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their normwise backwardstability, but the actual backwarderrors mayincrease to

reect anydecreasedaccuracyintheBLAS3. Also, anyspecial properties relatingto

componentwisebackwarderror maybe lost inswitchingto fast BLAS3.

Howlarge the increase inbackwarderrors will be, onaverage, is di�cult to say,

sincethetheoretical errorbounds tendtobequitepessimistic(thisappliesparticularly

totheboundfor Strassen'smethod|see[18 ]). Aquantitativeassessmentof thespeed

versus stabilitytradeo�must await the accrual of experienceinusingfast BLAS3for

the values of n for whichuseful speedups are obtained.

Inthe important applicationof solvingAx = b byLU factorizationtheuseof fast

BLAS3needcarryno stabilitypenalty: wehave shownthat �xedprecisioniterative

re�nement with conventionally computed residuals can improve normwise stability

andcanevenproduce a small componentwise relative backwarderror, althoughwe

have not been able to state useful conditions under which such improvements are

guaranteed.

Finally, wereiterateapointdiscussedin[18 ]. Whenreplacingconventional BLAS3

byfast BLAS3inaniterative algorithm, it is important toconsider the implications

for the convergencetests|achange inthe BLAS3maynecessitate a retuningof the

algorithmparameters. Ideally, a convergence test will be e�ective across di�erent

BLAS3implementations andcomputer arithmetics andsowill not needtuning. The

stopping criterionusedinLAPACKfor iterative re�nement of linear equations (see

section2.2) has beendesignedwiththis goal inmind. Experience will tell whether

the goal has beenachieved!
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that is, bQ is close to anexactlyorthogonal matrix.

Nextweconsider theapplicationof bQ. SupposeweformC = bQB =(I+ cW bY T )B ,

obtaining bC =fl( B +f l (cW ( bY TB))) :

Analyzingthis BLAS3-basedcomputationusing(1) and(29) it is straightforwardto

showthat

bC = U B +�C =U (B +U T�C );

k�C k � c4n (c1(r; n ; n )+c1(n ; r ; n ))ukBk+O(u 2); (30)

where c 4 is a constant of order 1. This result shows that the computedupdate is an

exact orthogonal update of aperturbationof B , where the normof theperturbation

is boundedinterms of the error constants for theBLAS3.

In the case r =1, (30) reduces to Wilkinson's result on the application of a

singleHouseholder transformation[32 , p.160]. Wilkinsonuses this result to obtaina

backwarderror result for theapplicationof asequenceof Householder transformations

[32 , pp.160{161]. Withtheuse of (30), it is straightforwardtoshowthatWilkinson's

methodof analysis canbe adaptedto accommodateWYupdates. Alternatively, to

obtainabackwarderror result for asequenceof orthogonal similaritytransformations,

we can simply insert the bound (30) into the general analysis of [26 , sec.6-5] or

[31 ]. It follows that the standard backwarderror analysis results for Householder

transformationalgorithms remainvalidwhentheWYtechnique is used, as long as

the constants inthe error bounds are replacedbyappropriate linear combinations of

c1 terms.

Our overall conclusions are as follows. First, algorithms that employaggregated

Householder transformations with conventional BLAS3 are as stable as the corre-

sponding point algorithms. Second, the use of fast BLAS3 for applying the updates

a�ects stabilityonlythroughthe constants inthe backwarderror bounds.

4 oncluding Remarks

Our mainconclusionis that the use of fast BLAS3 satisfying (1) and(2) withLA-

PACKblockalgorithms is \safe" fromanumerical standpoint. Thealgorithms retain
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UsingtheWYrepresentationablockQR factorizationcanbedevelopedas follows.

PartitionA 2 IR m�n (m � n ) as

A =[ A1; B ] ; A1 2 IR
m�r ;

andcompute theHouseholderQR factorizationof A 1,

PrPr�1 . . .P1A1 =

"
R1

0

#
:

The product P rPr�1 . . .P1 =I +W rY
T
r is accumulatedas the P i are generatedand

thenB is updatedaccordingto

B  (I +W rY
T
r )B =B +W r(Y

T
r B);

whichinvolves onlyBLAS3operations. Theprocess is nowrepeatedonthelastm�r

rows of B .

Analternative formof accumulation is proposed in [14 ] for r =2, extendedto

general r in[13 ], andusedin[2 ]. Inthe context of orthogonal similarityreductionto

Hessenbergform, the technique involves expressing

PrPr�1 . . .P1AP1 . . .Pr�1Pr =A �U rV
T
r �W rU

T
r ; (26)

where U r; Vr; Wr 2 IR
n�r. We refer the reader to [13 ] for details of howto obtain

this representation. The keypoint is that, once again, onlyBLAS3 operations are

involvedincomputingthe update, onceU r, Vr andW r havebeenformed.

