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Abstract

The minimal 2-norm solution to an underdetermined system Ax =

b of full rank can be computed using a QR factorization of AT in

two di�erent ways. One requires storage and re-use of the orthogo-

nal matrix Q while the method of semi-normal equations does not.

Existing error analyses show that both methods produce computed

solutions whose normwise relative error is bounded to �rst order by

c�2(A)u, where c is a constant depending on the dimensions of A,

�2(A) = kA+k2kAk2 is the 2-norm condition number, and u is the

unit roundo�. We show that these error bounds can be strength-

ened by replacing �2(A) by the potentially much smaller quantity

cond2(A) = k jA+j � jAj k2, which is invariant under row scaling of

A. We also show that cond2(A) re
ects the sensitivity of the minimum

norm solution x to row-wise relative perturbations in the data A and b.

For square linear systems Ax = b row equilibration is shown to endow
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solution methods based on LU or QR factorization of A with relative

error bounds proportional to cond1(A), just as when a QR factoriza-

tion of AT is used. The advantages of using �xed precision iterative

re�nement in this context instead of row equilibration are explained.
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factorization, rounding error analysis, backward error, componentwise
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1 Introduction

Consider the underdetermined system Ax = b, where A 2 IRm�n with m �
n. The system can be analysed using a QR factorization

AT = Q

"
R

0

#
; (1.1)

where Q 2 IRn�n is orthogonal and R 2 IRm�m is upper triangular. We

have

b = Ax = [RT 0 ]QTx = RTy1; (1.2)

where

y =

"
y1

y2

#
= QTx:

If A has full rank then y1 = R�T b is uniquely determined and all solutions

of Ax = b are given by

x = Q

"
y1

y2

#
; y2 2 IRn�m arbitrary:
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The unique solution xLS that minimizes kxk2 is obtained by setting y2 = 0.

We have

xLS = Q

"
R�T b

0

#
(1.3)

= Q

"
R

0

#
R�1R�Tb = Q

"
R

0

#
(RTR)�1b (1.4)

= AT (AAT )�1b

= A+b;

where A+ = AT (AAT )�1 is the pseudo-inverse of A.

Equation (1.3) de�nes one way to compute xLS . This is the method

described in [13, Ch. 13], and we will refer to it as the \Q method". When

A is large and sparse it is desirable to avoid storing and accessing Q, which

can be expensive. An alternative method with this property was suggested

by Gill and Murray [6] and Saunders [16]. This method again uses the QR

factorization (1.1) but computes xLS as

xLS = ATy

where

RTRy = b (1.5)

(cf. (1.4)). These latter equations are called the semi-normal equations

(SNE), since they are equivalent to the \normal equations" AAT y = b. As

the \semi" denotes, however, this method does not explicitly form AAT ,

which would be undesirable from the standpoint of numerical stability. We

stress that equations (1.5) are di�erent from the equations RTRx = ATb for

an overdetermined least squares problem, where A = Q [RT 0 ]T 2 IRm�n

with m � n, yet these are also referred to as semi-normal equations [4].

In this paper we are solely concerned with underdetermined systems so no

confusion should arise.
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Other methods for obtaining minimal 2-norm solutions of underdeter-

mined systems are surveyed in [5].

Existing perturbation theory for the minimum norm solution problem,

and error analysis for the above QR factorization-based methods, can be

summarised as follows.

(1) Golub and Van Loan [7, Th. 5.7.1] prove the following perturbation

result. (Similar results are proved in [13, Th. 9.18] and [20, Th. 5.1]. Here,

�i(A) denotes the ith largest singular value of A 2 IRm�n and, if rank(A) =

m, �2(A) = kA+k2kAk2 = �1(A)=�m(A).

Theorem 1.1 Let A 2 IRm�n and 0 6= b 2 IRm. Suppose rank(A) = m � n

and that �A 2 IRm�n and �b 2 IRm satisfy

� = maxfk�Ak2=kAk2; k�bk2=kbk2g < �m(A):

If x and bx are the minimum norm solutions to Ax = b and (A + �A)bx =

b+�b respectively, then

kbx� xk2
kxk2

� minf3; n�m+ 2g�2(A)�+O(�2): (1.6)

This result shows that small relative changes in the data A and b produce

relative changes in the minimum norm solution x that are at most �2(A)

times as large. Unlike for the overdetermined least squares problem there is

no term in �2(A)
2.

