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Abstract.

In this paper, we address the accuracy of the results for the overdetermined full rank linear least squares
problem. We recall theoretical results obtained in [2] on conditioning of the least squares solution and the
components of the solution when the matrix perturbations are measured in Frobenius or spectral norms. Then we
define computable estimates for these condition numbers and we interpret them in terms of statistical quantities.
In particular, we show that, in the classical linear statistical model, the ratio of the variance of one component of
the solution by the variance of the right-hand side is exactly the condition number of this solution component when
perturbations on the right-hand side are considered. We also provide fragment codes using LAPACK [1] routines
to compute the variance-covariance matrix and the least squares conditioning and we give the corresponding
computational cost. Finally we present a small historical numerical example that was used by Laplace [19] for
computing the mass of Jupiter and experiments from the space industry with real physical data.

Keywords: Linear least squares, statistical linear least squares, parameter estimation, condition number,
variance-covariance matrix, LAPACK, ScaLAPACK.

1. Introduction. We consider the linear least squares problem (LLSP) minx∈Rn ‖Ax − b‖2,
where b ∈ R

m and A ∈ R
m×n is a matrix of full column rank n.

Our concern comes from the following observation: in many parameter estimation problems, there
may be random errors in the observation vector b due to instrumental measurements as well as
roundoff errors in the algorithms. The matrix A may be subject to errors in its computation
(approximation and/or roundoff errors). In such cases, while the condition number of the matrix
A provides some information about the sensitivity of the LLSP to perturbations, a single global
conditioning quantity is often not relevant enough since we may have significant disparity between
the errors in the solution components. We refer to the last section of the manuscript for illustrative
examples.
There are several results for analyzing the accuracy of the LLSP by components. For linear systems
Ax = b and for LLSP, [7] defines so called componentwise condition numbers that correspond to
amplification factors of the relative errors in solution components due to perturbations in data
A or b and explains how to estimate them. For LLSP, [17] proposes to estimate componentwise
condition numbers by a statistical method. More recently, [2] developed theoretical results on
conditioning of linear functionals of LLSP solutions.
The main objective of our paper is to provide computable quantities for the theoretical values given
in [2] in order to assess the accuracy of an LLSP solution or some of its components. To achieve
this goal, traditional tools for the numerical linear algebra practitioner are condition numbers or
backward errors whereas the statistician usually refers to variance or covariance. Our purpose here
is to show that these mathematical quantities coming either from numerical analysis or statistics
are closely related. In particular, we will show in Equation (3.3) that, in the classical linear
statistical model, the ratio of the variance of one component of the solution by the variance of
the right-hand side is exactly the condition number of this component when perturbations on the
right-hand side only are considered. In that sense, we attempt to clarify, similarly to [15], the
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analogy between quantities handled by the linear algebra and the statistical approaches in linear
least squares. Then we define computable estimates for these quantities and explain how they can
be computed using the standard libraries LAPACK or ScaLAPACK.

This paper is organized as follows. In Section 2, we recall and exploit some results of practical
interest coming from [2]. We also define the condition numbers of an LLSP solution or one
component of it. In Section 3, we recall some definitions and results related to the linear statistical
model for LLSP, and we interpret the condition numbers in terms of statistical quantities. In
Section 4 we provide practical formulas and FORTRAN code fragments for computing the
variance-covariance matrix and LLSP condition numbers using LAPACK (the corresponding
ScaLAPACK routines can be used for larger computations). In Section 5, we propose two
numerical examples that show the relevance of the proposed quantities and their practical
computation. The first test case is a historical example from Laplace and the second exam-
ple is related to gravity field computations. Finally some concluding remarks are given in Section 6.

Throughout this paper we will use the following notations. We use the Frobenius norm ‖.‖F

and the spectral norm ‖.‖2 on matrices and the usual Euclidean norm ‖.‖2 on vectors. A† denotes
the Moore-Penrose pseudo inverse of A, the matrix I is the identity matrix and ei is the i-th
canonical vector of R

n.