Nowwe consider numerical stability. We concentrate ontheWYtechnique, and

comment that similar analysis applies to thealternativemethodof aggregation(26),

as well as to themore storage e�cient compactWYrepresentationof Schreiber and

VanLoan[28 ]. First, wenote that the constructionof theW andY matrices is done

ina stable manner (indeedit does not involve the BLAS3): Bischof andVanLoan

[5] showthat the computed bQ =I + cW bY T is suchthat

k bQT bQ�I k =O(u ); (27)

kcWk =O(1); k bY k =O(1): (28)

The condition(27) implies that

bQ =U +�U; U TU =I ; k�U k =O(u ); (29)
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It is clear fromthe assumptions (1) and(2) that eachrounding error term�A i ;j has

aboundof order u kAk, and(25) shows that their contributionis additive. It follows

that thewhole process is stable.

One possible obstacle to stability, whichdoes not occur inLAPACK, wouldbe

computing part of a decomposition(sayA 11 =L 11U11 above), using it to compute

other parts of thedecomposition(L 21, U12, andB) andthenrecomputingit bysome

methodyieldingdi�erentroundingerrors. Thereis nomotivationfor this inGaussian

elimination, but it is conceivablethat suchredundant operations wouldbeneededto

use the BLAS3. (There are redundant operations in the use of block orthogonal

transformations inthe next section, but theydonot leadto this di�culty).

Howcouldthis recomputationdamage stability? Suppose we refactorizeA 11 �bL11
bU11 stablyafter the last stepabove, andreplaceL 11 by bL11 andU 11 by bU11. This

will increase�A 12 by( bL11�L 11)U12 and�A 21 byL 21( bU11�U 11), andneither of these

quantities is guaranteedtobe small.

3 rt ogonal ransf ormati ons

In this sectionwe consider block algorithms based on orthogonal transformations.

Thealgorithms of interest includeQR factorization, orthogonal reductiontoHessen-

berg, tridiagonal or bidiagonal form, theunsymmetricQR algorithm, andalgorithms

for generalized eigenvalue or singular value computations. The techniques used in

LAPACKfor constructingblockversions of these algorithms are basedontheaggre-

gationof Householder transformations. Our aimis therefore to analyse the stability

of these aggregationtechniques.

One formof aggregation is the \WY" representationof Bischof andVanLoan

[5]. This involves representing the product Q r =P rPr�1 . . .P1 of r Householder

transformations P i =I �u iu
T
i 2 IR

n�n (uT
i ui =2) inthe form

Qr =I +W rY
T
r ; Wr; Yr 2 IR

n�r:

This canbe done usingthe recurrence

W1 =�u 1; Y1 =u 1; Wi =[W i �1; �Qi �1ui]; Yi =[Y i �1; ui]:
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2.4 ecognizinga Sta le lock ecomposition

Howcanonedistinguishastableblockalgorithmof thekinddiscussedinsection2.1

fromtheunstable one insection2.3? Herewepresent aninformal approachallowing

easy recognitionwithout the need for a full error analysis. Our approachhas some

similaritieswiththat of Wilkinson[33 ] whodescribes ageneral approachtoanalysing

unblockedalgorithms.

We consider LU factorizationwithpartial pivoting, althoughthe same approach

applies to the other factorizations mentionedat the end of section2.1 and toQR

factorization. Weviewthe algorithmas asequenceof computeddecompositions

PiLiUi +R i =A +�A i; i =0:m; (24)

whereoneor moresuchdecompositions describeasingle stepof theblockalgorithm.

Pi is a permutationmatrix and�A i represents rounding errors introducedby the

�rst i steps of the algorithm. Initially, P 0 =L 0 =I , U 0 =A, andR 0 =�A 0 =0,

whileL m is unit lower triangular, U m is upper triangular andR m =0. The termR i

is introducedfor notational convenience.

ThematricesP i, Li, Ui andR i are transformedtoP i +1, Li +1, Ui +1 andR i +1 bya

singlematrixoperation, either unblocked(BLAS1or BLAS2), or blocked(BLAS3).

Theroundingerror introducedbythismatrixoperationis �A i +1��A i. If each�A i

is small (k�A ik =O(u kAk)) thenthe algorithmis stable.

To illustrate, the �rst stage of the blockLUfactorizationinsection2.1 (ignoring

pivoting) maybe written, using (24) withi =0: 4, as

A = I

24 A11 A21

A12 A22

35
=

24 L11 0

0 I

3524 U11 0

A21 A22

35+
24 0 A12

0 0

35+
24 �A 11 0

0 0

35
=

24 L11 0

0 I

3524 U11 U12

A21 A22

35+
24 �A 11 �A 12

0 0

35
=

24 L11 0

L21 I

3524 U11 U12

0 �L 21U12

35+
24 0 0

0 A22

35+
24 �A 11 �A 12

�A 21 0

35
=

24 L11 0

L21 I

3524 U11 U12

0 B

35+
24 �A 11 �A 12

�A 21 �A 22

35 : (25)
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Table 5: Relativeresiduals for LU factorization

�1(A16(�0: 7)) =O(10
8)

�1(A16(�1: 1)) =O(10
11)

�1(A16(�3)) =O(10
19)

r � =�0: 7 � =�1: 1 � =�3

1 1.35e-16 8.44e-17 0

2 6.19e-17 4.04e-17 9.46e-17

4 3.75e-17 1.15e-16 1.29e-14

6 5.76e-16 6.13e-15 1.86e-12

8 1.10e-14 5.69e-14 4.82e-10

10 1.54e-14 6.98e-13 3.74e-08

12 1.06e-12 4.39e-11 7.43e-05

14 4.50e-12 9.11e-10 2.89e-02

algorithm. If anyof these submatrices is ill-conditionedthenthere is the possibility

of a large residual.