(2) Arioli and Laratta [2, Th. 4] show that the computed solution bx from
the Q method satis�es

kbx� xk2
kxk2

� c1u�2(A) + O(u2); (1.7)

where ci denotes a modest constant depending on m and n, and u is the

unit roundo�. (Arioli and Laratta actually analyse a slightly more general

problem in which kx�wk2 is minimized for a given vector w; we have taken

w = 0).
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(3) Paige [15] shows that the computed solution bx from the method of

semi-normal equations satis�es

kbx� xk2
kxk2

� �2(A)c1u+
�2(A)c2u(1 + �2(A)c3u)

1� �2(A)c4u
: (1.8)

The bounds (1.7) and (1.8) are of the same form as (1.6). One implication

of these existing results is that both the Q method and the SNE method are

stable in the sense that the relative errors in the computed solutions re
ect

the sensitivity of the minimum norm problem to general perturbations in

the data.

The purpose of this paper is to show that the results in (2) and (3) can

be strengthened signi�cantly by employing componentwise analysis. First,

in section 2, we prove a version of Theorem 1.1 for componentwise pertur-

bations; thus we measure �A and �b by the smallest � such that

j�Aj � �E; j�bj � �f; (1.9)

where E � 0 and f � 0 contain arbitrary tolerances and inequalities hold

componentwise. We obtain an analogue of (1.6) with �2(A) replaced by a

potentially much smaller quantity that depends on A, x, E and f .

In section 3 we show that the term �2(A) in (1.7) and (1.8) can be

replaced by

cond2(A) � k jA+j � jAj k2;

which is a generalization of the condition number k jA�1j � jAj k2 for square
matrices introduced by Bauer [3] and Skeel [17]. This is important because

cond2(A) can be arbitrarily smaller than �2(A), since cond2(A) is invariant

under row scalings A ! DA (D diagonal and nonsingular) whereas �2(A)

is not. And cond2(A) cannot be much bigger than �2(A) since

cond2(A) � k jA+j k2k jAj k2 � nkA+k2kAk2 = n�2(A): (1.10)

In sections 4 and 5 we investigate stability issues, and we encounter sev-

eral di�erent types of stability. To put these di�erent types into perspective
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Table 1.1: Stability classi�cation scheme.

Backward stability Forward stability

Normwise N N

Row-wise R R

Componentwise C C

we present in Table 1.1 a scheme that classi�es six di�erent kinds of stability.

(We appreciate that it can be counter-productive to over-formalize stability,

but we believe that this scheme helps to clarify the overall picture.)

To explain the terminology we de�ne for A 2 IRm�n, with m � n, the

backward error

!E;f (y) � minf� : 9 �A 2 IRm�n;�b 2 IRm s.t. y is the minimum norm

solution to (A+�A)y = b+�b, and j�Aj � �E; j�bj � �fg;

where E � 0 and f � 0 are given. Note that if we were to remove the

minimum norm requirement on y in the de�nition of !E;f then the backward

error would be given by

max
i

jb� Ayji
(Ejyj+ f)i

; (1.11)

as shown in [14]. The three measures of backward stability in Table 1.1

correspond to the following choices of E and f , where en = (1; 1; : : : ; 1)T 2
IRn:

normwise (!N) : EN = kAk2emeTn ; fN = kbk2em;
row-wise (!R) : ER = jAjeneTn ; fR = jbj; (1.12)

componentwise (!C) : EC = jAj; fC = jbj:

A small value for !R(y) means that y is the minimum norm solution to

a perturbed system where the perturbation to the ith row of A is small
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compared with the norm of the ith row (similarly for b). We say, for example,

that a numerical method for solving Ax = b is in backward stability category

R (or is row-wise backward stable) if it produces a computed solution by such
that !R(by) is of order the unit roundo�

For each type of backward error there is a perturbation result that

bounds kx� yk2=kxk2 by a multiple of !E;f (y), and the multiplier de�nes a

condition number. As explained in section 2, for underdetermined systems

the conditions numbers are �2(A) for !
N , cond2(A) for !

