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Abstract—We present a modelling framework to accurately
predict time to run dense linear algebra calculation. We report
the framework’s accuracy in a number of varied computational
environments such as shared memory multicore systems,
clusters, and large supercomputing installations with tens of
thousands of cores. We also test the accuracy for various
algorithms, each of which having a different scaling properties
and tolerance to low-bandwidth/high-latency interconnects. The
predictive accuracy is very good and on the order of
measurement accuracy which makes the method suitable for
both dedicated and non-dedicated environments. We also
present a practical application of our model to reduce the time
required to tune and optimize large parallel runs whose time is
dominated by linear algebra computations. We show practical
examples of how to apply the methodology to avoid common
pitfalls and reduce the influence of measurement errors and the
inherent performance variability.

Index Terms—Linear systems, parallel algorithms, modelling
techniques

I. INTRODUCTION

Dense systems of linear equations are found in numerous
applications, including:

• airplane wing design;
• radar cross-section studies;
• flow around ships and other off-shore constructions;
• diffusion of solid bodies in a liquid;
• noise reduction; and
• diffusion of light through small particles.

The electromagnetics community is a major user of dense
linear systems solvers. Of particular interest to this
community is the solution of the so-called radar
cross-section problem. In this problem, a signal of fixed
frequency bounces off an object; the goal is to determine the
intensity of the reflected signal in all possible directions. The
underlying differential equation may vary, depending on the
specific problem. In the design of stealth aircraft, the
principal equation is the Helmholtz equation. To solve this
equation, researchers use the method of moments [18], [31].
In the case of fluid flow, the problem often involves solving
the Laplace or Poisson equation. Here, the boundary integral
solution is known as the panel methods [19], [20], so named
from the quadrilaterals that discretize and approximate a
structure such as an airplane. Generally, these methods are
called boundary element methods. Use of these methods
produces a dense linear system of size O(N) by O(N),

where N is the number of boundary points (or panels) being
used. It is not unusual to see size 3N by 3N, because of
three physical quantities of interest at every boundary
element. A typical approach to solving such systems is to
use LU factorization. Each entry of the matrix is computed
as an interaction of two boundary elements. Often, many
integrals must be computed. In many instances, the time
required to compute the matrix is considerably larger than
the time for solution. The builders of stealth technology who
are interested in radar cross-sections are using direct
Gaussian elimination methods for solving dense linear
systems. These systems are always symmetric and complex,
but not Hermitian.
A major source of large dense linear systems is problems
involving the solution of boundary integral equations [14].
These are integral equations defined on the boundary of a
region of interest. All examples of practical interest compute
some intermediate quantity on a two-dimensional boundary
and then use this information to compute the final desired
quantity in three-dimensional space. The price one pays for
replacing three dimensions with two is that what started as a
sparse problem in O(n3) variables is replaced by a dense
problem in O(n2).
A recent example of the use of dense linear algebra at a very
large scale is physics plasma calculation in double-precision
complex arithmetic based on Helmholtz equations [2].
Finally, virtually all large supercomputer sites do run the
High Performance LINPACK (HPL) benchmark [13] which
is primarily based on dense linear algebra. The reduction of
time to run the benchmark is of paramount importance. The
first machine on the 34th TOP500 list took over 20 hours to
complete the HPL run [17]. And this is only a single run not
counting the time spent in optimizing the parameters for the
run. This puts a tremendous stress on every component of
the machine and brings to the fore MTBF and MTBI
metrics. Addition, the power use during the run is very high
due to the very high utilization of all the cores of the
system. And in the end, only a single performance number is
reported without any public account of the days worth of
computing devoted to tuning.

II. PERFORMANCE PREDICTION BY CORRELATION

One of the building blocks of dense linear algebra solvers
and, by far, the main source if their high performance is a
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Fig. 1. Correlation between HPL and DGEMM as reported by HPCC and
available at the HPCC website.

dense matrix-matrix multiply routine – a Level 3 BLAS [9],
[8] called DGEMM. Naturally then, the sequential version of
the routine may be used to estimate the time to run as well
as the performance of a parallel dense solve. By utilizing the
information from the publicly available1 results of the HPC
Challenge benchmark [22]: during a single execution both
matrix-matrix multiplication and HPL are benchmarked
which should provided a consistent experimental setup.
Figure 1 gives a visual indication that DGEMM and HPL are
indeed correlated based on over 250 entries in the HPCC
database. In fact, the Pearson product-moment correlation
coefficient [26] exceeds 99%. This is a somewhat deceptive
achievement though. If we use DGEMM as a predictor for
HPL then the median relative prediction error will be just
over 15% and the smallest one will be 1.4%. Even if we
generously dismiss all the results with greater-than-median
error then we are still left with 1% to 15% variability in
prediction accuracy. It is beyond the scope of this paper to
fully explain such variability. We can mention briefly,
however, that the HPCC results use different BLAS
implementations, MPI implementations, and vastly varying
hardware. Each of these components contributes its share of
uncertainty. Hence we proceed to develop a more accurate
prediction framework.