2. Theoretical background for linear least squares conditioning. Following the nota-
tions in [2], we consider the function

g : R
m×n × R

m −→ R
k

A, b 7−→ g(A, b) = LT x(A, b) = LT (AT A)−1AT b,
(2.1)

where L is an n× k matrix, with k ≤ n. Since A has full rank n, g is continuously F-differentiable
in a neighbourhood of (A, b) and we denote by g′ its F-derivative.
Let α and β be two positive real numbers. In the present paper we consider the Euclidean norm
for the solution space R

k. For the data space R
m×n × R

m, we use the product norms defined by

‖(A, b)‖F or 2 =

√

α2‖A‖2
F or 2 + β2 ‖b‖2

2, α, β > 0.

Following [10], the absolute condition number of g at the point (A, b) using the product norm
defined above is given by:

κg,F or 2(A, b) = max
(∆A,∆b)

‖g′(A, b).(∆A, ∆b)‖2

‖(∆A, ∆b)‖F or 2
.

The corresponding relative condition number of g at (A, b) is expressed by

κ
(rel)
g,F or 2(A, b) =

κg,F (A, b) ‖(A, b)‖F or 2

‖g(A, b)‖2

.

To address the special cases where only A (resp. b) is perturbed, we also define the quantities

κg,F or 2(A) = max∆A
‖ ∂g

∂A
(A,b).∆A‖

2

‖∆A‖F or 2

(resp. κg,2(b) = max∆b
‖ ∂g

∂b
(A,b).∆b‖

2

‖∆b‖2

).

Remark 1. The product norm for the data space is very flexible; the coefficients α and β
allow us to monitor the perturbations on A and b. For instance, large values of α (resp. β ) enable
us to obtain condition number problems where mainly b (resp. A) are perturbed. In particular,
we will address the special cases where only b (resp. A) is perturbed by choosing the α and β
parameters as α = +∞ and β = 1 (resp. α = 1 and β = +∞) since we have

lim
α→+∞

κg,F or 2(A, b) =
1

β
κg,F or 2(b) and lim

β→+∞
κg,F or 2(A, b) =

1

α
κg,F or 2(A).
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This can be justified as follows:

κg,F or 2(A, b) = max
(∆A,∆b)

∥

∥

∥

∂g
∂A (A, b).∆A + ∂g

∂b (A, b).∆b
∥

∥

∥

2
√

α2‖∆A‖2
F or 2 + β2 ‖∆b‖2

2

= max
(∆A,∆b)

∥

∥

∥

∂g
∂A (A, b).∆A

α + ∂g
∂b (A, b).∆b

β

∥

∥

∥

2
√

‖∆A‖2
F or 2 + ‖∆b‖2

2

.

The above expression represents the operator norm of a linear functional depending continuously
on α, and then we get

lim
α→+∞

κg,F or 2(A, b) = max
(∆A,∆b)

∥

∥

∥

∂g
∂b (A, b).∆b

β

∥

∥

∥

2
√

‖∆A‖2
F or 2 + ‖∆b‖2

2

= max
∆b

∥

∥

∥

∂g
∂b (A, b).∆b

β

∥

∥

∥

2

‖∆b‖2

=
1

β
κg,F or 2(b).

The proof is the same for the case where β = +∞.

The condition numbers related to LT x(A, b) are referred to in [2] as partial condition
numbers (PCN) of the LLSP with respect to the linear operator L.
In this paper, we are interested in computing the PCN for two special cases. The first case is
when L is the identity matrix (conditioning of the solution) and the second case is when L is a
canonical vector ei (conditioning of a solution component). We can extract from [2] two theorems
that can lead to computable quantities in these two special cases.

Theorem 1. In the general case where (L ∈ R
n×k), the absolute condition numbers of

g(A, b) = LT x(A, b) in the Frobenius and spectral norms can be respectively bounded as follows

1√
3
f(A, b) ≤ κg,F (A, b) ≤ f(A, b)

1√
3
f(A, b) ≤ κg,2(A, b) ≤

√
2f(A, b)

where

f(A, b) =

(

∥

∥LT (AT A)−1
∥

∥

2

2

‖r‖2
2

α2
+
∥

∥LT A†
∥

∥

2

2
(
‖x‖2

2

α2
+

1

β2
)

)
1

2

. (2.2)

Theorem 2. In the two particular cases:
1. L is a vector (L ∈ R

n), or
2. L is the n-by-n identity matrix (L = I)

the absolute condition number of g(A, b) = LT x(A, b) in the Frobenius norm is given by the formula:

κg,F (A, b) =

(

∥

∥LT (AT A)−1
∥

∥

2

2

‖r‖2
2

α2
+
∥

∥LT A†
∥

∥

2

2
(
‖x‖2

2

α2
+

1

β2
)

)
1

2

.