R, and a quan-

tity cond2(A; x) that depends on both A and x for !C . Continuing the

\R-stability" example above, we say that a method is in forward stability

category R if it has a forward error bound of order cond2(A) times the unit

roundo�. An algorithm that has backward stability X (where X = N , R,

or C) automatically has forward stability X ; one of the reasons these de�-

nitions are useful is that an algorithm can have forward stability X without

having backward stability X .

In this terminology, the gist of section 3 is that the Q method and the

SNE method have forward stability R, whereas previous results guaranteed

only forward stability N .

In section 4 we explain why the Q method is (nearly) row-wise backward

stable but the SNE method is not backward stable at all. We give some

numerical results to provide insight into the error bounds and to illustrate

the performance of �xed precision iterative re�nement with the SNE method.

In section 5 we consider the implications of the results of section 3 for

square linear systems. We show that row equilibration of the system Ax = b

allows methods based on LU and QR factorization of A to produce com-

puted solutions whose relative errors are bounded in the same way as when

a QR factorization of AT is employed|namely by a multiple of cond(A)u

(corresponding to row-wise forward stability). We explain why �xed pre-

cision iterative re�nement leads to an even more satisfactory computed so-

lution than row equilibration and we provide two numerical examples for
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illustration.

2 Componentwise Perturbation Result

In this section we prove the following componentwise perturbation result for

the minimum norm problem, and use it to determine the condition numbers

for the perturbation measures in (1.12).

Theorem 2.1 Let A 2 IRm�n and 0 6= b 2 IRm. Suppose rank(A) = m � n,

and that

j�Aj � �E; j�bj � �f;

where E � 0, f � 0, and �kEk2 < �m(A). If x and bx are the minimum

norm solutions to Ax = b and (A+ �A)bx = b+�b respectively, then

kbx� xk2
kxk2

�
�
k jI �A+Aj �ET � jA+Txj k2+ k jA+j � (f +Ejxj) k2

� �

kxk2
+O(�2):

(2.1)

Proof. A +�A has full rank so we can manipulate the equation

bx = (A+ �A)T ((A+�A)(A+�A)T )
�1
(b+ �b)

to obtain

bx� x = (I �A+A)�AT (AAT )�1b+A+(�b��Ax) + O(�2)

= (I �A+A)�ATA+Tx+ A+(�b��Ax) +O(�2): (2.2)

Taking norms and then using absolute value inequalities, together with the

monotonicity property jxj � y ) kxk2 � kyk2, we have

kbx� xk2 � k(I � A+A)�ATA+Txk2 + kA+(�b��Ax)k2 +O(�2)

� (k jI � A+Aj �ET � jA+Txj k2 + k jA+j � (f + Ejxj) k2)�+ O(�2

as required.
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We note that for given A, b, E and f there exist �A and �b for which

the bound in (2.1) is attained to within a constant factor depending on n.

This is a consequence of the fact that the two vectors on the right-hand side

of (2.2) are orthogonal. Also, it is clear from the proof that (2.1) is valid

with the 2-norm replaced by the 1-norm.

By substituting the E and f from (1.12) into Theorem 2.1 we can de-

duce the condition numbers corresponding to our three di�erent ways of

measuring the perturbations �A and �b. For the componentwise measure

the condition number is clearly

cond2(A; x) = (k jI�A+Aj � jAT j � jA+Txj k2+ k jA+j � (jbj+ jAjjxj) k2)=kxk2:
(2.3)

Replacing b by its upper bound jAjjxj simpli�es this expression while in-

creasing it by no more than a factor of 2.

For the row-wise measure the bracketed term in the bound in (2.1) is

within a factor depending on n of cond2(A), hence we can take cond2(A)

as the condition number. In showing this one needs to use the equality

kI �A+Ak2 = minf1; n�mg (which can be derived by consideration of the

QR factorization (1.1), for example), and the observation that if B 2 IRm�n

and B � 0 then

1p
m
kBk2 � kBk1 = kBek1 � kBek2 �

p
nkBk2:

Note that when jxj = e, cond2(A) di�ers from cond2(A; x) by no more than a

factor of about
p
n. Finally, for the normwise measure the condition number

is �2(A) (as implied by Theorem 1.1). Table 2.1 summarises these results.