Examples demonstratinginstabilityare readilygenerated. Consider the symmet-

ric positive de�nite Moler matrixA n(� ) =triw (n ; � )T triw (n ; � ) 2 IRn�n from[20 ],

where triw (n ; � ) is de�nedinsection2.2. WerantheblockLU algorithmonA 16(� )

inMATLAB, for blocksizes r =1; 2; 4; 8; 10; 12; 14 withthree di�erent� , using con-

ventional BLAS3. The relativeresiduals kA� bL bUk1=kAk1 for theLU factorization

are displayedinTable 5; theyclearlyreveal instabilityincreasingwiththeblocksize

(note that � (A 11) increases withthe blocksize).

This instabilityof blockLU factorizationdoes not seemto be well-known. We

suspect that inmost applications where the algorithmhas been usedA has been

diagonally dominant, for if the diagonal dominance is su�ciently strong then the

inverses occurring inthe algorithmare guaranteedtobe of modest norm.
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2.3 lock- riangular actorization

Next, wediscuss the computationof atrue blockLU factorizationA =LU 2 IR n�n,

where L andU are block lower triangular andupper triangular respectively. This

factorization is not used inLAPACK, but it has attractedattentionbecause of its

suitabilityfor parallel machines [16 , 27 ]. Assuming that A 11 2 IR
r�r is nonsingular

wecanwrite

A =

"
A11 A12

A21 A22

#
=

"
I 0

L21 I

# "
A11 A12

0 B

#
=LU; (23)

whichleads tothe followingalgorithmfor computingL andU [16 , 27 ]:

1. =A �1
11 .

2. L21 =A 21 .

3. B =A 22 �L 21A12.

4. Compute the blockLU factorizationof B , recursively.

TheexplicitcomputationofA �1
11 =U �1

11 inthis algorithmcanleadtogreater e�ciency

onparallel machines, for if U �1
11 is storedrather thanU 11 thebacksubstitutionphase

of solvingAx =b consists entirelyof matrix-vector multiplications.

Since the algorithmdoes not incorporate pivotingit is intendedonlyfor applica-

tions inwhichit is safenot topivot inGaussianelimination, for example, whereA is

diagonallydominant or symmetricpositivede�nite. Wewishtopoint out, however,

that even in these situations, stability is not guaranteed. To see this it su�ces to

consider the (2; 1) block(relativetothe partitioning (23)) of the residual,

(A � bL bU )21 =A 21 �
bL21A11:

Suppose, for simplicity, that =A �1
11 is obtainedexactly. Then, using (1), wehave

bL21 =L 21 +�L 21; k�L21k �c 1(n �r ; r ; r )u kA21kkA
�1
11 k;

andso

k(A � bL bU)21k =k�L 21A11k �c 1(n �r ; r ; r )u kA21k� (A11):

Thus theboundfor kA� bL bUk depends ontheconditionof A 11, and, bythe recursive

nature of the algorithm, on the conditionof other r � r submatrices arising inthe
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Table 4: A =rand (32)

�1(A)=6: 00�10 2, cond (A)=3: 33�10 2

Conv., r =1. Conv., r =8. Fast, r =8.

1.48e-16 (2.67e-17) 2.34e-16 (4.56e-17) 6.81e-16 (1.07e-16)

2.31e-17 (7.16e-18) 2.99e-17 (8.38e-18)
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Table 1: A =pascal (8)

�1(A)=3: 96�10
7, cond (A)=4: 60�10 6

Conv., r =1. Conv., r =2. Fast, r =2.

3.03e-16 (2.62e-18) 1.15e-16 (3.54e-18) 1.74e-14 (1.21e-16)

4.91e-17 (8.60e-18) 4.92e-17 (8.60e-18)

Table 2: A =triw (16; �5) T

�1(A)=3: 57�10 13, cond (A) =9: 40�10 11

Conv., r =1. Conv., r =2. Fast, r =2.

8.42e-17 (4.28e-19) 8.42e-17 (4.28e-19) 3.12e-9 (4.24e-19)

1.68e-16 (1.27e-18)

Table 3: A =ipjfact (7; 1)

�1(A)=1: 69�10 14, cond (A) =6: 85�10 10

Conv., r =1. Conv., r =2. Fast, r =2.

