th column*/ do
R[I,J], V[i,J], T[i,J] ← dtsqrt(A[I,J], A[i,J])

end for
for i ← I+1 to I+nrows-1 /*trailing submatrix update*/ do
for j ← J+1 to J+ncols-1 do
R[I,j],A[i,j]←dtsssmqr(V[i,J],T[i,J],R[I,j],A[i,j]

end for
end for

The remaining two kernel subroutines are used in the
reduction step that involves merging a collection of domains.

• dttqrt: R[i1,k],V[i2,k],T[i2,k]←dttqrt(R[i1,k],R[i2,k])
This is the “merge” operation. dttqrt stacks one domain’s
factor R[i1,k] on top of another domain’s factor R[i2,k]
and computes an updated factor R[i1,k]. It also generates
an upper triangular tile V[i2,k] and an upper triangular
tile T[i2,k].

• dttssmqr: A[i1,j], A[i2,j] ← dttssmqr(V[i2,k], T[i2,k],
A[i1,j], A[i2,j])

After dttqrt is called, dttssmqr applies the output of dttqrt
to update A[i1,j] and A[i2,j] (j ∈ [k + 1, nb]) that are
located on the right hand side of R[i1,k] and R[i2,k],
respectively.

The algorithm Merge_Domains merges two R factors
from a pair of domains.

Algorithm 2 Merge Domains Algorithm
Merge Domains(R, A, i1, i2, k, ncols)
/*merge two R factors from two domains*/
R[i1,k], V[i2,k], T[i2,k] ← dttqrt(R[i1,k], R[i2,k])
/*update the i1-th and i2-th rows*/
for j ← k+1 to k+ncols-1 do
A[i1,j], A[i2,j] ← dttssmqr(̄V[i2,k], T[i2,k], A[i1,j], A[i2,j])

end for

Distributed Tile CA-QR Factorization: Given P processes
on a distributed-memory system, we distribute the matrix’s D
domains across different processes by 1-D block distribution.
Each process Pi owns a number D

P of domains from DD
P
i to

DD
P
(i+1)−1. Although D is a parameter used at the algorithm

level, we assume D ≥ P so that a process owns at least one
domain. A process may consist of one or more threads running
on multiple cores. The algorithm of the distributed tile CA-QR
factorization is shown as follows:

Algorithm 3 Distributed Tile CAQR Algorithm
Distributed Tile CAQR(A, mb, nb, D, P)
nr ← mb

P
/*number of rows per process*/

nd ← D
P
/*number of domains per process*/

ds ← mb
D

/*domain size*/
for each tile column k ← 0 to nb − 1 do

root ← %k/ds& /*index of the root domain*/
/*process Pmy could factorizes its nd domains in parallel*/
for each domain i ← 0 to nd− 1 do
if (d = my × nd+ i) < root then
if d = root then

I ← k
else

I ← my × nr + i× ds
end if

end if
/*[I,k] is the top left corner of domain d*/
Domain Tile QR(A, I, k, (my+1)×nr-I, nb-k)

end for
/*binary-tree merge*/
LB ← my × nd, UB ← LB+nd-1
for m ← 1 to 'log2(D − root)( do
d1 ← root, d2 ← d1 + 2m−1

while d2 < D do
if both d1, d2 /∈ [LB, UB] then
P1 ← d1/nd, P2 ← d2/nd
if d1 = root then
i1 ← k

else
i1 ← d1 × ds

end if
end if
i2 ← d2 × ds
processes P1 and P2 exchange R[i1,k], R[i2,k]
Merge Domains(R, A, i1, i2, k, nb-k)
d1 += 2m, d2 += 2m

end while
end for

end for

Figure 2 illustrates the operations of Distributed_
Tile_CAQR. It shows a matrix of 12 × 3 tiles that is
distributed across four domains. Each domain is stored and
computed by one process and has a submatrix of 3 × 3 tiles.
The figure shows the corresponding operations in the first
iteration. That is, each domain invokes Domain_Tile_QR
in parallel followed by a binary-tree merge between the first
panels of each domain. The second iteration would be the same
as the first iteration except for working on a trailing submatrix
of size 11× 2 tiles.