In the error analysis of the next section we need to use Theorem 2.1 with

E = jAjH , where H is a given matrix. In this case, taking also f = jbj, it is
convenient to put (2.1) in the form

kbx� xk2
kxk2

� minf3; n�m+ 2gmaxfkHk2; 1gcond2(A)�+ 0(�2): (2.4)
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Table 2.1: Condition Numbers.

Measure Condition Number

Normwise �2(A)

Row-wise cond2(A)

Componentwise cond2(A; x)

If kHk2 = 1 this is precisely (1.6) with �2(A) replaced by cond2(A), this

di�erence re
ecting the stronger assumption made about the perturbations

for (2.4).

3 Error Analysis

In this section we carry out an error analysis of the Q method and the SNE

method. We assume that the 
oating point arithmetic obeys the model

fl(x op y) = (x op y)(1 + �); j�j � u; op = �; =;
f l(x � y) = x(1 + �)� y(1 + �); j�j; j�j � u;

fl(
p
x) =

p
x(1 + �); j�j � u:

We consider �rst the Q method, and we assume that the QR factor-

ization (1.1) is computed by Householder transformations or Givens trans-

formations. In [12, Cor. A.8] it is shown that if bR is the computed upper

triangular factor there exists an orthogonal matrix eQ such that

AT +�AT = eQ " bR
0

#
; (3.1)

where

j�AT j � Gm;nujAT j (3.2)

and kGm;nk2 � �m;n. Here and below we use �m;n generically to denote

a modest constant depending on m and n; we are not concerned with the
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precise values of the constants so will freely write, for example, �m;n+�
0

m;n =

�00m;n.

The Q method solves the triangular system RTy1 = b and forms x =

Q [ yT1 ; 0 ]
T . Standard analysis shows that the computed by1 satis�es

( bR+ � bR)T by1 = b; j� bRj � �muj bRj: (3.3)

>From [12, Lemma A.7] the computed solution bx satis�es

bx = eQ" by1
0

#
+ g; (3.4)

where

jgj � G0

m;n

" jby1j
0

#
u; kG0

m;nk2 � �0m;n: (3.5)

(We emphasise the important point that the same orthogonal matrix eQ
appears in (3.1) and (3.4).)

Ideally, we would like to use the basic error equations (3.1){(3.5) to show

that bx is the exact minimum norm solution to a perturbed problem where

the perturbations are bounded according to j�Aj � �jAj and j�bj � �jbj.
The forward error could then be bounded by invoking (2.1). Unfortunately,

this componentwise backward stability result does not hold. We can, nev-

ertheless, obtain a forward error bound of the form (2.4) by using a mixed

forward and backward error argument.

>From (3.3), (3.4) and (3.1) we have

b = [ ( bR+� bR)T 0 ] eQT � eQ " by1
0

#
= (A+ F )x;

where

F = �A+ [� bRT 0 ] eQT ;

x = eQ" by1
0

#
: (3.6)
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Since (A+ F )T has the QR factorization (A+ F )T = eQ [ ( bR+ � bR)T 0 ]T

it follows from (3.3) and (3.6) that x is the minimum norm solution to

(A+F )x = b as long as kFk2 < �m(A) (so that A+F has full rank). >From

(3.1){(3.3) we have

jF j � ujAjGT
m;n + �mujAj(I + uGT

m;n)j eQjj eQT j
� ujAjHm;n:

Hence we can invoke (2.4) to obtain

kx� xk2
kxk2

� �m;ncond2(A)u+O(u2): (3.7)

Now from (3.4), (3.5) and (3.6) we have

kbx� xk2 = kgk2
� �0m;nkby1k2u = �0m;nkbxk2u+ O(u2)

= �0m;nkxk2u+ O(u2): (3.8)

Combining (3.7) and (3.8) we conclude that

kbx� xk2
kxk2

� �00m;ncond2(A)u+O(u2): (3.9)

