
Lapack 3.1 xHSEQR: Tuning and

Implementation Notes on the Small Bulge

Multi-shift QR Algorithm with Aggressive

Early Deflation

Ralph Byers∗

405 Snow Hall

Department of Mathematics
University of Kansas

Lawrence, Kansas 66045
USA

byers@math.ku.edu

May 2007

Abstract

This note documents implementation details of the small bulge,
multi-shift QR algorithm with aggressive early deflation that appears
as Lapack version 3.1 programs CHSEQR, DHSEQR, SHSEQR and ZHSEQR

and the subroutines they call. These codes calculate eigenvalues and
optionally a Schur factorization of a Hessenberg matrix. They do the
bulk of the work required to calculate eigenvalues and optionally eigen-
vectors of a general non-symmetric matrix. This report is intended
to provide some guidance for setting the machine dependent tuning
parameters, to help maintainers to identify and correct problems, and
to help developers improve upon this implementation.

∗Portions of this work were accomplished while this author was on sabbatical leave at
and partially supported by the Lawrence Berkeley National Laboratory. This work was
also partially supported by by the National Science Foundation under awards 0098150 and
0112375.

1

1 Introduction

This report explains the structure and some of the implementation details
of the small bulge, multi-shift QR algorithm with aggressive, early deflation
[4, 5] as it is implemented in Lapack 3.1 by CHSEQR, DHSEQR, SHSEQR and
ZHSEQR and the subroutines that they call. These codes calculate eigenvalues
and optionally a Schur factorization of a Hessenberg matrix. They do the
bulk of the work required to calculate eigenvalues and optionally eigenvectors
of a general non-symmetric matrix.

The small bulge multi-shift QR algorithm executes QR sweeps at BLAS 3
[7] speed [4] while aggressive early deflation recognizes and deflates converged
eigenvalues earlier in the iteration than does traditional small-subdiagonal
deflation [5, 12]. Although we started from a working experimental code and
we reused some of the older Lapack 3.0 code (in xLAHQR), nevertheless it
took many weeks of full time effort to write, debug and tune a final production
version of the new QR algorithm. Improvements to the QR algorithm may
well be discovered. It would be a waste to discard this work and rewrite the
entire code in order to incorporate an improvement. Likewise, it would be a
waste to discard improvements, because it is too difficult and time consuming
to modify the existing code. The intention of this report is to explain enough
of the structure and implementation details to make it feasible to incorporate
improvements by modifying this code.

This report presumes that the reader is already familiar with the small
bulge, multi-shift QR algorithm with aggressive, early deflation [4, 5]. For
ease of explication we use “the new QR algorithm” to refer to the small
bulge, multi-shift QR algorithm with aggressive early deflation [4, 5] as im-
plemented in Lapack version 3.1. We use “the old QR algorithm” to refer
to the large bulge multi-shift QR algorithm [3] as implemented in Lapack

version 3.0. We use “the implicit double shift QR algorithm” to refer to the
implicit double shift QR algorithm proposed in the early 1960’s [8] modi-
fied with the more-robust-against-convergence-failures shift strategy [6] and
a more stringent deflation criterion [1]. (The implicit double shift QR algo-
rithm is implemented in Lapack 3.1 subroutines DLAHQR and SLAHQR. La-

pack 3.1 subroutines CLAHQR and ZLAHQR implement an implicit single-shift
QR algorithm for complex, Hessenberg matrices.)

The Lapack 3.1 programs CHSEQR, DHSEQR, SHSEQR and ZHSEQR (along
with the subroutines they call) implement the new QR algorithm. Specifi-
cally, CHSEQR, DHSEQR and SHSEQR (and the subroutines they call) implement

2

the algorithm for the Fortran 77 standard arithmetic types COMPLEX, DOUBLE
PRECISION and REAL, respectively. ZHSEQR implements the algorithm for the
arithmetic type COMPLEX*16 which is a frequent extension to Fortran 77.
Following common convention, this manuscript refers to the four implemen-
tations collectively as xHSEQR. Similar Lapack subroutine families are also
referenced collectively with an x in place of a leading C, D, S or Z. The old
QR algorithm is implemented in Lapack 3.0 as xHSEQR . Slightly different
versions of the implicit double shift QR algorithm are implemented in La-

pack 3.0 and Lapack 3.1 as DLAHQR and SLAHQR. Both the Lapack 3.0 and
Lapack 3.1 versions of CLAHQR and ZLAHQR use implicit single shifts.