8.45e-16 (1.51e-20) 3.68e-16 (1.23e-20) 2.09e-12 (5.49e-20)

1.98e-17 (1.07e-20) 5.89e-18 (3.19e-21) 7.07e-18 (2.15e-21)

13



relativebackwarderrors! for theiterates, withthenormwiserelativebackwarderrors

� inparentheses; the columnheading\Conv." denotes conventional BLAS3. Wealso

report the conditionnumbers � 1(A)=kAk 1kA
�1k1 andcond (A)=k jA �1j jAj k1.

Inthesethreespeciallychosenexamples all the� values for theoriginal computed

solutionare less thanu , but the! values for the fast BLAS3are substantiallylarger

thanfor theconventional BLAS3. Notehowiterativere�nement reduces the! values

belowu inone stepinthe�rst three examples. More typical, less extremebehaviour

is illustratedinTable 4, where rand (n ) is a randommatrixwithelements fromthe

uniform[0; 1] distribution.

Thematrices inthe�rst threeexamples eachhavenonnegativeelements of widely

varyingmagnitude. These matrices were triedbecause it is knownthat Strassen's

methodcanprovidepoor relativeaccuracywhenformingtheproduct of suchmatrices

inoating-point arithmetic[18 ]. It is interestingtorecall theresult that thecomputed

solutiontoAx =b obtainedbyGEPPinoating-point arithmeticis invariant under

rowor columnscalings bypowers of the machine base, as long as the same pivot

sequenceis chosen[7 , p.181]. This invariancepropertydoes not holdwhenStrassen's

method is used in the BLAS3|this observationprovides some further insight into

the �rst three examples.
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nobetter thantoobtainanormwise boundfor eachb i �A byi that is proportional to
the fast BLAS3error constant c 1 (this is not surprising, since it is ageneral principle

for iterativetechniques that the stabilityor accuracyis limitedbythe qualityof the

computedresiduals).

If we use fast BLAS3 for the substitutions on the correctionstep then for each

computedcorrectionwe have a result analogous to (22). Theorem2.1 of [23 ] then

shows that (21) holds for b i and byi, but the potentiallyverylarge � i term, and its

analogue for there�nementstep, arepresent inthesecondorder termof (21), making

the result of limitedpractical value. If the substitutions are done usingconventional

BLAS3 then(21) holds for b i and byi with� i alone present inthe secondorder term;

hence wewouldexpect a small ! ( byi) as longas � i is not too large. Finally, we note

that if all the substitutions inthe computationof c and inthe re�nement process

aredonewithconventional BLAS3thenwecanset � i � 1 intheaboveanalysis, and

wewill obtainthesamecomputedresults as if there�nementwas carriedout oneach

systemAx i =b i independently.

Our overall conclusionis that �xedprecisioniterativere�nementcanbebene�cial

for GEPPwithfast BLAS3intwoways, assumingthat residuals are computedusing

conventional BLAS3. First, itmayleadtoacomponentwiserelativebackwarderror of

order u , althoughthe theoretical backing is weaker thanwhenconventional BLAS3

are used. Second, the re�nement will, in any case, tend to counteract any \mild

instability"inducedbythe potentiallyfaster growthof errors inthe fast BLAS3.

We present some numerical results for illustration. Our experiments were per-

formedinMATLAB, for whichu �2: 2�10 �16. We solvedAx =b byblockouter

product LU factorizationwithpartial pivoting, usingbothconventional BLAS3and

a fast BLAS3; the latter uses conventional triangular solves and does matrixmul-

tiplicationby Strassen's methodwithn 0 =1 (recursiondownto the scalar level).

Iterativere�nement was appliedwiththe convergencetest ! �u .

We give detailed results for three matrices taken fromthe test collection [20 ]:

pascal (n ) is a symmetric positive de�nite matrixconstructed fromthe elements of

Pascal's triangle; triw (n ; � ) is upper triangular with 1s on the diagonal and every

entry in the upper triangle equal to � ; and ipjfact (n ; 1) is the symmetric positive

de�nitematrixwith(i ; j) entry1= (i +j )!. Ineachcase b was chosenrandomly, with

elements fromtheuniformdistributionon[0; 1]. Tables 1{3showthe componentwise

11



where by is the computedvector obtainedafter one stepof �xedprecision iterative

re�nement. This result has twomainfeatures. First, it is asymptotic, andthesecond

order termpreventsus concludingfrom(21) and(19) that! ( by)�(n +2)u . However,

if thecomponentsof jAj j byj +j b j donot varytoomuchinmagnitudeit is likelythat this
inequalitywill be satis�ed(if not, extrare�nement steps mayhelptoachieveasmall

! ). Thesecondpoint is that �A does not appear inthe�rst order termof (21)|it is

hiddeninthe secondorder termwhere it multiplies a vector withelements of O(u ).

This means that the re�nement steptends to suppress anyinstabilitymanifestedin

�A.

LAPACKalsosupports iterativere�nementfor linear systemswithmultipleright-

handsides, A =B where ; B 2 IR n�p. Inthis case it is appropriate to consider

whether asmall componentwiserelativebackwarderror is achievedfor eachindividual

systemAx i =b i, i =1: p. If conventional BLAS3 are used for the computationofc and for the re�nement process then Skeel's result is applicable to each system

Axi =b i.