IV. ALGORITHM ANALYSIS
In this section, we present the total number of operations

for the sequential tile CA-QR factorization and the number of
messages and the communication volume for the distributed
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Fig. 2. The operations of distributed tile CA-QR. (a) Matrix A is divided
into four domains horizontally. (b) We now apply Domain_Tile_QR to each
domain in parallel. (c) Each domain computed a R factor located in the first
column. We merge R0 and R1, R2 and R3. (d) We merge R0 and R2 and
get the final factor R0. (e) At the beginning of the second iteration, domain
D0 has 2 × 2 tiles and the other three domains have 3 × 2 tiles. Similarly,
we continue to apply (b), (c), (d) to the four new domains in the trailing
submatrix.

tile CA-QR factorization. We also compare the metrics with a
number of related QR factorization algorithms.

A. Operation Count
We use aggregate analysis to calculate the number of

operations for each kernel. Note that each kernel takes as input
tiles of size b× b.
dgeqrt does 2b3 floating point operations. For each iteration

k, dgeqrt is invoked D− k−1
mb/D

times. There are nb iterations,
thus

Tdgeqrt =

nb
∑

k=1

(D −
k − 1
mb/D

)× 2b3

= 2b3nbD − b3(
nb − 1
mb/D

)(2nb −
mb

D
−

mb

D
nb − 1
mb/D

)

dormqr does 3b3 floating point operations. At iteration k,
there exist D − k−1

mb/D
domains each of which has a number

nb − k + 1 of tile columns. Every domain applies dormqr to
all the tiles on its top row except for the first tile.

Tdormqr =

nb
∑

k=1

(D −
k − 1
mb/D

)(nb − k)× 3b3 #
3
2
b3Dn2

b

dtsqrt does 10
3 b3 floating point operations. At iteration k,

there exist D − k−1
mb/D

domains and one of them is the root
domain. The root domain has mb

D − (k mod mb

D )+1 tile rows
and the other domains has mb

D tile rows.

Tdtsqrt =

nb
∑

k=1

(
mb

D
− k mod

mb

D
+ (D −

k − 1
mb
D

− 1)
mb

D
)
10b3

3

# (2mbnb − nb(nb +min(nb,
mb

D
)))

5
3
b3

dtsssmqr does 4b3 + sb2 floating point operations, where
s is a parameter used to implement dtsssmqr. s is the inner
blocking size which divides the tile size. At iteration k, there
exist D − k−1

mb/D
domains. The root domain consists of mb

D −

(k mod mb

D ) + 1 tile rows and nb − k + 1 tile columns. The
remaining domains consist of mb

D × (nb − k + 1) tiles.

Tdtsssmqr = (4b3 + sb2)

nb
∑

k=1

[(
mb

D
− k mod

mb

D
)(nb − k) +

(D −
k − 1
mb/D

− 1)
mb

D
(nb − k)]

= 2b3n2
b(1 +

s
4b

)(mb −
nb

3
)

dttqrt is the merge operation and does 5
3b

3 floating opera-
tions. At iteration k, the binary tree has D− k+1 leaf nodes
and D − k internal nodes.

Tdttqrt =

nb
∑

k=1

(D − k)
5
3
b3 =

5
6
b3nb(2D − nb)

dttssmqr does 1
2 (4b

3+sb2) floating point operations. Every
merge operation dttqrt is followed by a number nb − k of
dttssmqr operations.