III. EXECUTION MODEL OF HPL
Aside from TOP500, HPL is an important tool in science.
Boundary Element Methods, physics plasma calculation
based on Helmoltz equations, and multipol methods for
anthenae design studies result in very large dense systems of
equations. Accurate model for HPL is essential in planning
the use of computational resources for these scientific
disciplines.
For the simplicity of exposition, we only show the derivation
of the performance model for HPL that uses LU
factorization with the theoretical operation count

1See http://icl.cs.utk.edu/hpcc/
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Fig. 2. Average number of cores for the top 20 entries on the recent TOP500
editions.

2/3n3 +O(n2). But a similar argument easily applies to other
one-sided factorizations such as Cholesky factorization (with
operation count 1/3n3) and QR (4/3n3). Later on, we show
the results for all three factorization that uses the model
developed below.
Execution time of HPL will grow with the total number of
cores in the system provided that the local memory available
per core remains constant. This is because the best
performance is achieved when the problem size (the size of
the linear system matrix) is large – preferably it should
fill-up the usable portion of the main memory (excluding the
memory needed by the operating system and the software
libraries). Large problem sizes allow the software to hide
high latencies and low throughputs of the memory hierarchy
behind sufficient amount of very fast floating-point
operations that operate directly on the registers and there can
be many of such operations per clock cycle. Hence the time
to run HPL is given by the formula:

tTotal ∝ n3 =
√

MTotal
3 = N3/2

cores (1)

In practice, this results in a rather drastic increase in running
time as the number of cores of recent supercomputers started
to rapidly increase as indicated on Figure 2.
Our goal is to come up with a comprehensive model for
HPL without resorting to counting complexities of each and
every routine involved in the factorization and back-solve as
was done by Cuenca et al. [15] and Emmanuel Jeannot and
Julien Langou [10]. The model for the HPL’s floating-point
execution rate is influenced by the operation count and the
time to perform the solve. The operation count is fixed

http://icl.cs.utk.edu/hpcc/
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regardless of the underlying algorithm to facilitate
performance comparisons:

opcount =
2
3

n3 +
3
2

n2 (2)

The time to do the solve has three components:

t = Fn3 +Bn2 +Ln+C (3)

where F represents the inverse of the actual floating-point
rate of the update phase of the LU factorization commonly
refered to as the Schur’s complement [16]. Values of F
differ with the algorithm of choice: left-looking,
right-looking, top-looking, Crout, recursive, etc. [12]. The B
term corresponds to O(n2) floating-point operations
(primarily panel factorizations) and various bandwidth levels
such as between the cache and the main memory as well as
the interconnect bandwidth. As B embodies execution rate of
second-order terms, its value changes with the peak
performance and bandwidth imbalance: the execution rate
included in B may be an order of magnitude lower than the
one represented by F . L mainly corresponds to both the
memory hierarchy as well as the interconnect latency.
Finally, C represents constant overheads such as populating
caches with initial values and initializing network’s
communication layer. The floating-point rate is obtained as a
ratio of operation count and the time to solution:

rfp =
opcount

t
(4)

To an extent, the above model takes into account non-linear
dependence of the running time on some algorithmic
constants such as blocking factor NB. These constants may
be hidden inside F , B, L, and C as long as they don’t change
with n. The algorithmic parameters2 that may be hidden in
this manner include:

1) blocking factor NB

2) logical process grid order
3) recursive panel factorization type RFACT

4) recursive sub-panel count NDIV

5) recursion stopping criterion NBMIN

6) matrix-vector panel factorization type PFACT

7) panel broadcast algorithm BCAST

8) look-ahead depth DEPTH

9) row swapping algorithm SWAP

10) row swapping threshold
11) L1 panel columns transpose
12) U panel columns transpose
13) presence of equilibration
14) memory alignment