Now we analyse the SNE method. As for the Q method, (3.1) and (3.2)

hold for the computed triangular factor bR. The computed solution by to (1.5)
satis�es

( bR+ � bR1)
T ( bR+� bR2)by = b; j bRij � �muj� bRij; (3.10)

and the computed solution bx satis�es

bx = AT by + g; jgj � �mujAT jjbyj: (3.11)

Taking a similar approach to the analysis for the Q method we write

bx = x+�x; (3.12)
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where

x = (A+ �A)Ty;bRT bRy = b; (3.13)

�x = AT (by � y)��AT y + g: (3.14)

Note that x is the exact minimum norm solution to (A+�A)x = b and so

once again (3.7) holds.

For later use we note that from (3.1),

A+ �A = bRT eQT
1 ; (3.15)

where eQ1 comprises the �rst m columns of eQ, and hence, using (3.13),

eQT
1 x = bRy: (3.16)

It remains to bound �x. Straightforward manipulation of (3.10) and

(3.13) yields

y � by = bR�1 bR�T� bRT
1
bRy + bR�1� bR2 y +O(u2)

= bR�1( bR�T� bRT
1
eQT
1 x+ � bR2 y +O(u2);

where we have used (3.16). Pre-multiplying by AT and using (3.15) gives

AT (y � by) = eQ1( bR�T� bRT
1
eQT
1 x+ � bR2 y) + O(u2);

which leads to

kAT (y � by)k2 � �mu(k j bR�T j � j bRT j k2kxk2 + k j bRj � jyj k2) + O(u2): (3.17)

To bound k j bR�T j � j bRT j k2 note that for the exact QR factorization we

have

k jR�T j � jRT j k2 = k jQT
1A

+j � jAQ1j k2 � m cond2(A):

Hence

k j bR�T j � j bRT j k2 � m cond2(A+ �A) = m cond2(A) +O(u): (3.18)
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To bound k j bRj � jyj k2 in (3.17) we note �rst that for the exact R and y

k jRj � jyj k2 = k jQT
1A

T j � jyj k2 �
p
mk jAT j � jyj k2:

Now, since x = AT y we have Ax = (AAT )y, or y = A+Tx. Hence

k jAT j � jyj k2 � k jAT j � jA+T j � jxj k2 � cond2(A)kxk2: (3.19)

It follows that for the computed bR and y

k j bRj � jyj k2 � p
m cond2(A)kxk2 +O(u): (3.20)

Combining (3.14), (3.17), (3.18), (3.20), (3.11) and (3.19) we have

k�xk2 � �m;ncond2(A)ukxk2+ O(u2):

Together with (3.7) and (3.12) this yields

kbx� xk2
kxk2

� �0m;ncond2(A)u+O(u2):

4 Discussion and Numerical Results

The analysis in the previous section shows that for both the Q method and

the SNE method the forward error is bounded by a multiple of cond2(A)u, so

both methods are forward stable in the row-wise sense. Before giving some

numerical examples we brie
y consider what can be said about backward

stability.

For the Q method the analysis of section 3 proves the following result

about the computed solution bx. There exists a vector x and a matrix F

such that x is the minimum norm solution to (A+ F )x = b where

jF j � ujAjHm;n � �m;nujAjeeT ) kFk2 � �0m;nukAk2

and

kbx� xk2 � �00m;nkbxk2u+O(u2):
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(This result, without the componentwise bound on F , is also proved in [13,

Th. 16.18].) Thus bx is relatively close to a vector that satis�es the criterion

for row-wise backward stability, and so the Q method is \almost" row-wise

backward stable. Note also that, from the above, bx has a relatively small

residual:

kb� Abxk2 � �000m;nkAk2kbxk2u+ O(u2): (4.1)

Interestingly, (4.1) implies that bx itself solves a slightly perturbed system,

but it is not in general the minimum norm solution.

For the SNE method it is not even possible to derive a residual bound

of the form (4.1). The method of solution guarantees only that the semi-

normal equations themselves have a small residual. Thus, as in the context of

overdetermined least squares problems [4] the SNE method is not backward

stable.

A possible way to improve the backward stability of the SNE method is

to use iterative re�nement in �xed precision, as advocated in the overdeter-

mined case in [4]. Some justi�cation for this approach can be given using

the analysis for an arbitrary linear equations solver in [12].