Tdttssmqr =

nb
∑

k=1

(D − k)(nb − k)
1
2
(4b3 + sb2)

= 2b3n2
b(1 +

s
4b

)(
D
2

−
nb

6
)

The total number of operations of tile CA-QR is the sum
of the above six equations:

Ttile−caqr = Tdgeqrt + Tdormqr + Tdtsqrt

+Tdtsssmqr + Tdttqrt + Tdttssmqr

# 2n2(1 +
s
4b

)(m−
n
2
+

Db
2

)

Compared to the operation count of the tile QR factorization
[12], that is, Ttile−qr = 2n2(1 + s

4b )(m− n
3 ), then

Ttile−caqr

Ttile−qr

=
2n2(1 + s

4b
)(m−

n
2
+ Db

2
)

2n2(1 + s
4b
)(m−

n
3
)

= 1 +
3Db − n
6m− 2n

.

Based upon the above equation, we can make the following
observations:

• if m & n, Ttile−caqr

Ttile−qr
' 1 + 1

2
mb
D

. Note that mb

D is the
domain size in terms of tiles and is often not small.

• if D = mb, Ttile−caqr

Ttile−qr
= 1 + 3m−n

6m−2n = 1.5.

B. Number of Messages
We compute for the process that has the maximum number

of messages. We know that communication only occurs during
the binary tree merge where the dttqrt and dttssmqr operations
are called. Given P processes, for each iteration k, a process
is involved in at most log2 P merge stages, thus,

Messagetile−caqr =
nb
∑

k=1

log2(P )(nb − k + 1)

' log2(P )n2
b = log2(P )

n2

b2
.



C. Communication Volume
Similar to computing the number of messages, we compute

for the process that has the maximum number of words com-
municated with other processes. Since each message contains
an upper triangular tile of b2

2 words,

Wordtile−caqr =
1

2
log2(P )n2.

D. Comparison with Other Algorithms
We compare tile CA-QR with LAPACK, ScaLAPACK, tile

QR, TSQR, and CAQR factorizations for tall and skinny
matrices. The numbers for TSQR and CAQR are provided
by Demmel’s paper [7]. As for ScaLAPACK and CAQR, we
let Pr & Pc assuming a very tall and skinny matrix input.
We have implemented the tile QR factorization on

distributed-memory systems in our previous work [13]. We
briefly introduce it here. The distributed tile QR factorization
maps tiles to a Pr × Pc process grid using the 2-D block
cyclic data distribution. P = Pr × Pc is the total number
of processes. A tile indexed by [i, j] will be allocated to the
process P [i mod Pr , j mod Pc] so that each process stores
a set of tiles and computes the tasks that modify the tiles. We
skip the calculation of the number of messages and words for
tile QR and just give the result in Table I.
As shown in Table I, from the least to the most operations

are LAPACK, ScaLAPACK, CAQR, tile QR, tile CA-QR, and
TSQR. LAPACK is a library used for share-memory systems
and thus does not have any communication. Although TSQR
has the minimum number of messages, it uses a much larger
tile size such that b = n given an m × n matrix. CAQR
also has a smaller number of messages than tile CA-QR, but
the algorithm typically uses the fork-join approach and is not
suited for dynamic scheduling (e.g., the whole step of panel
factorization must be completed before the step of trailing
matrix update can start). Differently, tile CA-QR provides
more fine grain tasks operating on tiles and can be executed in
a fully asynchronous manner. Furthermore, the communication
volume n2

2 logP for the QR factorization on tall and skinny
matrices has been proven to be optimal [7].

TABLE I
ALGORITHM COMPARISON

Seq. operation count #Messages #Words

LAPACK 2n2(m−
n
3
) – –

ScaLAPACK 2n2(m−
n
3
) 3n logP (n2 + bn) logP

TSQR 2n2(m + (D−1

2
−

1

3
)n) log P n2

2
logP

CAQR 2n2(m−
n
3
) 3n

b
log P (n2 + bn

2
) log P

Tile QR 2n2(m −
n
3
)(1 + s

4b
) (n

b
)2 Pr

Pc

m
b

n2 Pr
Pc

m
b

Tile CA-QR 2n2(m −
n
2
+ Db

2
)× (n

b
)2 log P n2

2
logP

(1 + s
4b

)