Theorem 2 provides the exact value for the condition number in the Frobenius norm for our two
cases of interest (L = ei and L = I). From Theorem 1, we observe that

1√
3
κg,F (A, b) ≤ κg,2(A, b) ≤

√
6κg,F (A, b). (2.3)
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which states that the partial condition number in spectral norm is of the same order of magnitude
as the one in Frobenius norm. In the remainder of the paper, the focus is given to the partial
condition number in Frobenius norm only.
For the case L = I, the result of Theorem 2 is similar to [11] and [10, p. 92]. The upper bound
for κ2,F (A, b) that can be derived from Equation (2.3) is also the one obtained by [10] when we
consider pertubations in A.
Let us denote by κi(A, b) the condition number related to the component xi in Frobenius norm (i.e
κi(A, b) = κg,F (A, b) where g(A, b) = eT

i x(A, b) = xi(A, b)). Then replacing L by ei in Theorem 2
provides us with an exact expression for computing κi(A, b), this gives

κi(A, b) =

(

∥

∥eT
i (AT A)−1

∥

∥

2

2

‖r‖2
2

α2
+
∥

∥eT
i A†

∥

∥

2

2
(
‖x‖2

2

α2
+

1

β2
)

)
1

2

. (2.4)

κi(A, b) will be referred to as the condition number of the solution component xi.
Let us denote by κLS(A, b) the condition number related to the solution x in Frobenius norm
(i.e κLS(A, b) = κg,F (A, b) where g(A, b) = x(A, b)). Then Theorem 2 provides us with an exact
expression for computing κLS(A, b), that is

κLS(A, b) =
∥

∥(AT A)−1
∥

∥

1/2

2

(
∥

∥(AT A)−1
∥

∥

2
‖r‖2

2 + ‖x‖2
2

α2
+

1

β2

)
1

2

. (2.5)

where we have used the fact that
∥

∥(AT A)−1
∥

∥

2
=
∥

∥A†
∥

∥

2

2
.

κLS(A, b) will be referred to as the condition number of the least squares solution.
Note that [8] defines condition numbers for both x and r in order to derive error bounds for x and
r but uses infinity-norm to measure perturbations.
In this paper, we will also be interested in the special case where only b is perturbed (α = +∞
and β = 1). In this case, we will call κi(b) the condition number of the solution component xi, and
κLS(b) the condition number of the least squares solution. When we restrict the perturbations to
be on b, Equation (2.4) simplifies to

κi(b) =
∥

∥eT
i A†

∥

∥

2
, (2.6)

and Equation (2.5) simplifies to

κLS(b) =
∥

∥A†
∥

∥

2
. (2.7)

This latter formula is standard and is in accordance with [5, p. 29].

3. Condition numbers and statistical quantities.

3.1. Background for the linear statistical model. We consider here the classical linear
statistical model

b = Ax + ε, A ∈ R
m×n, b ∈ R

m, rank(A) = n,

where ε is a vector of random errors having expected value E(ε) = 0 and variance-covariance
V (ε) = σ2

bI. In statistical language, the matrix A is referred to as the regression matrix and the
unknown vector x is called the vector of regression coefficients.
Following the Gauss-Markov theorem [20], the least squares estimates x̂ is the linear unbiased
estimator of x satisfying

‖Ax̂ − b‖2 = min
x∈Rn

‖Ax − b‖2,

with minimum variance-covariance equal to

C = σ2
b (AT A)−1. (3.1)
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Moreover 1
m−n ‖b − Ax̂‖2

2 is an unbiased estimate of σ2
b . This quantity is sometimes called the

mean squared error (MSE).
The diagonal elements cii of C give the variance of each component x̂i of the solution. The off-
diagonal elements cij , i 6= j give the covariance between x̂i and x̂j .
We define σx̂i

as the standard deviation of the solution component x̂i and we have

σx̂i
=

√
cii. (3.2)

In the next section, we will prove that the condition numbers κi(A, b) and κLS(A, b) can be related
to the statistical quantities σx̂i

and σb.