As implemented in Lapack 3.1, the new QR algorithm is substantially
more complicated than either the old QR algorithm or the implicit double
shift QR algorithm. The new QR algorithm has over 1,300 executable lines
of code spread among seven subroutines (not including calls to the BLAS
[7, 13, 14], xGEHRD, xLABAD, xLACPY, xLANV2, xLARFG, xLARF, xLASET, DORGHR,
SORGHR, CUNGHR, ZUNGHR and xTREXC). The old QR algorithm in Lapack 3.0
has the 335 executable lines spread over two subroutines (not including calls
to the BLAS [7, 13, 14], xLABAD, xLACPY, xLANV2, xLARFG and xLARFX). The
implicit double shift QR algorithm, Lapack 3.1 subroutine xLAHQR has 191
executable lines of code in one subroutine (not including calls to the BLAS
[7, 13, 14], xLABAD, xLARFG and xLANV2).

The implementation of the new QR algorithm, Lapack 3.1 subroutine
xHSEQR has the following goals:

• To be a “drop in” replacement for the old, Lapack 3.0 version of
xHSEQR; (In particular both the old, Lapack 3.0 version and the new
Lapack 3.1 version have the same calling sequence; operate satisfacto-
rily with the same workspace; and return similar, compatible output.
Note that the Lapack 3.0 version and the Lapack 3.1 version may
return quite different results due to rounding errors, ill-conditioning
and/or eigenvalue ordering along the diagonal of the triangular or quasi-
triangular factor.)

• To be robust against overflows and both gradual and sudden underflow;

• To be robust against QR iteration convergence failures; and

• when linked with suitably tuned BLAS, to have efficiency and accuracy
comparable to or better than the Lapack 3.0 version of xHSEQR for all

3

matrices and to deliver substantially greater efficiency for matrices of
order greater than a few hundred.

The numerical experiments that are briefly mentioned below were con-
ducted on a workstation with a 2GHz Xeon processor, 400MHz front side
buss, 512MB Level 2 cache and 2 gigabyte RAM memory running Linux.
Numerical experiments concentrated on DHSEQR. Code was compiled with
g77/gcc version 3.4.6 with options -O3 -malign-double -march=i686 -mcpu=i686
-mtune=pentium4 -mieee-fp -funroll-all-loops -fomit-frame-pointer -fno-trapping-math
and linked with GOTO BLAS version 0.9 [10, 11].

In the numerical experiments used for setting the machine dependent tun-
ing parameters, n-by-n matrices were stored in n-by-n arrays. Non-random
matrices were selected from the Non-Hermitian Eigenvalue Problems (NEP)
Collection [2]. Pseudo-random Hessenberg matrices are matrices which have
normally distributed pseudo-random numbers with mean zero and variance
one on the diagonal and upper triangle. The subdiagonal entry (j + 1, j)
entry has the square root of a Chi-squared distributed random variable with
n − j degrees of freedom. Hessenberg matrices with the same distribution
of random number entries can also be generated by applying the reduction
to Hessenberg form algorithm [9, Algorithm 7.4.2] (modified slightly to give
positive subdiagonal entries) to an n-by-n matrix all of whose entries are
normally distributed variables with mean zero and variance one.

Of course, there may be a benefit from different choices of the tuning pa-
rameters for other computational platforms, other classes of matrices, other
floating point precisions, other implementations of the BLAS, other com-
pilers, compiler options or perhaps even other operating systems. Never-
theless, we expect the default tuning parameters to give good performance
for a wide variety of matrices in a wide variety of computational environ-
ments. This expectation is met, for example, on an Origin2000 computer
with 400MHz R12000 processors, 8MB of level 2 cache and optimized BLAS
from the SGI/Cray Scientific Library version 1.2.0.0.