V. THE DISTRIBUTED FRAMEWORK
We build upon our previous work of Task-based Basic

Linear Algebra Subroutines (TBLAS) dynamic runtime system
[13] to realize tile CA-QR on distributed-memory systems.
This section first overviews the TBLAS runtime system, then
describes how we extend TBLAS to support tile CA-QR
efficiently.
Given a matrix A of mb × nb tiles and a multicore cluster

consisting of N nodes each with T cores, we launch on each
node Ni a process Pi, respectively. The rows of matrix A
are preallocated to N nodes by 1D block distribution. That
is, Pi (on nodeNi) stores a submatrix of A from (mb

N i)-th to
(mb

N (i+1)−1)-th tile-rows. Note that by default TBLAS uses
a general 2D block cyclic data distribution. But the 1D data
distribution which is a special case of 2D data distribution is
more suitable for tall and skinny matrices.

A. TBLAS Runtime System
Every process runs an instance of the TBLAS runtime

system in parallel, which are started by mpirun. As shown
in Fig. 3, the TBLAS runtime system includes three types
of threads: task-generation thread, computing thread, and
communication thread. Given a node with T cores, we launch
T computing threads on T different cores, as well as a
task-generation thread and a communication thread on two
arbitrary cores. The task-generation thread executes a tile CA-
QR program and generates tasks to fill in its node’s local task
queues. Also, whenever becoming idle, a computing thread
picks up a ready task from the ready task queue and computes
it. After finishing a task, the computing thread scans the
task queues to resolve data dependency and finds the finished
task’s children and starts them. The communication thread is
responsible for sending and receiving data between a parent
task and its children to meet the data dependency demands.
An advantage of the tile CA-QR factorization is that we do
not need a dedicated core to perform MPI communications
because of the high parallelism degree and the minimized
communication of the algorithm.

B. Extensions
Our first implementation of tile CA-QR with the original

TBLAS runtime system did not yield good performance au-
tomatically. By profiling the execution using the Intel trace
analyzer and collector [14], we found that each core’s comput-
ing time is only half of the wall-clock execution time, which
implies there is a nearly 50% idle time on each core.
Figure 4 a) shows an example trace of the first version of tile

CA-QR running on 16 dual-core nodes. The colored regions
represent the computation time, and the gaps represent the idle
time during the execution. By analyzing the trace, we found
a few reasons for the poor performance. 1) In the program’s
corresponding task graph, between domains, tasks from two
iterations (i.e., from i-th and i+1-th panels) are connected
by tasks computing the global binary-tree reduction across
domains. The merge tasks must be executed earlier in order
to pull tasks from the next iteration to execute. 2) Within a



(a) The original version (b) An improved version (c) The final version
Fig. 4. Traces for tuning the TBLAS runtime system. The colored regions denote computation time and the empty gaps denote idle time. After applying a
number of modifications, the final version of the TBLAS runtime system has much less idle time and is faster than the original version by 35%.

domain, the panel factorization tasks should also be executed
as early as possible because many trailing-matrix update tasks
are awaiting a single panel-factorization task. 3) Lookahead
to the next d iterations can not only pull tasks from the next
iteration but also from the next d iterations.
Essentially we want to make sure the TBLAS runtime

system executes the tasks on the critical path as early as
possible. We modified the runtime system in the following
ways:

• We added the lookahead feature to the runtime system.
The lookahead depth d is a parameter to the runtime sys-
tem and has been tuned to provide the best performance.

• We assign priorities to different tasks. The binary-tree
merge tasks have the highest priority. At iteration i,
the tasks located between the i-th column and (i+d)-th
column have the 2nd highest priority given a lookahead
depth of d. The remaining tasks have a regular priority.