We have run some numerical experiments in MATLAB, which has a

unit roundo� u � 2:2 � 10�16. In our experiments we rounded the result

of every arithmetic operation to 23 signi�cant bits, thus simulating single

precision arithmetic with uSP � 1:2 � 10�7. The double precision solution

was regarded as the exact solution when computing forward errors.

We report results for several 10 � 16 matrices A, with the right-hand

sides b chosen randomly with elements from the normal (0; 1) distribution.

We report for each approximate solution by the normwise relative error


2(by) = kby � xk2
kxk2

;

and the three relative residuals

�X(by) = max
i

jb�Abyji
(EX jbyj+ fX)i

; X = N;R;C;
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where EX and fX are de�ned in (1.12). Iterative re�nement in �xed preci-

sion was used with the SNE method until either �N(by) � uSP or �ve iter-

ations were done. Note that if we were to use the 1-norm in de�ning EN

and fN in (1.12) then �N(by) � �R(by) would be guaranteed; for the 2-norm,

�N(by) > �R(by) is possible. We also report the three condition numbers for

each problem. There is no strict ordering between these condition numbers

(partly, again, because of the choice of norm), but there are constants c1

and c2 depending only on n such that

cond2(A; x) � c1cond2(A) � c2�2(A)

(see (1.10) and section 2).

The results are presented in Tables 4.1{4.6. The matrices A in Ta-

bles 4.1{4.3 are random matrices with geometrically distributed singular

values �i = �i, generated usin the routine randsvd of [10]. In Table 4.4,

Ax = b is the same system used in Table 4.1 but with the �fth equation

scaled by 215 = 32768. In Table 4.5 the system is the one used in Table 4.1

but with the eighth column of A scaled by 215. In Table 4.6, A is a Kahan

matrix|an ill-conditioned upper trapezoidal matrix with rows of widely

varying norm [7, p. 245], [10].

The key features in the results are as follows.

(1) The error bounds of the previous section are con�rmed. Indeed for

both the Q method and the SNE method the heuristic


2(bx) = kbx� xk2
kxk2

� cond2(A)u

predicts the error correct to within an order of magnitude in these examples.

(2) The independence of the forward errors on the row scaling of A is

illustrated by Tables 4.1 and 4.4. However, column scaling can have an

adverse e�ect, as shown in Table 4.5.

(3) The relative residuals con�rm that the Q method is (almost) row-wise

backward stable and that the SNE method is not even normwise backward
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stable. The relative residuals for the SNE method exhibit dependence on

cond2(A) in these examples (dependence of the normwise residual on �2(A)

in the case of overdetermined systems is proven by Bj�orck in [4, Th. 3.1]).

Iterative re�nement can produce a small relative residual, but can fail on

very ill-conditioned problems, as in Table 4.3.

The condition numbers displayed in the tables can all be estimated

cheaply given a QR factorization of AT . For example, we show how to es-

timate cond2(A; x). This di�ers by at most a factor
p
n from cond1(A; x).

We consider only the �rst term of cond1(A; x) in (2.3), as the second term

can be treated similarly. As in [1], we can convert this norm of a vector into

a norm of a matrix: with g = jAT jjA+Txj and G = diag(gi), we have

k jI �A+Aj � jAT j � jA+Txj k1 = k jI �A+Ajg k1
= k jI �A+AjGe k1 = k jI � A+AjG k1
= k j(I �A+A)Gj k1
= k (I �A+A)G k1:

The latter norm can be estimated by the method of [8] and [9, 11], which

estimates kBk1 given a means for forming matrix-vector products Bx and

BT y. Forming these products for BT = (I � A+A)G involves multiplying

by G and Q or their transposes, and solving triangular systems with R and

RT .