3.2. Perturbation on b only. Using Formula (3.1), the variance cii of the solution compo-
nent x̂i can be expressed as

cii = eT
i Cei = σ2

b eT
i (AT A)−1ei.

We note that (AT A)−1 = A†A†T so that

cii = σ2
beT

i (A†A†T )ei = σ2
b

∥

∥eT
i A†

∥

∥

2

2
.

Using Equation (3.2), we get

σx̂i
=

√
cii = σb

∥

∥eT
i A†

∥

∥

2
.

Finally from Equation (2.6), we get

σx̂i
= σbκi(b). (3.3)

Equation (3.3) shows that the condition number κi(b) relates linearly the standard deviation of σb

with the standard deviation of σx̂i
.

Now if we consider the constant vector ` of size n, we have (see [20])

variance(`T x̂) = `T C`.

Since C is symmetric, we can write

max
‖`‖2=1

variance(`T x̂) = ‖C‖2 .

Using the fact that ‖C‖2 = σ2
b

∥

∥(AT A)−1
∥

∥

2
= σ2

b

∥

∥A†
∥

∥

2

2
, and Equation (2.7), we get

max
‖`‖2=1

variance(`T x̂) = σ2
b κLS(b)2

or, if we call σ(`T x̂) the standard deviation of `T x̂,

max
‖`‖2=1

σ(`T x̂) = σbκLS(b).

Note that σb = max‖`‖2=1 σ(`T ε) since V (ε) = σ2
b I.

Remark 2. Matlab proposes a routine LSCOV that computes the quantities
√

cii in a vector
STDX and the mean squared error MSE using the syntax [X,STDX,MSE] = LSCOV(A,B).
Then the condition numbers κi(b) can be computed by the matlab expression STDX/sqrt(MSE).
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3.3. Perturbation on A and b. We now provide the expression of the condition number
given in Equation (2.4) and in Equation (2.5) in term of statistical quantities.
Observing the following relations

Ci = σ2
b eT

i (AT A)−1 and cii = σ2
b

∥

∥eT
i A†

∥

∥

2

2
,

where Ci is the i-th column of the variance-covariance matrix, the condition number of xi given in
Formula (2.4) can expressed as

κi(A, b) =
1

σb

(

‖Ci‖2
2

σ2
b

‖r‖2
2

α2
+ cii(

‖x‖2
2

α2
+

1

β2
)

)
1

2

.

The quantity σ2
b will often be estimated by 1

m−n ‖r‖2
2 in which case the expression can be simplified

κi(A, b) =
1

σb

(

m − n

α2
‖Ci‖2

2 + cii(
‖x‖2

2

α2
+

1

β2
)

)
1

2

. (3.4)

From Equation (2.5), we obtain

κLS(A, b) =
‖C‖1/2

2

σb

(

‖C‖2 ‖r‖
2
2

α2σ2
b

+
‖x‖2

2

α2
+

1

β2

)
1

2

.

The quantity σ2
b will often be estimated by 1

m−n ‖r‖2
2 in which case the expression can be simplified

κLS(A, b) =
‖C‖1/2

2

σb

(

m − n

α2
‖C‖2 +

‖x‖2
2

α2
+

1

β2

)
1

2

.

4. Computation with LAPACK. Section 2 provides us with formulas to compute the con-
dition numbers κi and κLS. As explained in Section 3, those quantities are intimately interrelated
with the entries of the variance-covariance matrix. The goal of this section is to present practi-
cal methods and codes to compute those quantities efficiently with LAPACK and ScaLAPACK.
The assumption made is that the LLSP has already been solved with either the normal equations
method or a QR factorization approach. Therefore the solution vector x̂, the norm of the residual
‖r̂‖2, and the R-factor R of the QR factorization of A are readily available (we recall that the
Cholesky factor of the normal equations is the R-factor of the QR factorization up to some signs).
In the example codes, we have used the LAPACK routine DGELS that solves the LLSP using QR
factorization of A. Note that it is possible to have a more accurate solution using extra-precise
iterative refinement [8].