• We also added message priorities to the communication
subsystem of the runtime system. The output of a high
priority task will be assigned a high priority accordingly
and sent out by the communication thread earlier than

...      task window: 

... ready task queue: 

Task-generation 
thread 

... Computing thread Computing thread Computing thread 

Network 

outbox 

inbox 

Communication 
thread 

Fig. 3. TBLAS runtime system.

the other messages. Similarly, the receiver will process
the high priority message earlier too.

• The task window size has been tuned to optimize the
program performance. With a small window size, the
runtime system is not able to see tasks in the other
domains and the following iterations so that there is a
lesser degree of parallelism. But a large window size
will increase the runtime system overhead due to longer
queues and length access time to search for and resolve
data dependencies in the queues.

Figure 4 displays examples of traces for three different
versions of the runtime system. Figure 4 a) shows the trace of
the original version that has significant idle time. After setting
appropriate task priorities, the performance is improved by
27% as shown in b). Figure 4 c) shows the trace of our final
optimized version after applying all the above modifications
and tunings. The final version is better than the original one
by 35%. It is easy to see the significantly reduced empty gaps
(i.e., idle time) in the figure.

VI. PERFORMANCE EVALUATION

In this section, we provide strong scalability and weak
scalability performance results on three different distributed-
memory machines. We also present the crossover point of the
tile CA-QR implementation for matrices that are not tall and
skinny.
We conducted experiments on two Beowulf clusters (Grig

and Newton at University of Tennessee) and a Cray XT5 sys-
tem (Jaguar at Oak Ridge National Laboratory) to compare
tile CA-QR with the ScaLAPACK library. Whenever possible,
we use a vendor-optimized ScaLAPACK library. Table II
lists the hardware and software resources we used to do our
experiments. The Grig cluster has two cores per node, the
Newton cluster has eight cores, and the Cray XT5 system has
12 cores per node. On Newton and the Cray XT5 system,
we use Intel MKL and Cray XT LibSci libraries to conduct
ScaLAPACK experiments, respectively.

A. Strong Scalability

For strong scalability experiments, we fix the matrix input
size and increase the number of cores to solve the matrix.



TABLE II
EXPERIMENT RESOURCES.

Grig cluster Newton cluster Cray XT5
Processor Intel Xeon 3.2GHz Intel Xeon E5530 2.4GHz AMD Opteron 2.6GHz
Cores per processor 1 4 6
Processors per node 2 2 2
Nodes 60 170 18,688
Memory per nod 4 GB 16 GB 16 GB
Peak perf. per core 6.4 GFLOPS/s 9.6 GFLOPS/s 10.4 GFLOPS/s
Network Myrinet Infiniband Cray SeaStar2+
OS Linux 2.6 Scientific Linux 5.3 Compute Node Linux 2.2
Compilers gcc 64bit 3.4.4 Intel compilers 11.0 PGI 9.0.4
MPI lib mpich-mx 1.1 OpenMPI 1.2.8 Cray XT MPT 3.5.1
ScaLAPACK lib Netlib scalapack 1.8 Intel MKL 10.1 Cray XT LibSci 10.3.6
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Fig. 5. Strong scalability.

Then we compare the total number of GFLOPS between tile
CA-QR and ScaLAPACK.
The matrix input to the Newton cluster and Cray XT5

system is of 512× 32 tiles with a tuned tile size of b = 200.
The matrix input to the Grig cluster is a bit smaller (due to
its smaller memory), that is, 512 × 16 tiles with a tile size
200. Since the configuration of a process grid Pr × Pc can
affect the performance of ScaLAPACK significantly, we tried
all possible grid configurations and chose the best process
grid for ScaLAPACK. Based on our experiments, we also
found that running an MPI process on each core has a
better performance than running an MPI process on each
node with multithreaded computational kernels. Therefore in
our ScaLAPACK experiments, each MPI process is single-
threaded.
Figure 5 displays the overall performance of tile CA-QR

and ScaLAPACK on three systems. On the Grig cluster, as we
increase the number of cores from 1 to 64, the performance
of tile CA-QR increases from 4.3 GFLOPS to 206 GFLOPS.
By contrast ScaLAPACK increases from 2.4 GFLOPS to 112
GFLOPS.
On Newton, between 1 and 128 cores, the performance of

tile CA-QR increases from 7.3 GFLOPS to 620 GFLOPS.
Then from 128 cores to 256 cores, the increasing rate of tile
CA-QR drops and its performance rises from 620 GFLOPS
to 810 GFLOPS. The performance of ScaLAPACK is much
worse than that of tile CA-QR. In the beginning it rises from