The reason why these parameters may be accounted for by
properly selecting F , B, L, and C, is that they can be fixed
and don’t change with number of cores or the problem
size N. However, logical process grid changes with the
number of cores. If the ratio of logical process rows to
logical process columns remains almost the same then the
algorithm behaves similarly regardless of the actual logical
process grid shape. However, as the number of cores

2For more details see http://www.netlib.org/benchmark/hpl/.

changes, the parameters of the Equation (3) are not
uniformly affected even if the aspect ratio of the process grid
remains the same. Hence, only the runs with the same core
count are modelled together.
At its heart, performance modelling is deeply related to
experimental science in that it relies on an actual experiment
to verify the findings of the proposed model. The first issue
to resolve is what to model: the perfromance rate or the time
to run the code. From the data analysis standpoint,
performance is the inverse of time multiplied by the matrix
size cubed: this translates to amplification of the
experimental and measurement errors by a large quantity.
Naturally then, time to run HPL is less sensitive to the errors
and outlying data points. The time is then chosen for
modelling. By making this choice, we alleviate the influence
of outliers on the data and thus we avoid the necessity of
using non-linear statistical methods that involve medians.
The model fitting may be performed with the standard
least-squares formulation rather than its non-linear
counterparts that are less developed and suffer from the
inaccuracies of non-smooth optimization [3]. As described
above, the time to run HPL can be written as:

t = f3n3 + f2n2 + f1n+ f0 (5)

Given a k number of experiments with varying problem sizes
n1,n2,n3, . . . ,nk we obtain the actual running times
t1, t2, t3, . . . , tk. Using the results of these experiments, we
formulate the problem as a linear least-squares problem:





n3
1 n2

1 n1 1
n3

2 n2
2 n2 1

. . .
n3

k n2
k nk 1









f3
f2
f1
f0



 =





t1
t2
. . .
tk



 (6)

or more compactly:
A f = t (7)

with A ∈ Rk×4, f ∈ R4, and t ∈ Rk. The absolute modelling
error can then be defined as

Merr = �A f − t�∞ (8)

with the assumption that the entries of t are relatively
accurate. Such is the case when we use the median of time
measurements.
The system matrix A from equation (7) is a Vandermode
matrix and tends to be badly conditioned [16]. Matrices from
typical experiments can have a norm-2 condition number as
high as 1011 which means that the model fitting needs to be
performed in double-precision arithmetic even though the
data itself has only a handful of significant digits worth of
accuracy. Equilibration [1] may reduce the condition number
by nearly ten orders of magnitude but the resulting
modelling error gets reduced only slightly. A similar
reduction of the modelling error may be achieved with a
simple row scaling that results from dividing each row of the
linear system (6) by the respective problem size:

a3n2
i +a2ni +a1 +a0/ni = ti/ni (9)

The reduction of error may be as high 20 percentage points.

http://www.netlib.org/benchmark/hpl/
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Fig. 3. Modeled versus measured time to run HPL on a common cluster. The
cubic root of time is plotted to increase graph’s clarity. Performance numbers
are shown for reference only.

Fig. 4. Modeled vs measured time to run HPL on a common cluster.
Performance numbers are shown for reference only.

Figure 3 shows how the model performs on a non-dedicated
cluster3 comprised of commodity hardware components. The
modelling error is 14% when all the data points are
accounted for. If a handful of initial data points is removed,
the modelling error drops to just over 2% which is within
the noise levels of a non-dedicated system. Thus, the method
is sensitive to the measuring error but (in numerical sense) is
stable because it delivers the answer whose quality is close
to the quality of the input data – a property that is an
established standard for properly implemenented numerical
libraries [33], [34].
Figure 4 shows how the error gets reduced (the farther to the
right the shorter are the bars) as the left-most points are
eliminated. The explanation is that the leftmost data points
do not represent the asymptotic performance rate of HPL:

3Dual-core 1.6 GHz Intel Core 2 with Gigabit Ethernet interconnect.

Virtual process Virtual process Modeling error [%]
grid rows grid columns [%]

1 30 0.7
2 15 1.0
3 10 0.8
5 6 2.2
6 10 1.6
1 60 0.5
3 20 0.7
2 30 0.5
4 15 2.2
5 12 2.7

TABLE I
VARIOUS LOGICAL PROCESS GRIDS AND THE CORRESPONDING

MODELLING ERROR FOR LU FACTORIZATION AS IMPLEMENTED IN
SCALAPACK.

they cannot be modeled with Equation (5) because the
attained performance varies significantly with the problem
size (coefficients ai no longer are constants but instead they
are a function of n).