17



Table 4.1: A = randsvd([10; 16]; 1e2)

�2(A) = 1e2, cond2(A) = 8.63e1, cond2(A; x) = 1.57e2

�N(by) �R(by) �C(by) 
2(by)
Q method 1.83e-8 9.88e-9 1.42e-7 2.01e-6

SNE 5.11e-7 2.79e-7 4.40e-6 4.97e-6

1.52e-8 6.45e-9 9.64e-8 1.99e-6

Table 4.2: A = randsvd([10; 16]; 1e4)

�2(A) = 1e4, cond2(A) = 5.43e3, cond2(A; x) = 1.05e4

�N(by) �R(by) �C(by) 
2(by)
Q method 5.16e-9 6.84e-9 9.16e-8 1.29e-4

SNE 1.30e-5 1.56e-5 2.36e-4 2.30e-4

4.29e-9 4.63e-9 8.01e-8 1.04e-4

Table 4.3: A = randsvd([10; 16]; 1e6)

�2(A) = 1e6, cond2(A) = 4.30e5, cond2(A; x) = 8.86e5

�N(by) �R(by) �C(by) 
2(by)
Q method 6.88e-9 5.78e-9 9.18e-8 6.50e-3

SNE 3.58e-3 1.69e-3 2.56e-2 2.47e-2

5.17e-5 2.47e-5 3.74e-4 1.28e-2

5.39e-6 2.62e-6 3.96e-5 1.11e-2

2.05e-5 9.33e-6 1.41e-4 1.11e-2

1.51e-5 6.94e-6 1.05e-4 1.27e-2
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Table 4.4: A = D randsvd([10; 16]; 1e2)

�2(A) = 1.63e6, cond2(A) = 8.63e1, cond2(A; x) = 1.57e2

�N(by) �R(by) �C(by) 
2(by)
Q method 9.24e-9 9.88e-9 1.42e-7 2.01e-6

SNE 9.26e-7 2.79e-7 4.40e-6 4.97e-6

5.70e-9 6.45e-9 9.64e-8 1.99e-6

Table 4.5: A = randsvd([10; 16]; 1e2)D

�2(A) = 1.37e6, cond2(A) = 7.81e5, cond2(A; x) = 1.35e2

�N(by) �R(by) �C(by) 
2(by)
Q method 2.42e-9 5.70e-9 2.95e-4 9.29e-3

SNE 4.23e-3 5.89e-3 9.98e-1 2.61e-2

1.39e-5 1.93e-5 5.89e-1 1.75e-3

4.24e-7 5.90e-7 4.34e-2 3.60e-5

3.02e-9 4.20e-9 3.12e-4 1.29e-6

Table 4.6: A = kahan([10; 16])

�2(A) = 6.29e5, cond2(A) = 9.58e0, cond2(A; x) = 1.02e1

�N(by) �R(by) �C(by) 
2(by)
Q method 1.22e-8 3.52e-9 4.99e-8 1.79e-7

SNE 8.00e-8 3.42e-8 3.27e-7 3.35e-7
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5 Implications for Square Linear Systems

All the results in sections 2 and 3 are valid whenm = n. Theorem 2.1 reduces

to a straightforward generalization of a result in [17, Th. 2.1]. However, the

error bound
kbx� xk1
kxk1

� �ncond1(A)u+ O(u2) (5.1)

for the Q method is not a familiar one for square systems. (We have switched

to the 1-norm, which is the more usual choice for square systems). In

fact, a bound of the form (5.1) holds also if we solve Ax = b using an LU

factorization (with partial pivoting) of AT . Of course, when solving a square

system Ax = b it is more natural to employ an LU or QR factorization of

A than of AT . But if a factorization of A is used then no bound of the form

(5.1) holds in general|the best we can say is that

kbx� xk1
kxk1

� �n�1(A)u+ O(u2): (5.2)

We note, however, that there is a simple way to achieve a bound of the

form (5.1) for LU and QR factorization of A: work with the scaled system

(DA)x = Db instead of Ax = b, where B = DA has rows of unit 1-norm.