7.1 GFLOPS to 172 GFLOPS (1 to 64 cores), after which it
nearly stops increasing.
On the Cray XT5 system, with an increasing number of

cores from 1 to 384, tile CA-QR improves from 7.5 GFLOPS
to 1700 GFLOPS while ScaLAPACK improves from 5.8 to
1180 GFLOPS.

B. Weak Scalability
For weak scalability experiments, we fix the amount of

computation on each core. When we double the number
of cores, we also double the total amount of computation
accordingly. Weak scalability demonstrates a program’s ability
to solve larger problems with more resources.
In our experiment, each matrix input has a fixed number

of eight tile-columns but different number of tile-rows. When
we double the number of cores, we double the number of tile-
rows in the input. For instance, the input to the single-core
experiment has 64× 8 tiles. And the two-core experiment has
a matrix input of 128× 8 tiles.
Figure 6 shows the performance of the weak scalability

experiments on three different systems. Besides tile CA-
QR and ScaLAPACK, we also display the theoretical peak
performance and the serial DGEMM performance times the
number of cores for each system. The DGEMM performance
serves as an upper bound for all of our experiments. Again for
ScaLAPACK, we always choose the best process grid and use
the vendor optimized ScaLAPACK library whenever possible.
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(d) Per-core performance on Newton
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(f) Per-core performance on Cray XT5
Fig. 6. Weak scalability.

There are two subfigures for each system. The top subfigure
shows the total number of GFLOPS, and the bottom one shows
the number of GFLOPS per core (i.e., the total number of
GFLOPS divided by the total number of cores). Ideally the
number of GFLOPS per core is a constant and does not change
from 1 to n cores so that the per-core performance curve is
flat.
Figure 6 a) and b) display the overall performance and

per-core performance of tile CA-QR and ScaLAPACK on the
Grig cluster, respectively. We set the tile size to b = 200. As
shown in a), as the number of cores increase from 1 to 64,
tile CA-QR increases from 4.1 GFLOPS to 244.9 GFLOPS
while ScaLAPACK increases from 1.96 to 92.1 GFLOPS. In
b), the per-core performance of tile CA-QR keeps at a rate
of 4 GFLOPS that outperforms ScaLAPACK by nearly four
times.
On the Newton cluster, the ScaLAPACK experiment calls

the QR factorization subroutine provided by Intel MKL 10.1.
Figure 6 c) shows that the performance of tile CA-QR rises
from 6.9 GFLOPS to 1,540 GFLOPS while ScaLAPACK rises
only from 3.3 GFLOPS to 270 GFLOPS. In d), the per-
core performance of tile CA-QR decreases slightly from 6.9
to 6.4 GFLOPS between 1 and 128 cores, and then drops
0.4 GFLOPS from 128 to 256 cores. ScaLAPACK does not
perform as well as tile CA-QR. For instance, the performance
of ScaLAPACK on 256 cores is only 1/6 of that of tile CA-QR.
On the Cray XT5 system, we use the ScaLAPACK routine

provided by Cray XT LibSci 10.3.6 and let tile size b = 300. In
Fig. 6 e), with an increasing number of cores from 1 to 3,072,
the performance of tile CA-QR increases from 7.4 GFLOPS to
17.5 TFLOPS while ScaLAPACK increases from 4.3 GFLOPS
to 4.3 TFLOPS. In Fig. 6 f), the per-core performance of tile
CA-QR decreases gradually from 7.4 GFLOPS (with 1 core) to

6.3 GFLOPS (with 12 cores). The reason for the performance
drop is related to the NUMA architecture and requires an
optimized memory-affinity setup. Afterward tile CA-QR scales
well from 12 cores to 3,072 cores (i.e., from 1 node to 256
nodes). By contrast the performance of ScaLAPACK drops
from 4.3 GFLOPS to 1.4 GFLOPS as we increase the number
of cores, which is 1/4 of that of tile CA-QR.