IV. MODELING A GENERAL PURPOSE DENSE LINEARY
ALGEBRA LIBRARY: SCALAPACK

As mentioned earlier, our modelling methodology is robust
enough to be applicable to more than just HPL. For
example, Table I shows the modelling errors achieved on a
dedicated cluster4 running LU factorization available in
ScaLAPACK [4], [6]. The table indicates very high
accuracy (mostly around 1% and not exceeding 3%)
provided that the measurements with different virtual process
grids are not modelled together but rather treated separately.
Just like HPL, ScaLAPACK is written in terms of a number
of tunable parameters one of which is the shape of the
virtual process grid. However, each process grid shape is
more than just an input parameter to the factorization
routine: it acts more as an algorithm selector. For example,
tall-and-skinny (the number of process rows is far greater
than the number of process columns) and short-and-wide
(the number of process columns is far greater than the
number of process rows) process grids exhibit poor scaling
while the square-like process grids have proven scalability
properties [25], [5]. Therefore, as alluded before, it is
important to consider the use of each grid shape to be an
instance of a different algorithm and hence it should be
modelled separately. Similarily, the size of the matrix
blocking factor influences the tradeoff between the local
performance and the ability to tolerate
low-bandwidth/high-latency at the interconnect level [24].
For comparison, in Table II, we show results of modelling
error for ScaLAPACK’s main three one-sided factorizations
on a shared-memory multicores machine5. The error is larger
then in previous dedicated runs. This experiment is to show
how our modelling framework performs in an environment
with noise in collected data. In this case, the noise comes
from a stock Linux kernel installation without necessary

4Intel 2.4 GHz Pentium 4 cluster with Gigabit Ethernet interconnect.
5The machine has 8 NUMA nodes with an AMD Instanbul 2.8 GHz 6-core

processor for each node and a stock Linux kernel installation.
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Factorization Modelling error Standard deviation of measurement
[%] [% of median]

Cholesky 14 15
LU 14 20
QR 16 7

TABLE II
VARIOUS ONE-SIDED FACTORIZATIONS FROM SCALAPACK ON A
SHARED-MEMORY NUMA MACHINE AND THEIR CORRESPONDING

MODELLING ERROR AND STANDARD DEVIATION OF TIME MEASUREMENT.

Fig. 5. Relative modelling error for a single-core dual-processor Intel Xeon
3.2 GHz cluster with 416 processors connected with InfiniBand interconnect.

optimizations for large shared memory installation. The last
column of Table II indicates the standard deviation relative
to the median for 16 time measurements for a relatively
small problem size (n = 2000, median time under half a
second). As shown previously, the modelling error is on the
order of the standard deviation of time measurement which
indicates to us that the method is as accurate as the quality
of its input data.

V. QUALITY OF PREDICTION FOR EXTRAPOLATION

Arguably, the most useful aspect of modelling is
extrapolation of acquired data. High quality models are able
to provide information about runs with larger data sets based
on the results from runs with smaller data sets. To evaluate
our approach we chose a publicly availble data set of HPC
Challenge (HPCC) benchmark results from runs performed
in 20076. Figure 5 shows a relative modelling error for all
the available results sorted by the virtual process grids from
1-by-1 to 16-by-26. As before, the model is very accurate
and the relative error stays around 1% and often drops to a
fraction of a percent. This is an indication the runs were
made in a dedicated mode because our model is deeply
rooted in the knowledge of the algorithm and is not intented
to model external influences such as operating system noise
in a multi-user environment.

6The data set and more information on the hardware used is avilable at
http://icl.cs.utk.edu/hpcc/custom/index.html?lid=111&slid=218.

Fig. 6. Relative prediction error for the largest matrix size (top), the
largest and the second largest matrix size (middle), as well as the largest,
secondon, and third largest matrix size (bottom) on a single-core dual-
processor Intel Xeon 3.2 GHz cluster with 416 processors connected with
InfiBand interconnect.