4.1. Variance-covariance computation. We will use the fact that 1
m−n ‖b − Ax̂‖2

2 is an

unbiased estimate of σ2
b . We wish to compute the following quantities related to the variance-

covariance matrix C
• the i-th column Ci = σ2

b (AT A)−1ei

• the i-th diagonal element cii = σ2
b‖eT

i A†‖2
2

• the whole matrix C
We note that the quantities Ci, cii, and C are of interest for statisticians. The NAG routine
F04YAF [12] is indeed an example of tool to compute these three quantities.
For the two first quantities of interest, we note that

∥

∥eT
i A†

∥

∥

2

2
=
∥

∥R−T ei

∥

∥

2

2
and (AT A)−1ei = R−1(R−T ei).
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4.1.1. Computation of the i-th column Ci. Ci can be computed with two n–by–n trian-
gular solves

RT y = ei and Rz = y. (4.1)

The i-th column of C can be computed by the following code fragment.

Code 1:
CALL DGELS( ’N’, M, N, 1, A, LDA, B, LDB, WORK, LWORK, INFO )
RESNORM = DNRM2( (M-N), B(N+1), 1)
SIGMA2 = RESNORM**2/DBLE(M-N)
E(1:N) = 0.D0
E(I) = 1.D0
CALL DTRSV( ’U’, ’T’, ’N’, N-I+1, A(I,I), LDA, E(I), 1)
CALL DTRSV( ’U’, ’N’, ’N’, N, A, LDA, E, 1)
CALL DSCAL( N, SIGMA2, E, 1)

This requires about 2n2 flops (in addition to the cost of solving the linear least squares
problem using DGELS).
cii can be computed by one n–by–n triangular solve and taking the square of the norm of the
solution which involves about (n − i + 1)2 flops. It is important to note that the larger i, the less
expensive to obtain cii. In particular if i = n then only one operation is needed: cnn = R−2

nn . This
suggests that a correct ordering of the variables can save some computation.

4.1.2. Computation of the i-th diagonal element cii. From cii = σ2
b

∥

∥eT
i R−1

∥

∥

2

2
, it

comes that each cii corresponds to the norm of the i-th row of R−1. Then the diagonal elements
of C can be computed by the following code fragment.

Code 2:
CALL DGELS( ’N’, M, N, 1, A, LDA, B, LDB, WORK, LWORK, INFO )
RESNORM = DNRM2((M-N), B(N+1), 1)
SIGMA2 = RESNORM**2/DBLE(M-N)
CALL DTRTRI( ’U’, ’N’, N, A, LDA, INFO)
DO I=1,N

CDIAG(I) = DNRM2( N-I+1, A(I,I), LDA)
CDIAG(I) = SIGMA2 * CDIAG(I)**2

END DO

This requires about n3/3 flops (plus the cost of DGELS).

4.1.3. Computation of the whole matrix C. In order to compute explicity all the
coefficients of the matrix C, one can use the routine DPOTRI which computes the inverse of a
matrix from its Cholesky factorization. First the routine computes the inverse of R using DTRTRI
and then performs the triangular matrix-matrix multiply R−1R−T by DLAUUM. This requires
about 2n3/3 flops. We can also compute the variance-covariance matrix without inverting R using
for instance the algorithm given in [5, p. 119] but the computational cost remains 2n3/3 (plus the
cost of DGELS).

We can obtain the upper triangular part of C by the following code fragment.
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Code 3:
CALL DGELS( ’N’, M, N, 1, A, LDA, B, LDB, WORK, LWORK, INFO )
RESNORM = DNRM2((M-N), B(N+1), 1)
SIGMA2 = RESNORM**2/DBLE(M-N)
CALL DPOTRI( ’U’, N, A, LDA, INFO)
CALL DLASCL( ’U’, 0, 0, N, N, 1.D0, SIGMA2, N, N, A, LDA, INFO)

4.2. Condition numbers computation. For computing κi(A, b), we need to compute both
the i-th diagonal element and the norm of the i-th column of the variance-covariance matrix and
we cannot use direcly Code 1 but the following code fragment