Suppose that fast BLAS3areusedincomputing c. First, wewill obtainabound
of the formj b i �A bxij �u ijbxij for eachi . It is necessaryto do this inan indirect
way, as follows. Wenote �rst that (18) implies

kAbxi �b ik1 � � iu kAk1kbxik1 +O(u 2); i =1: p ;

where

= [c2(n ; p )(n2 +n )+�(n ; r )n ]
kbLkk bUk
kAk1

+�(n ; r )n ;

�i =
kck
kbxik1 �1:

>From(20) it follows that

(A +�A i)bxi =b i; k�Aik1 � � iu kAk1 +O(u 2): (22)

Hence we have j b i �A bxij �j�A ij jbxij , withkAk 1 boundedas in(22). In invoking

Theorem2.1of [23 ] weneedtospecifyhowthe residualsR =B �A are computed

andhowthe corrections for the re�nement are computed. Wewill assume that the

residuals are computedusingconventional BLAS3. If fast BLAS3areusedwecando

10



error � ( bx) =O(u ), where
� (y ) � min f� : (A +�A)y =b +�b ; k�Ak 1 �� kAk1; k�b k1 �� kb k1g

=
kr k1

kAk1 ky k1 +kb k1
: (20)

Skeel [29 ] showedthat as longasA is not tooill-conditioned, andthecomponents

of the vector jAj j x j do not vary too muchinmagnitude, then! (y ) =O(u ) for the

vector y obtained fromGEPPwithone stepof �xedprecisioniterative re�nement.

Skeel'sresult, togetherwithfurther analysis in[1 ], provides thetheoretical foundation

for the inclusionof �xedprecisioniterativere�nement inLAPACK.

InLAPACKiterativere�nement is terminatedif

1. ! �u ,

2. ! has not decreasedbya factor of at least 2 fromthe previous iteration, or

3. �ve iterations havebeenperformed.

Thesecriteriahavebeenchosentobe robust inthe faceof di�erentBLASimplemen-

tations andmachinearithmetics.

Skeel's result is applicableonlywhenconventional BLAS3areused. Toinvestigate

the e�ect of using fast BLAS3, wecanmakeuse of workin[23 ] that covers �xedpre-

cisioniterativere�nementwithanarbitrarylinear equationsolver. For our purposes,

the results in[23 ] require aboundof the formj b �A bxj �u jbxj for the givensolver,
where is a nonnegative matrix. For blockLU factorizationwithpartial pivoting

wehave

j b �Abxj �j�Aj j bxj ;
where k�Ak is bounded in (17). We assume that the residual for the re�nement

step is computed in the conventional way, via inner products or saxpyoperations,

as in LAPACK. Since we have only a normwise bound on �A we cannot apply

a direct generalization in [23 ] of Skeel's result (to do so we would need to have

j�Aj �u jAj withk k boundedindependentlyof A). However, we caninvoke the

weaker Theorem2.1 in[23 ] toobtain

j b �Abyj �(n +2)u ( jAj jbyj +j b j )+O(u 2); (21)

9



Thus eachmainstepof the algorithminvolves two, rather thanthree, BLAS3opera-

tions. If theobvious analogueof (5) holds for (16) then(14) (withA replacedbyP A)

and(15) remainvalid, withminor changes inthe recurrences for � (n ; r ) and� (n ; r ).

There is nodi�cultyinextending the analysis to cover solutionof Ax =b using

the computedLU factorization. Invoking the usual error analysis for substitution

(see [17 , sec.3.1], for example) we�ndthat (A +�A) bx =b , with
k�Ak �u ( � (n ; r )kAk+(� (n ; r )+2n2)k bLkk bUk) +O(u 2): (17)

For a linear systemwithmultiple right-handsides, A =B with ; B 2 IR n�p,

both substitution stages are BLAS3 operations. Using (2) it is straightforward to

showthat the computed c satis�es

kAc�Bk �f [c2(n ; p )(n2+n )+� (n ; r )n ]kbLkk bUk+� (n ; r )n kAkgkcku +O(u 2) (18)

Wementionthat theerror analysisgiveninthis sectionadapts inastraightforward

waytoblockLU factorizationfor bandedmatrices, blockfactorizationof symmetric

inde�nitematrices [17 , p.168], andblockCholeskyfactorizationof (banded) symmet-

ric positivede�nitematrices [24 ].