A more interesting application of our model is to compute
the time to run without actually running the code. Figure 6
illustrates this kind of experiment using the same data as
was modelled in Figure 5. There are eleven process grid in
the modelled data set and each grid was used seven times to
execute the HPCC benchmark with increasing problem sizes.
However, for any given process grid, the first problem size
corresponded to the same percentage of the memory or (in
other words) the same amount of data per process was used.
Then, the second process size corresponded to twice as large
amount of data per process and so on. If we look at this data
set from the perspective of our model, we may treat first six
data points as measurements and use them for obtaining the
coefficients of the model and then we can predict the
runtime for the remaining seventh data point. The modelling
error for each process grid is presented in the top graph of
Figure 6. The middle graph shows the scenario where 5 data
points establish the coefficients and the remaining two data
points are predicted. Finally, the bottom of the figure shows
the situation where 4 data points are used to compute the
coefficients and the remaining 3 data points are being
predicted. Since our model has 4 coefficients we need at
least 4 data points to calculate them. By looking at Figure 6
we see that the modelling error is small, always below 8%
and often within or below 1%. What the figure doesn’t show
is the reduction of time that a prediction would afford. With
6 data points for modelling and 1 data point predicted (top
of the figure) there are no savings in time, in fact the time to
run the first 6 experiments is about 20% longer then the time
it takes to run the remaining seventh experiment. In the case
of 5 data points for modelling (middle of the figure), there is
already a substantial reduction of time: the last two
experiments take about 70% of the total time. And finally,
with 4 experiments predicting the 3 longest runs, the savings
in time exceed 90%.

http://icl.cs.utk.edu/hpcc/custom/index.html?lid=111&slid=218
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Fig. 7. Temporal performance (in Gflop/s) achieved in parallel HPL on an
Intel Xeon 3 GHz cluster with 100 cores.

VI. SAMPLED EXECUTION

In this section we test our modelling framework in yet
another context where we attempt to reduce the time to run
the HPL benchmark by performing only some part of the
computation.
Figure 7 shows the temporal performance observed from
process 0 during a parallel HPL run: various portions of the
run contribute differently to the final performance number of
182.135 Gflop/s. Note the strongly nonlinear behavior of
performance across time.
We first present a theoretical framework that allows selective
execution and verification of the standard factorization and
then we show performance results at larger scale and give a
justification of the selected portion of the standard
factorization.

A. Sampled Factorization without Pivoting
First, for simplicity, consider LU factorization without any
pivoting

A = LU. (10)

We’d like to perform partial execution: only some parts of
the matrix will be factored and subsequently updated. For
this, let’s assume the following structure of A

A =





I A12 0 A14 0
0 A22 0 A24 0
0 A32 I A34 0
0 A42 0 A44 0
0 A52 0 A54 I




. (11)

To take advantage of this structure, it’s only necessary to
factor columns 2 and 4. The only updates that need to be
performed are applied from column 2 to column 4. This will
be sufficient to have a correct LU factorization and can be
used to subsequently solve a linear system and compute a
residual to check the answer.
The goal, however, is to perform all the updates “to the
right” (assuming that the right-looking algorithm is used): it

is the updates that afford high performance numbers for HPL
runs as evident in Figure 7. That’s why we use the following
matrix instead:

A =





I A12 A13 A14 A15
0 A22 A23 A24 A25
0 A32 A33 A34 A35
0 A42 A43 A44 A45
0 A52 A53 A54 A55




, (12)

but still only require factorization of columns 2 and 4. The
updates have now to be applied to columns 3 and 5 (in
addition to updates from column 2 to column 4) because
they contain non-zero entries. The result of a sampled
factorization should be as follows:

A =





I A12 Ã13 A14 Ã15
0 D22 Ã23 U24 Ã25
0 L32 Ã33 U34 Ã35
0 L42 Ã43 D44 Ã45
0 L52 Ã53 L54 Ã55




. (13)

Where Dii are diagonal submatrices with embedded lower
and upper portions of L and U factors:

Dii = Lii +Uii− I (14)

Verifying correctness of the factorization can be done using
two steps:

1) Check the columns 2 and 4 – the fully factored
columns – using the structure from equation (11).

2) Check the columns 3 and 5 – the columns with
updates only – using the structure from equation (11)
and multiple right-hand sides as shown below.