C. Crossover Point
This section discusses how distributed tile CA-QR behaves

if the matrix is not tall and skinny. In our experiment, a matrix
has a fixed number of 512 tile-rows but an increasing number
of tile-columns. The tile size is set to b = 200. Since we
want to view the number of columns as a unique variable,
we choose to use a fixed number of 192 cores. We conducted
the experiment on the Cray XT5 system. Note that 192 cores
correspond to 16 nodes.
Figure 7 shows the crossover point when a matrix becomes

wider and wider until it is eventually square. We can see that
the performance of tile CA-QR becomes worse than that of
ScaLAPACK after the number of columns is greater than 1/4
of the number of rows. This is because the matrix’s 512 tile-
rows have been distributed to 16 processes by the 1D block
distribution. Every process is allocated with 32 tile-rows and is
only responsible for the computation on its own 32 tile-rows.
As the algorithm visits and computes the matrix from top left
to bottom right, more and more processes on the top become
idle, which results in a load imbalance and poor performance.
Figure 8 shows an example of the tile CA-QR factorization

that explains the cause of idle processes. The matrix input has
8×4 tiles and is partitioned across eight processes. We can see
from the figure that when the algorithm is working on the third
tile-column, processes P0 and P1 become idle until the end of



0

200

400

600

800

1000

1200

1400

8 16 32 64 128 256 512

G
F
L
O
P
S

Number of Tile Columns

ScaLAPACK

Tile CA-QR

Fig. 7. Crossover point. The input has a fixed number of 512 tile
rows.

RR RR RR R

R R R

P0

P1
P2
P3
P4
P5
P6
P7

Fig. 8. Existent idle processes given a matrix of 8 × 4 tiles
distributed across eight processes.

the factorization. A two-dimensional block cyclic distribution,
similar to ScaLAPACK, would then be necessary to efficiently
handle general matrix sizes and overcome this bottleneck. This
would also require a revision of the algorithm correspondingly.
This is out of the scope of this paper which focuses on how
to factorize tall and skinny matrices in a more efficient way.

VII. CONCLUSION AND FUTURE WORK

The QR factorization of tall and skinny matrices has been
used in many scientific fields that require solving least square
problems. This paper extends an existing algorithm for shared-
memory architectures and enables it to work efficiently on
modern large-scale distributed-memory systems. We have im-
plemented the algorithm with an augmented TBLAS runtime
system. The distributed tile CA-QR factorization has a high
degree of parallelism and allows for a fully dynamic execution
that can overlap computation and communication greatly. We
have presented the algorithm, the analysis of the algorithm,
the extension of the runtime system, and the performance
evaluation. Our experiments on two multicore clusters and
a Cray XT5 system demonstrate that the tile CA-QR factor-
ization is scalable on up to 3,072 cores and can outperform
the ScaLAPACK library by up to 4 times for tall and skinny
matrices.
In summary, we make the following contributions: (1) An

extension from shared-memory systems to distributed-memory
systems; (2) A detailed analysis of the algorithm with respect
to operation count, number of messages, and communication
volume; (3) An extended TBLAS runtime system to support
an efficient distributed implementation; (4) First demonstration
of the scalability of the algorithm on large scale distributed-
memory systems. Our future work includes looking for new
methods to partition matrices to different processes to improve
load balance for general matrix size, and applying this ap-
proach to solving other linear algebra problems on distributed-
memory multicore systems.
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