2 Outline

The new QR algorithm implementation consists of subroutines xHSEQR, xLAHQR,
xLAQR0, xLAQR1, xLAQR2, xLAQR3, xLAQR4, xLAQR5, and IPARMQ. The calling
graph in Figure 1 omits calls to the BLAS [7, 13, 14], IPARMQ, xGEHRD, xLABAD,

4

xLACPY, xLANV2, xLARFG, xLARF, xLASET, DORGHR, SORGHR, CUNGHR, ZUNGHR
and xTREXC.

At least once per multi-shift QR sweep (often more than once) aggressive
early deflation [5] calculates a full Schur decomposition of a trailing principal
submatrix of a Hessenberg matrix. This trailing principal submatrix may
itself be of large enough order to benefit from calling the new QR algorithm
algorithm recursively. Unfortunately, the 1977 Fortran standard does not
include recursion. Instead of true recursion, xHSEQR implements one level of
recursion assigning different names to nearly identical subroutines. (Subrou-
tine xLAQR4 is a near duplicate of xLAQR0 and subroutine xLAQR2 is a near
duplicate of xLAQR3.) The subroutines called at the higher level of recursion
have minimum modification to avoid even higher levels of recursion. Nu-
merical experiments with random matrices and matrices from a variety of
applications [2] verify that there is little to be gained from higher levels of
recursion.

IPARMQ: Subroutine IPARMQ sets several “tuning” parameters that affect the
operation and efficiency of the computation. Tuning parameters are
described throughout this manuscript.

xHSEQR: Subroutine xHSEQR is the “user callable” entrance to the new QR
algorithm, although it would typically be called through xGEEV or
xGEEVX. It selects either the implicit double shift QR algorithm or the
new QR algorithm depending primarily on the order of the Hessenberg
matrix.

xLAHQR: Subroutine xLAHQR is an implementation of the classic implicit dou-
ble shift QR algorithm. It is a complete, Hessenberg matrix eigen-
value/Schur factorization subroutine. It is slightly modified version of
the subroutine of the same name in Lapack 3.0. A few lines were
modified to be more robust against overflow and underflow. Both the
small-compared-to-nearest-diagonal-entries convergence criterion used
by the Lapack 3.0 code and the Ahues and Tisseur [1] convergence
criterion must be satisfied in order set a small subdiagonal entry to
zero.

xLAQR0, xLAQR4: Subroutine xLAQR0 manages the new, small bulge multi-
shift QR algorithm with aggressive deflation. It is a complete, Hessen-
berg matrix eigenvalue/Schur factorization subroutine. It adjusts the

5

shift QR algorithm
implicit doubleearly deflation

new QR
algorithm

control

new QR
algorithm

entry

QR sweep
multi−shift
small bulge

recursion

control

new QR
algorithm

copy to simulate
recursion

copy to simulate
early deflation

xHSEQR

xLAQR0

xLAQR5xLAHQRxLAQR3

xLAQR4 xLAQR2 xLAQR1

implicit double
shift bulge

construction

aggressive

aggressive

auxiliary

Figure 1: xHSEQR calling graph omitting the BLAS, IPARMQ, xGEHRD, xLABAD,
xLACPY, xLANV2, xLARFG, xLARF, xLASET, DORGHR, SORGHR, CUNGHR, ZUNGHR,
and xTREXC. Arrows point from calling subroutine toward a called subroutine.
One level of recursion is obtained by nearly duplicating xLAQR0 as xLAQR4
and xLAQR3 as xLAQR2.

6

size of the deflation window, selects the shifts, and determines when to
use a multi-shift QR sweep between calls to aggressive early deflation.