The second step involves the following system:




I A12 A13 A14 A15
0 A22 0 A24 0
0 A32 I A34 0
0 A42 0 A44 0
0 A52 0 A54 I




X =





0 0
A23 A25
A33 A35
A43 A45
A53 A55




. (15)

If the cost of fully solving the system in Equation (15) is
prohibitive in terms of time then it is possible to select only
a few columns for the final solution and the residual
calculation. The choice of columns can be made randomly
which will eliminate a potential use of the knowledge of
which columns are to be selected. This in effect will require
proper updates to the full set of columns 3 and 5. Such
randomizition is a typical method of preventing unwanted
optimization [22].

B. Sampled Factorization with Partial Pivoting

For numerical stability, HPL performs LU factorization with
partial pivoting:

PA = LU, (16)

where P is a permutation matrix (it is a symmetric matrix
with mostly zero entries except for a single one in each
column and row).
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Fig. 8. Performance (in Gflop/s) achieved while sequentially performing the
sampled factorization of three sections of a matrix on a dual-core Intel Core2
Duo 2.53 GHz computer.

Introduction of the pivoting matrix slightly modifies the
derivation shown above – the partitioning of the permutation
matrix becomes:

P =





I 0 0 0 0
0 P22 P23 P24 P25
0 P32 I 0 0
0 P42 0 P44 P45
0 P52 0 P54 I




. (17)

Note that the first column is not altered by pivoting because
it is already in factored form (it is a submatrix of an identity
matrix). The facatorization routine now has to return a
pivoting matrix (usually in a form of a vector of integer
values). This matrix (or its inverse) is then used to solve the
system (15) in a standard way [29], [28].

C. Performance Aspects of Sampled Factorization
The previous sections showed a theoretical famework for
performing partial execution to achieve sampled factorization
and subsequently verify the result. They did not provide any
guidance how the portions of factorization contribute to the
overall performance. This is the subject of this section.
Let’s first divide the system matrix into three parts:

A =





A11 0 0 0 0
A21 0 0 0 0
A31 0 A33 0 0
A41 0 A43 0 0
A51 0 A53 0 A55




. (18)

We will be referring to the first set of columns from the
left ([A11,A21,A31,A41,A51]T ) as the initial section. The
second set of columns ([A33,A43A53]T ) – the middle section;
and the third (A55) – the end section. The sampled
factorization of the initial section factorizes the initial section
set of columns and performs the Schur complement update
of the rest of the matrix. Similarly, the middle section only
factorizes the middle section’s set of columns and performs
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Fig. 9. Performance of end section factorization of matrix of size 0.2×106

on Cray XT 4 using 1024 cores.

an update to the right but leaves the initial section untouched.
Finally, the end section of sampled factorization is a full
factorization of the matrix A55 – initial and middle sections
are not referenced at all. Figure 8 shows how the achieved
performance of sampled factorization varies with the relative
size of the portion of the matrix used for factorization. The
results are from a sequential run but are representive of
parallel runs as well. To the right of the figure all three data
point series converge because each sampled factorization
simply becomes a standard factorization of the whole matrix.
On the left side of the graph in the Figure, the series are
divergent: the initial section factorization largely
overestimates the actual performance, the middle section
factorization overestimates the performance only slightly, and
the end section underestimates the peformance achieved
while factoring the whole matrix with the standard method.
These results can be looked from various perspectives. A
system designer view is to maximize the achieved
performance and therefore the initial section factorization is
the most attractive. The middle section has a very desirable
property of very quickly converging to the actual
performance of the full matrix factorization. However, the
middle section performance still overestimates the actual
result which is is a drawback from the benchmarking
perspective. Finally, only the end section performance can be
modelled directly with the previously described performance
model because it is a full factorization of the lower right
portion of the matrix A55 just as the standard factorization
operates on the whole matrix A. We therefore proceeed by
using the end section in our subsequent experiments.

VII. COMBINED APPLICATION OF MODELLING AND
SAMPLED FACTORIZATION

To test our modelling framework together with the sampled
factorization approach, we performed a series of experiments
at the Oak Ridge National Laboratory on a large scale
supercomputer: Cray XT 4 with quad-core AMD Opteron
1345 processor clocked at 2.6 GHz. The whole installation
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Fig. 11. Performance of end section factorization of matrix of size 1.7×106

on Cray XT 4 using 30100 cores.