2.2 terati e e nement

The LAPACKroutines for solving linear equations support �xedprecisioniterative

re�nement [10 ], that is, iterative re�nement inwhichno extra precision is used in

calculating the residuals. The bene�ts of this process can be explained in terms

of the componentwise relative backwarderror ! (y ) of anapproximate solutiony to

Ax =b . This quantityis de�nedby

! (y ) � min f� : (A +�A)y =b +�b ; j�Aj �� jAj ; j�b j �� j b j g;

= max
i

j b �Ay ji

(jAj j y j +j b j )i

; (19)

wherethe latter equalityis provedin[25 ]. Asmall valuefor! (y ) implies that y is the

solutionof asysteminwhicheachelement of A andb has undergone asmall relative

perturbation|inparticular, zeroelementsarenot perturbed. However, ingeneral, all

that canbe guaranteedfor the bx fromGEPPis that thenormwiserelativebackward

8



Combining(11) and(12), andbounding k bBk using (10), weobtain
bL21

bU12 + bL22
bU22 =A 22 +�A 22

k�A 22k �u ([1+� (n �r ; r )]kA22k+[1+c 1(r ; n �r ; n �r )+� (n �r ; r )]kbL21kk
bU12k

+� (n �r ; r )kbL22kk
bU22k) +O(u

2): (13)

Collectingtogether (5), (8), (9) and(13) wehave

bL bU =A +�A; (14)

where bounds onk�A i jk are giveninthe equations just mentioned. These bounds

for the blocks of �A canbe weakenedslightlyandexpressedtogether inthe more

succinct form

k�Ak �u ( � (n ; r )kAk+� (n ; r )kbLkk bUk) +O(u 2) (15)

where

� (n ; r )= 1+� (n �r ; r );

� (n ; r )= max fc3(r ); c2(r ; n �r ); 1+c1(r ; n �r ; n �r )+� (n �r ; r )+� (n �r ; r )g:

Using(7) it follows that � (n ; r )�n = r .

These recurrences showthat thebasic error constants inassumptions (1), (2) and

(5) combine additivelyat worst. Thus, the backwarderror analysis for the LU fac-

torizationis commensuratewiththe error analysis for theparticular implementation

of the BLAS3 employedinthe block factorization. Inthe case of the conventional

BLAS3we obtaina generalizationof the classical Wilkinsonresult for r =1, with

� (n ; r ) =O(n3).

Althoughthe aboveanalysis is phrasedinterms of the blockouter product form

of LU factorization, the same result holds for other \i j k"blockforms (withslightly

di�erent constants), for examplethe gaxpyor sdot forms.

If weincorporate partial pivotingintheabovefactorizationthentwoof theblock

steps are coalesced: L 11 andL 21 are obtained byusing Gaussian eliminationwith

partial pivoting(GEPP) tocompute the factorization

P1

"
A11

A21

#
=

"
L11

L21

#
U11: (16)

7



Wewill assume that the blocklevel LU factorizationis done insuchawaythat

the computedLU factors of A 11 2 IR
r�r satisfy

bL11
bU11 =A 11 +�A 11; k�A11k �c 3(r )u kbL11kk

bU11k+O(u
2): (5)

Weclaimthat under theseassumptions, together with(1) and(2), theLU factors

of A 2 IR n�n computedusingablocksize r satisfy

bL bU =A +�A; k�Ak �u ( � (n ; r )kAk+� (n ; r )kbLkk bUk) +O(u 2); (6)

where� (n ; r ) and� (n ; r ) areconstants dependingonn andr . Theproof is essentially

inductive. For n =r , (6) holds with

� (r ; r )=0; � (r ; r )=c3(r ); (7)

inviewof (5). Consider the �rst blockstage of the factorization. The assumptions

implythat

bL11
bU12 = A12 +�A 12; k�A12k �c 2(r ; n �r )u kbL11kk

bU12k+O(u
2); (8)bL21

bU11 = A21 +�A 21; k�A21k �c 2(r ; n �r )u kbL21kk
bU11k+O(u

2): (9)

ToobtainB =A 22 �L 21U12 we�rst computeC = bL21
bU12, obtaining

bC = bL21
bU12 +�C; k�C k �c 1(n �r ; r ; n �r )u kbL21kk

bU12k+O(u
2);

andthensubtract fromA 22, obtaining

bB =A 22 �
bC + ; k k �u (kA 22k+k bCk)+O(u 2): (10)

It follows that

bB = A22 �
bL21

bU12 +�B;

k�Bk � u (kA22k+k bL21kk
bU12k+c 1(n �r ; r ; n �r )kbL21kk

bU12k) +O(u
2): (11)

The remainder of the algorithmconsists of the computationof theLU factorization

of bB, andbyour inductiveassumption(6) the computedLU factors satisfy

bL22
bU22 = bB +� bB;

k� bBk � � (n �r ; r )u kbBk+� (n �r ; r )u kbL22kk
bU22k+O(u

2): (12)

6



toscale inthe samewayasC ; (1) does not share these favourablescalingproperties.

For further remarks onthedi�erences between(1) and(3) see [18 ]. Aconsequenceof

(3) and(4) is that for someblockalgorithms it is possibletoobtainstronger backward

error results thantheusual normwiseones (perhaps for certainclasses of matrixonly);

for examples see [8 ] and[19 ]. These stronger results are usuallynot validfor anyof

the fast BLAS3discussedabove.