Code 4:
ALPHA2 = ALPHA**2
BETA2 = BETA**2
CALL DGELS( ’N’, M, N, 1, A, LDA, B, LDB, WORK, LWORK, INFO )
XNORM = DNRM2(N, B(1), 1)
RESNORM = DNRM2((M-N), B(N+1), 1)
CALL DTRSV( ’U’, ’T’, ’N’, N-I+1, A(I,I), LDA, E(I), 1 )
ENORM = DNRM2(N, E, 1)
K = (ENORM**2)*(XNORM**2/ALPHA2+1.d0/BETA2)
CALL DTRSV( ’U’, ’N’, ’N’, N, A, LDA, E, 1 )
ENORM = DNRM2(N, E, 1)
K = SQRT((ENORM*RESNORM)**2/ALPHA2 + K)

For computing all the κi(A, b), we need to compute the columns Ci and the diagonal ele-
ments cii using Formula (3.4) and then we have to compute the whole variance-covariance matrix.
This can be performed by a slight modification of Code 3.
When only b is perturbed, then we have to invert R and we can use a modification of Code 2 (see
numerical example in Section 5.2).

For estimating κLS(A, b), we need to have an estimate of
∥

∥A†
∥

∥

2
i.e
∥

∥R−1
∥

∥

2
. The compu-

tation of
∥

∥R−1
∥

∥

2
requires to compute the minimum singular value of the matrix A (or R). One

way is to compute the full SVD of A (or R) which requires O(n3) flops. As an alternative,
∥

∥R−1
∥

∥

2
can be estimated for instance by considering other matrix norms through the following inequalities

1√
n

∥

∥R−1
∥

∥

F
≤
∥

∥R−1
∥

∥

2
≤
∥

∥R−1
∥

∥

F
,

1√
n
‖R−1‖∞ ≤

∥

∥R−1
∥

∥

2
≤

√
n‖R−1‖∞,

1√
n
‖R−1‖1 ≤

∥

∥R−1
∥

∥

2
≤

√
n‖R−1‖1.

‖R−1‖1 or ‖R−1‖∞ can be estimated using Higham modification [14, p. 293] of Hager’s [13]
method as it is implemented in LAPACK [1] DTRCON routine (see Code 5). The cost is O(n2).

Code 5:
CALL DTRCON( ’I’, ’U’, ’N’, N, A, LDA, RCOND, WORK, IWORK, INFO)
RNORM = DLANTR( ’I’, ’U’, ’N’, N, N, A, LDA, WORK)
RINVNORM = (1.D0/RNORM)/RCOND
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We can also evaluate
∥

∥R−1
∥

∥

2
by considering

∥

∥R−1
∥

∥

F
since we have

∥

∥R−1
∥

∥

2

F
=
∥

∥R−T
∥

∥

2

F

= tr(R−1R−T )

=
1

σ2
b

tr(C),

where tr(C) denotes the trace of the matrix C, i.e
∑n

i=1 cii. Hence the condition number of the
least-squares solution can be approximated by

κLS(A, b) '
(

tr(C)

σ2
b

(

tr(C) ‖r‖2
2 + σ2

b ‖x‖
2
2

σ2
b α2

+
1

β2

))
1

2

. (4.2)

Then we can estimate κLS(A, b) by computing and summing the diagonal elements of C using
Code 2.

When only b is perturbed (α = +∞ and β = 1), then we get

κLS(b) '
√

tr(C)

σb
.

This result relates to [9, p. 167] where tr(C) measures the squared effect on the LLSP solution x
to small changes in b.

We give in Table 4.1 the LAPACK routines used for computing the condition numbers of
an LLSP solution or its components and the corresponding number of floating-point operations
per second. Since the LAPACK routines involved in the covariance and/or LLSP condition
numbers have their equivalent in the parallel library ScaLAPACK [6], then this table is also
available when using ScaLAPACK. This enables us to easily compute these quantities for larger
LLSP.

Table 4.1

Computation of least squares conditioning with (Sca)LAPACK

condition number linear algebra operation (Sca)LAPACK routines flops count

κi(A, b) RT y = ei and Rz = y 2 calls to (P)DTRSV 2n2

all κi(A, b), i = 1, n RY = I and compute Y Y T (P)DPOTRI 2n3/3

all κi(b), i = 1, n invert R (P)DTRTRI n3/3

κLS(A, b) estimate ‖R−1‖1 or ∞ (P)DTRCON O(n2)
compute

∥

∥R−1
∥

∥

F
(P)DTRTRI n3/3

Remark 3. The cost for computing all the κi(A, b) or estimating κLS(A, b) is always
O(n3). This seems affordable when we compare it to the cost of the least squares solution using
Householder QR factorization (2mn2 − 2n3/3) or the normal equations (mn2 + n3/3) because we
have in general m � n.
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5. Numerical experiments.