This follows from (5.2) and the fact that �1(B) = cond1(A). To verify the

latter equality note that if D�1 = diag(jAje), then

cond1(A) = k jA�1j � jAj k1 = k jA�1j � jAje k1 = k jA�1jD�1e k1
= k jA�1jD�1 k1 = k jA�1D�1j k1 = k j(DA)�1j k1
= kB�1 k1 = �1(B):

It is interesting to compare this row equilibration strategy with �xed preci-

sion iterative re�nement (FPIR). It is known that under suitable assump-

tions FPIR in conjunction with LU factorization with partial pivoting [1, 18]

or QR factorization [12] leads to a computed by such that !C(by) = O(u), that
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is, FPIR brings componentwise backward stability. >From an 1-norm ver-

sion of Theorem 2.1 we see that !C(by) � u implies

kby � xk1
kxk1

� 2 cond1(A; x)u+O(u2);

where

cond1(A; x) =
k jA�1j � jAj � jxj k1

kxk1
:

This is a stronger bound than (5.1) because cond1(A; x) � cond1(A) (with

equality for x = e) and for some A and x, cond1(A; x) � cond1(A) (see,

for example, a 3� 3 example of Hamming quoted in [17, p. 500]).

Skeel [17, 19] looks in detail at the possible bene�ts of row scaling for

LU factorization. In [17, sec.4.2] he shows that for the scaling D�1 =

diag(jAjjxj) the forward error bound is proportional to cond1(A; x); unfor-

tunately, since x is unknown this \optimal" scaling is of little practical use.

Row equilibration can be regarded as approximating jxj by e in the optimal

scaling.

To sum up, we regard row equilibration as a \quick and dirty" way to

achieve a \cond-bounded" forward error|quick because the scaling is triv-

ial to perform, and dirty because the forward error bound is independent

of the right-hand side b and there is no guarantee that a small componen-

twise backward error will be achieved. In contrast, FPIR produces a small

componentwise backward error and has a sharper forward error bound that

depends on b (but FPIR may fail to converge).

We illustrate our observations with two numerical examples computed

using MATLAB in simulated single precision, as in section 4. For odd

n = 2k + 1 let Vn be the Vandermonde matrix with (i; j) element (�k +
j � 1)i�1. We solved two systems Vnx = b by both LU factorization with

partial pivoting and QR factorization, in each case trying both FPIR and

the row equilibration discussed above.

The two systems were chosen to illustrate two extreme cases. For the

�rst problem, V9e = b reported in Table 5.1, cond1(A) = cond1(A; x) �
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1

359
�1(A) and row equilibration is about as e�ective as FPIR as measured

by the size of the componentwise backward error and the relative error. For

the second system, V11x = e, cond1(A; x) � 1

174
cond1(A) � �1(A) and

FPIR achieves a signi�cantly smaller componentwise backward error and

relative error than row equilibration.

We also tried using a scaling obtained by perturbing the equilibrating

transformation D = diag(jAje)�1 to the nearest powers of 2, so as not to

introduce rounding errors. This led to �nal errors sometimes larger and

sometimes smaller than with D. In any case, from the point of view of the

error bounds the rounding errors introduced by the scaling are easily seen

to be insigni�cant.
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Table 5.1: A = V9, x = e

�1(A) = 4.27e5, cond1(A) = 1.19e3, cond1(A; x) = 1.19e3

!N (by) !R(by) !C(by) 
1(by)
LU with FPIR 2.11e-8 6.25e-7 3.13e-6 1.81e-3

1.65e-8 1.65e-8 8.26e-8 1.79e-5

LU with equilibration 6.74e-9 1.91e-8 1.72e-7 2.38e-5

QR with FPIR 1.13e-8 7.47e-6 6.73e-5 3.85e-3

3.51e-9 1.06e-8 8.28e-8 1.44e-5

QR with equilibration 2.3e-8 3.71e-8 3.34e-7 1.60e-4

Table 5.2: A = V11, b = e

�1(A) = 6.68e7, cond1(A) = 9.17e3, cond1(A; x) = 5.27e1

!N (by) !R(by) !C(by) 
1(by)
LU with FPIR 2.18e-12 2.57e-7 4.82e-6 5.23e-5

4.57e-12 1.53e-9 5.83e-8 6.83e-7

LU with equilibration 1.22e-10 9.96e-9 2.88e-6 6.24e-5

QR with FPIR 1.95e-11 1.64e-5 1.48e-4 3.59e-4

4.48e-12 4.86e-9 9.96e-8 1.38e-6

QR with equilibration 3.75e-9 4.75e-9 5.83e-6 1.38e-5
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