The blockalgorithms inLAPACKbreak into twomainclasses: those basedon

LU factorizationandthose involvingorthogonal transformations. Inthenext section

we give anerror analysis of blockLU factorization. We showthat iterative re�ne-

ment in�xedprecisionis bene�cial for all BLAS3implementations andpoint out the

instabilityof aparticular formof LU factorizationwithblocktriangular factors. We

alsoexplainhowto investigatethe stabilityof ablockalgorithmwithout doinga full

error analysis. Insection3we consider the use of aggregatedHouseholder transfor-

mations, whichformthe basis of a varietyof blockalgorithms involvingorthogonal

transformations. Someconcludingremarks are giveninsection4.

actori ati on

2.1 rror nal sis

Inthis sectionweexamine indetail the stabilityof blockLU factorization. Initially

we assume that no pivoting is used and that the factorization succeeds; belowwe

discuss the additionof pivoting.

Consider a blockimplementationof the outer product formof LU factorization

[16 , p.91], [17 , p.100]. The algorithmmaybe describedthroughthe partitioning"
A11 A12

A21 A22

#
=

"
L11 0

L21 In�r

# "
Ir 0

0 B

# "
U11 U12

0 In�r

#
2 IR n�n;

whereA 11 is r �r . Onestepof theblockalgorithmconsists of factoringA 11 =L 11U11,

solving the multiple right-handside triangular systems L 11U12 =A 12 andL 21U11 =

A21 for U 12 andL 21 respectively, and formingB =A 22 �L 21U12; this procedure is

thenrepeatedonB . The blockoperations de�ningU 12, L21 andB are level 3BLAS

operations.

5



where c 1(m; n ; p ) denotes a constant depending onm, n and p . Here, the matrix

normis de�nedby

k k =max
i ; j
j xi jj :

Note that for this norm, withA andB dimensionedas above, kABk �n kAkkBk is

the best suchinequality.

We also assume that the computedsolutionto the triangular systems =B ,

where 2 IR m�m andB 2 IR m�p , satis�es

c=B +�B; k�Bk �c 2(m; p )u k kkck+O(u 2): (2)

Forconventional BLAS3implementationsconditions(1)and(2)holdwithc 1(m; n ; p ) =

n2 andc 2(m; p )=m(m+1).

For the fast BLAS3 proposed in [18 ], based on Strassen's method, (1) and (2)

holdwithc 1 andc 2 rather complicatedfunctions of the dimensionsm, n , p andthe

thresholdn 0 that determines the level of recursion. Inthe special casem=n =p =

2k, n0 =2 l, the constants reduce to [18 ]

c1(n ; n ; n )= (
n

n0
)log2 12(n2

0 +5n 0)�5n ;

c2(n ; n )= (
n

n0
)l og2 12(

n20
11

+
23

55
n0) +

10

11
n20 +

35

11
n0 �

143

55
n :

Condition(1) also holds whenthe multiplicationis done byWinograd's method

withscaling, or, inthecaseof complexmatrices, bythemethodof [21 ] combinedwith

anymethodfor real matrixmultiplicationthat satis�es (1) (see the error analysis in

[6] and[21 ]).

Note that for conventional multiplicationwe have the following componentwise

versionof (1): bC =AB +�C; j C j �n u jAj jB j +O(u2): (3)

Similarly, for the substitutionalgorithms for solvingtriangular systems wehave

c=B +�B; j�B j �(m+1)u j j j cj +O(u 2): (4)

We stress that these bounds are muchstronger than (1) and (2). For example, if

=diag ( i) with i 0 for all i , thenscalingAB A � �1B leaves C andthe

upper boundin(3) unchanged, andscalingAB A � B causes the boundof (3)

4



product of twocomplexmatrices tobe formedusingonlythree real matrixmultipli-

cations. Several researchers are experimentingwiththe use of fast BLAS3 inlinear

equationsolvers. Inparticular, we mentionthe workof Bailey, Lee andSimon[3 ],

whouseStrassen'smethodfor thematrixmultiplications arisingintheLAPACKLU

factorizationroutine SGETRF.

Our purpose in this work is to investigate the numerical stability of block al-

gorithms that employ fast BLAS3. We restrict our attentionmainly to the block

algorithms usedinLAPACK[4 , 9]. For ablocksizeof 1, the algorithms inLAPACK

are classical point algorithms that are well-knownto be numericallystable, that is,

eachcomputedanswer is theexact answer toaperturbedproblem, wherethenormof

the perturbationis boundedbythe product of the unit roundo�, amodest constant

depending onthe dimensions, andthe normof the data. (To be precise, this state-

ment is truemodulothe possibilityof a large growthfactor inGaussianelimination

withpartial pivoting, andaweaker de�nitionof stabilityfor matrixinversion.) For

blocksizes r 1, withconventional BLAS3, it is generallyacceptedthat the same

stabilityresults are valid, althoughwe are not aware of anydetailedproofs (inthe

case of blockLU factorization one can argue that the same arithmetic operations

are carriedout as for r =1, albeit ina di�erent order). The questionof particular

interest here is the e�ect onthe stabilityof using ast BLAS3whenr 1. Wewill

showthat, for all BLAS3 implementations of interest, backwarderror bounds hold

for theblockalgorithms that arecommensuratewiththeerror bounds for theBLAS3

themselves. This is clearlythe best wecouldexpect toprove.