5.1. Laplace’s computation of the mass of Jupiter and assessment of the validity
of its results. In [19], Laplace computes the mass of Jupiter, Saturn and Uranus and provides
the variances associated with those variables in order to assess the quality of the results. The
data comes from the French astronomer Bouvart in the form of the normal equations given in
Equation (5.1).

795938z0 − 12729398z1 + 6788.2z2 − 1959.0z3 + 696.13z4 + 2602z5 = 7212.600
−12729398z0 + 424865729z1 − 153106.5z2 − 39749.1z3 − 5459z4 + 5722z5 = −738297.800

6788.2z0 − 153106.5z1 + 71.8720z2 − 3.2252z3 + 1.2484z4 + 1.3371z5 = 237.782
−1959.0z0 − 39749.1z1 − 3.2252z2 + 57.1911z3 + 3.6213z4 + 1.1128z5 = −40.335

696.13z0 − 5459z1 + 1.2484z2 + 3.6213z3 + 21.543z4 + 46.310z5 = −343.455
2602z0 + 5722z1 + 1.3371z2 + 1.1128z3 + 46.310z4 + 129z5 = −1002.900

(5.1)
For computing the mass of Jupiter, we know that Bouvart performed m = 129 observations and
there are n = 6 variables in the system. The residual of the solution ‖b − Ax̂‖2

2 is also given by
Bouvart and is 31096. On the 6 unknowns, Laplace only seeks one, the second variable z1. The
mass of Jupiter in term of the mass of the Sun is given by z1 and the formula:

mass of Jupiter =
1 + z1

1067.09
.

It turns out that the first variable z0 represents the mass of Uranus through the formula

mass of Uranus =
1 + z0

19504
.

If we solve the system (5.1), we obtain the solution vector

Solution vector
0.08954 -0.00304 -11.53658 -0.51492 5.19460 -11.18638

From z1, we can compute the mass of Jupiter as a fraction of the mass of the Sun and we obtain
1070. This value is indeed accurate since the correct value according to NASA is 1048. From z0,
we can compute the mass of Uranus as a fraction of the mass of the Sun and we obtain 17918.
This value is inaccurate since the correct value according to NASA is 22992.
Laplace has computed the variance of z0 and z1 to assess the fact that z1 was probably correct
and z0 probably inaccurate. To compute those variances, Laplace first performed a Cholesky
factorization from right to left of the system (5.1), then, since the variables were correctly ordered
the number of operations involved in the computation of the variances of z0 and z1 were minimized.
The variance-covariance matrix for Laplace’s system is:

















0.005245 −0.000004 −0.499200 0.137212 0.235241 −0.186069
· 0.000004 0.009873 0.003302 0.002779 −0.001235
· · 71.466023 −5.441882 −16.672689 14.922752
· · · 10.860492 5.418506 −4.896579
· · · · 66.088476 −28.467391
· · · · · 15.874809

















Our computation gives us that the variance for the mass of Jupiter is 4.383233 · 10−6. For
reference, Laplace in 1820 computed 4.383209 · 10−6. (We deduce the variance from Laplace’s
value 5.0778624. To get what we now call the variance, one needs to compute the quantity:
1/(2 ∗ 10 ∗ ∗5.0778624) ∗ m/(m − n).)

From the variance-covariance matrix, one can assess that the computation of the mass of
Jupiter (second variable) is extremely reliable while the computation of the mass of Uranus (first
variable) is not. For more details, we recommend to read [18].
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5.2. Gravity field computation. A classical example of parameter estimation problem
is the computation of the Earth’s gravity field coefficients. More specifically, we estimate the
parameters of the gravitational potential that can be expressed in spherical coordinates (r, θ, λ)
by [4]

V (r, θ, λ) =
GM

R

`max
∑

`=0

(

R

r

)`+1
∑̀

m=0

P `m(cos θ)
[

C`m cosmλ + S`m sin mλ
]