Subroutine xLAQR4 is a near duplicate of xLAQR0 used to implement
one level of recursion. It avoids higher levels of recursion by calling
the implicit double shift QR algorithm, xLAHQR, instead of itself and
by calling xLAQR2 instead of xLAQR3 to perform aggressive, early early
deflation.

xLAQR1: This is an implicit double shift bulge construction auxiliary subrou-
tine. Given a 2-by-2 or 3-by-3 Hessenberg matrix H, and a pair of scalar
shifts s1 and s2, subroutine xLAQR1 returns a scalar multiple of the first
column of the product (H − s1)(H − s2) taking care to avoid overflows
and most underflows. This is useful for starting implicit double shift
bulges during the QR algorithm.

xLAQR2, xLAQR3: Subroutine xLAQR3 performs aggressive, early deflation on
a Hessenberg matrix H. It returns the converged eigenvalues it finds
(if any) along with the eigenvalues of a trailing principal submatrix.
The latter may be used for shifts during a subsequent small bulge,
multi-shift QR sweep.

In addition, xLAQR3 overwrites the Hessenberg matrix H by a similarity
transformation of a minute perturbation of H which is still in Hessen-
berg form. On output, converged eigenvalues (if any are discovered)
appear as eigenvalues of isolated 1-by-1 and 2-by-2 blocks along the
trailing diagonal entries. (In the complex case there are only isolated
1-by-1 trailing diagonal blocks.) The similarity transformation is op-
tionally accumulated into a given orthogonal (unitary in the complex
case) matrix.

Subroutine xLAQR2 is a near duplicate of xLAQR3 used to implement one
level of recursion. Subroutine xLAQR2 avoids higher levels of recursion
by calling the implicit double shift QR algorithm xLAHQR instead of
xLAQR4 or xLAQR0.

xLAQR5: Subroutine xLAQR5 performs a small bulge, multi-shift QR sweep.
Even in the complex case, it applies the shifts in pairs using implicit
double shift bulges. (This simplifies maintaining real and complex ver-
sions of the code, and uses less arithmetic work than would be needed
for implicit single shift bulges.) Vigilant deflation requires both the

7

small-compared-to-nearest-diagonal-entries criterion used by the La-

pack 3.0 code and the Ahues and Tisseur [1] stopping criterion to be
satisfied in order to set a small subdiagonal entry to zero. (The Ahues
and Tisseur [1] stopping criterion is applied even though the matrix
is perturbed from Hessenberg form by a chain of implicit double shift
bulges.)

For ease of reference, Table 1 lists some of the variables discussed in this
report and used by xHSEQR and/or the subroutines it calls.

3 Details

3.1 xHSEQR:

Subroutine xHSEQR is the “user callable” entrance to the new QR algorithm,
although it would typically be called through xGEEV or xGEEVX. It sends
larger order matrices to xLAQR0 where they can benefit from the BLAS 3
[7] efficiency and early convergence of the new algorithm. Smaller order
matrices do not benefit from the BLAS 3 approach or early convergence.
They go directly to xLAHQR, the implicit double shift algorithm, to avoid the
higher computational overhead of the new algorithm.

The threshold between “larger order matrices” that benefit from the
new algorithm and and “smaller order matrices” that are more efficiently
factored by the implicit double shift QR algorithm is specified by NMIN=

ILAENV(ISPEC=12)=IPARMQ(ISPEC=12), i.e., is specified through ILAENV by
calling IPARMQ with ISPEC=12. The minimum valid value of NMIN is eleven.
There is no maximum valid value. The unmodified, default version of IPARMQ
returns IPARMQ(ISPEC=12)=75. This default is obtained from empirical ex-
periments with pseudo-random matrices. A different value of NMIN may be
appropriate for other classes of matrices or for other computers.

In the rare case of a implicit double shift QR algorithm convergence fail-
ure, a small order matrix may be diverted to the new algorithm, because it is
more robust against convergence failures. In order to insure that there is suf-
ficient scratch space in the unused (i.e., zero) entries below the first subdiago-
nal, a Hessenberg matrix smaller than 49-by-49 is copied to a 49-by-49 locally
declared scratch array. There is no particular reason to prefer 49-by-49 over
similarly sized scratch arrays. The scratch array must be at least 12-by-12
for the new algorithm to apply at all. However, 12-by-12 array allows only

8

H The Hessenberg matrix iterate.
IHI On entry H is assumed to already be triangular in rows and
ILO columns 1 through ILO− 1 and IHI + 1 through N

KACC22 Parameter determining the mode of execution in xLAQR5. Set
by IPARMQ. See Subsections 3.4 and 3.5.