As our model for oating point arithmeticwetake

f l (x y )= x (1+� ) y (1+ ); j � j ; j j �u ;

f l (x opy ) = (x op y )(1+� ); j � j �u ; op=�; = ;

whereu is theunit roundo�. Weneedtomakesomeassumptions about the stability

of theBLAS3. TheBLAS3primitives involvethree types of matrixmultiplication: a

general productAB , acrossproductA TA, andtheproduct of atriangularmatrixwith

a full matrix. It is su�cient to assume that all these products satisfythe following

general condition: if A 2 IR m�n , B 2 IR n�p and bC is the computedapproximationto

C =AB , then

bC =AB +�C; k�C k �c 1(m; n ; p )u kAkkBk+O(u2); (1)

3
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A loc al orit mi n ma t r i x c o mp u t a t i o n s i s o n e t h a t i s d e � n e d i n t e r ms o f o p

o n s u bma t r i c e s r a t h e r t h a n ma t r i x e l e me n t s . S u c h a l g o r i t h ms a r e w

h i g h - p e r f o r ma n c e c o mp u t e r s b e c a u s e t h e i r d a t a l o c a l i t y p r o p e r t

u s a g e o f me mo r y h i e r a r c h i e s [ 1 5] , [ 1 6] , [ 1 7, Ch . 1 ] .

Wh e n a b l o c k a l g o r i t h m i s c o d e d i n Fo r t r a n , a d v a n t a g e c a n b e t a k

Ba s i c L i n e a r Al g e b r a S u b p r o g r a ms ( BLAS 3 ) . Th e BLAS 3 a r e a s e t o f F

t i v e s f o r v a r i o u s t y p e s o f ma t r i x mu l t i p l i c a t i o n , t o g e t h e r wi t h s

s y s t e m wi t h mu l t i p l e r i g h t - h a n d s i d e s [ 1 1, 1 2] . Fo r a s u i t a b l y c o d e d b l o c k a l g o r i t

t h e b u l k o f t h e c o mp u t a t i o n i s c a r r i e d o u t b y c a l l s t o t h e BLAS 3 .

Th e BLAS 3 s p e c i � c a t i o n s [ 1 1] s t i p u l a t e t h e i n p u t , o u t p u t a n d c a l l s e q u

e a c h r o u t i n e , b u t a l l o w f r e e d o m o f i mp l e me n t a t i o n , s u b j e c t t o t h

t h e r o u t i n e s b e n ume r i c a l l y s t a b l e . Th i s f r e e d o m i n c l u d e s n o t o n

t o o r d e r ma t r i x mu l t i p l i c a t i o n , b u t t h e u s e o f a l g o r i t h ms a l g e b r

t h e c o n v e n t i o n a l o n e s . Of c h i e f i n t e r e s t h e r e a r e a l g o r i t h ms t

f a v o u r a b l e o p e r a t i o n c o u n t ( f o r s u i t a b l e d i me n s i o n s ) t h r o u g h t h e

mu l t i p l i c a t i o n t e c h n i q u e . We wi l l r e f e r t o s u c h BLAS 3 i mp l e me n

BLAS 3 " .

On e s e t o f f a s t BLAS 3 i s p r o p o s e d i n [ 1 8] . Th e r e i t i s s h o wn h o w a s y mp t o t i c

s p e e d u p s c a n b e p r o d u c e d i n a l l t h e BLAS 3 r o u t i n e s b y t h e u s e o f S t

f o r ma t r i x mu l t i p l i c a t i o n [ 3 0] , wh i c h f o r ms t h e p r o d u c t o f t wo n � n ma t r i c e

O( nlog 2 7) o p e r a t i o n s ( l o g2 7 � 2 : 8 0 7 ) . A s e t o f f a s t BLAS 3 c o u l d a l s o b e b u i l

Wi n o g r a d ' s ma t r i x mu l t i p l i c a t i o n me t h o d [ 3 4] ( wh i c h h a s a n o p e r a t i o n c o u n t o f O( n3)

wi t h d i � e r e n t c o n s t a n t s t h a n t h e c o n v e n t i o n a l t e c h n i q u e ) o r o n e o

a l o we r e x p o n e n t t h a n S t r a s s e n ' s me t h o d ( a l t h o u g h t h e p r a c t i c a l

me t h o d s h a s y e t t o b e d e mo n s t r a t e d [ 2 2] ) . I n t h e c a s e o f c o mp l e x ma t r i c e s a l l

p o s s i b i l i t i e s c a n b e c o mb i n e d wi t h t h e t e c h n i q u e a n a l y z e d i n [ 2 1] , wh i c h e n a b l e s t h e
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