(5.2)

where G is the gravitational constant, M is the Earth’s mass, R is the Earth’s reference radius, the
P `m represent the fully normalized Legendre functions of degree ` and order m and C`m,S`m are
the corresponding normalized harmonic coefficients. The objective here is to compute the harmonic
coefficients C`m and S`m the most accurately as possible. The number of unknown parameters is
expressed by n = (`max + 1)2. These coefficients are computed by solving a linear least squares
problem that may involve millions of observations and tens of thousands of variables. More details
about the physical problem and the resolution methods can be found in [3]. The data used in the
following experiments were provided by CNES∗ and they correspond to 10 days of observations
using GRACE† measurements (about 166, 000 observations). We compute the spherical harmonic
coefficients C`m and S`m up to a degree `max = 50; except the coefficients C11, S11, C00, C10 that
are a priori known. Then we have n = 2, 597 unknowns in the corresponding least squares problems
(note that the GRACE satellite enables us to compute a gravity field model up to degree 150). The
problem is solved using the normal equations method and we have the Cholesky decomposition
AT A = UT U .
We compute the relative condition numbers of each coefficient xi using the formula

κ
(rel)
i (b) =

∥

∥eT
i U−1

∥

∥

2
‖b‖2 /|xi|,

and the following code fragment, derived from Code 2, in which the array D contains the normal
equations AT A and the vector X contains the right-hand side AT b.

CALL DPOSV( ’U’, N, 1, D, LDD, X, LDX, INFO)
CALL DTRTRI( ’U’, ’N’, N, D, LDD, INFO)
DO I=1,N

KAPPA(I) = DNRM2( N-I+1, D(I,I), LDD) * BNORM/ABS(X(I))
END DO

Figure 5.1 represents the relative condition numbers of all the n coefficients. We observe
the disparity between the condition numbers (between 102 and 108). To be able to give a
physical interpretation, we need first to sort the coefficients by degrees and orders as given in the
development of V (r, θ, λ) in Expression (5.2).
In Figure 5.2, we plot the condition numbers of the coefficients C`m as a function of the degrees
and orders (the curve with the S`m is similar). We notice that for a given order, the condition
number increases with the degree and that, for a given degree, the variation of the sensitivity with
the order is less significant.
We can also study the effect of regularization on the conditioning. The physicists use in
general a Kaula [16] regularization technique that consists of adding to AT A a diagonal matrix

D = diag(0, · · · , 0, δ, · · · , δ) where δ is a constant that is proportional to 10−5

`2max
and the nonzero

terms in D correspond to the variables that need to be regularized. An example of the effect
of Kaula regularization is shown in Figure 5.3 where we consider the coefficients of order 0 also
called zonal coefficients. We compute here the absolute condition numbers of these coefficients

∗Centre National d’Etudes Spatiales, Toulouse, France
†Gravity Recovery and Climate Experiment, NASA, launched March 2002
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using the formula κi(b) =
∥

∥eT
i U−1

∥

∥

2
. Note that the κi(b) are much lower that 1. This is not

surprising because typically in our application ‖b‖2 ∼ 105/ and |xi| ∼ 10−12 which would make
the associated relative condition numbers greater than 1. We observe that the regularization is
effective on coefficients of highest degree that are in general more sensitive to perturbations.

0 500 1000 1500 2000 2500
10

2

10
3

10
4

10
5

10
6

10
7

10
8

# gravity field coefficients

co
nd

iti
on

in
g

Fig. 5.1. Amplitude of the relative condition numbers for the gravity field coefficients.
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Fig. 5.2. Conditioning of spherical harmonic coefficients C`m (2 ≤ ` ≤ 50 , 1 ≤ m ≤ 50).
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Fig. 5.3. Effect of regularization on zonal coefficients C`0 (2 ≤ ` ≤ 50).

6. Conclusion. To assess the accuracy of a linear least squares solution, the practitioner of
numerical linear algebra uses generally quantities like condition numbers or backward errors when
the statistician is more interested in covariance analysis. In this paper we proposed quantities
that talk to both communities and that can assess the quality of the solution of a least squares
problem or one of its component. We provided pratical ways to compute these quantities using
(Sca)LAPACK and we experimented these computations on pratical examples including a real
physical application in the area of space geodesy.
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