consists of over 30 thousands cores (31328 to be exact).
Figures 9, 10, and 11 show performance and running time
for varying number of cores, matrix sizes, and portions of
fully factored matrix. The code used for runs was the HPL
code modified to allow for partial execution as described
earlier. Despite the order of magnitude difference in core
counts and matrix sizes, the model is accurate to about 1%
or less. The performance-time curves from the figures show
the practical consequences of Equation (1): in order to attain
comparable fraction of the peak performance the time to run
will increase faster than linearly with the number of cores.
Figure 12 shows the performance-time curve from Figure 9
but this time it is recast in relative terms as a fraction of the
maximum attained performance. In this manner both time
and performance may coexist on the same Y-axis because
they both vary between 0% and 100%. In this setting it is
now easy to perform a what-if analysis of the data as it is
indicated in the Figure 12 with arrows. The question being
answered by the Figure is this: if the time to run the
benchmark is reduced by 50% how much will the
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Fig. 12. Relative running time and achieved performance with relation to
fraction of factored portion of matrix (1024 cores, with 32 by 32 virtual
process grid.)

performance result be reduced. The answer is encouraging:
the resulting performance drop will only be 5%. The making
of such predictions is simplified with our model based on a
handful of runs that accurately determine the modelling
coefficients. Without a model, it would be necessary to make
many more additional runs which would diminish the
benefits of reduced running time. And even with the extra
runs the exact point of 50% reduction of time is unlikely to
be found experimentally as is the case in Figure 12 and a
curve fitting or an approximation technique would be
necessary to provide more refined guidance for finding the
right problem size. These issues are already accounted for in
our model. The sampled factorization provides the added
benefit of stressing the entire system: the system matrix
occupies the entire memory. Also, the result of the partial
execution can be verfied as rigorously as is the case for the
standard factorization.

VIII. RELATED WORK

Execution model for HPL based on Self-Similarity Theory
and the Π-Theorem models floating-point performance on a
p by q process grid [23]:

rfp = γ pα qβ (19)

The values for α , β , and γ need to be determined
experimentally. Because of the nonlinear relation between
these coefficients and the performance is nonlinear, we need
to use a nonlinear optimization to fit the model to the
experimental data.
A more complex models for HPL and other parallel linear
algebra routines resort to modelling each individual period of
time spent in every non-trivial computational or
communication routine involved in the factorization and
back-solve [15], [10]. They tend to give accurate results
provided that they are populated with accurate software and
hardware parameters such as computational rate of execution
as well as bandwidth and latency of both memory and the
interconnect network.
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An attempt to model HPL using memory traces [32] resulted
in scoring HPL on par if not worse with an FFT
implementation in terms of memory locality. This was due to
the use of reference BLAS implementation and lack of
accounting for register reuse. Modern BLAS
implementations outperform the reference code by at least an
order of magnitude. One of the leading sources of
matrix-matrix multiply performance comes from register
reuse as evindenced by the efficiency (percentenge of the
peak floating point performance) of IBM POWER3 and
POWER4: the former achieves nearly 90% of peak
performance in matrix-matrix multiply BLAS kernel called
DGEMM while the latter only about 70% [7]. With similar
cache structure, these two microprocessors differ drastically
in the number of registers. Register allocation, latency
hinding, and bandwidth utilization is a key to efficient BLAS
routines (such as dense matrix-matrix multiply): when done
properly it is still possible to surpass the highly optimized
vendor implementation [30]. Our model captures the
efficiency of register reuse.
Partial execution was successfully used to perform
cross-platform performance predictions of scientific
simulations [35]. The study relied on the iterative nature of
the simulated codes. Dense linear algebra computations, as
opposed to iterative linear algebra methods [11], are not
iterative in nature and commonly exhibit non-linear variation
in performance as shown in Figure 7.
Performance prediction in the context of grid environments
focuses work load characterization and its use in effective
scheduling and meta-scheduling algorithms[27]. The
techniques used in such characterization tend to have a
higher error rates (“between 29 and 59 percent of mean
application run times”).

IX. CONCLUSIONS

We have presented a modelling framework and its
applications to prediction of performance across very diverse
hardware platforms ranging from commodity clusters to
large scale supercomputer installations. The accuracy is as
good as the quality of the input data which has been a
golden standard for numerical linear algebra for years [33],
[34]. Thus, we consider the model validated by experiments
on hardware with varying measurement error due to both
multi-user environment and operating system noise. We
applied our methodology to provide a viable process of
performing what-if analysis that can allows informed
decision regarding the tradeoff between higher performance
and shorter running time.
The obtained results encourage us to pursue a more detailed
study of the model such as sensitivity analysis and the
ability of the model to show measurement error, hardware
problems, or software misconfiguration [21].
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