KBOT The active, unreduced Hessenberg submatrix lies in rows and
KTOP columns KTOP through KBOT.
LD The number of eigenvalues deflated by a single application of

aggressive early deflation.
N The order of the Hessenberg matrix.

NH The order of the active, unreduced Hessenberg submatrix, i.e.,
KTOP− KBOT + 1

NHo The number of columns in a horizontal scratch array. See
Figures 2 and 3.

NIBBLE Parameter determining when to skip a multi-shift QR sweep.
Set by IPARMQ. See Subsections 3.2 and 3.5.

NMIN The xLAHQR/xLAQR0 cross over point. Set by IPARMQ. See
Subsections 3.2 and 3.5.

NShfts The number of simultaneous shifts in a multi-shift QR sweep.
NSMAX The maximum number of simultaneous shifts for which there

is sufficient subdiagonal scratch space for xLAQR5.
NSR The recommended number of simultaneous shifts. Set by

IPARMQ. See Subsections 3.2 and 3.5.
NVe The number of rows in a vertical scratch array. See Figures 2

and 3.
NW The order of the deflation window.

NWMAX The maximum order of deflation window for which there is
sufficient subdiagonal scratch space for xLAQR2 and/or xLAQR3.

NWR The recommended deflation window size. Set by IPARMQ.
See Subsections 3.2 and 3.5.

Table 1: Cast of characters: some of the variables discussed in this report
and used by xHSEQR and/or the subroutines it calls.

9

two simultaneous shifts and a weak 3-by-3 deflation window, so the new al-
gorithm would not be significantly different than the implicit double shift
algorithm. A 49-by-49 array allows six simultaneous shifts and a 16-by-16
deflation window which is empirically more robust against convergence fail-
ures than the implicit double shift algorithm. See the discussion of xLAQR0
below. A larger scratch array would allow more simultaneous shifts and a
larger deflation window which might be marginally even more robust against
convergence failure.

3.2 xLAQR0 and xLAQR4

Subroutine xLAQR0 is a complete Hessenberg matrix eigenvalue/Schur factor-
ization algorithm. It controls the size of the deflation window, choice of shifts
and determines when a multi-shift QR sweep is performed between applica-
tions of aggressive early deflation. Subroutine xLAQR4 is a near duplicate of
xLAQR0 used to implement one level of recursion. Subroutine xLAQR4 calls
xLAQR2 instead of xLAQR3 and calls xLAHQR instead of itself.

The new algorithm as implemented in xLAQR0 uses the “unused” zero
entries below the subdiagonal of the Hessenberg iterate for the scratch space
required by xLAQR3 and xLAQR5. Figures 2 and 3 show how scratch space is
laid out. As implemented here, an n-by-n matrix has enough subdiagonal
scratch space to support an b(n + 6)/9c (less one, if this quantity is odd)
shift small bulge multi-shift QR sweep and an order b(n − 1)/3c deflation
window. In particular, matrices smaller than 12-by-12 do not have enough
subdiagonal scratch space for even the minimal two shifts, so these are sent
to xLAHQR, the implicit double shift QR algorithm. (However, if IPARMQ

is unmodified, then it is extraordinarily rare to call xLAQR0 with a matrix
smaller than 75-by-75 and impossible to call xLAQR0 with a matrix smaller
than 49-by-49.)

Input arguments ILO and IHI indicate that the initial Hessenberg ma-
trix is already in triangular form in rows and columns one through ILO-1
and IHI+1 through the order of the whole Hessenberg matrix N. Hence, the
eigenvalue problem or Schur factorization reduces to the Hessenberg matrix
in rows and columns ILO through IHI. Subroutine xLAQR0 obtains tuning
parameters by passing N, ILO, IHI and the dimension of the workspace ar-
ray LWORK to ILAENV which passes them along to IPARMQ where the tuning
parameters are set. These parameters do not change during the algorithm
although different tuning parameters may be set in simulated recursive calls.

10

H H H H H H H H H H H H H H
H H H H H H H H H H H H H H

H H H H H H H H H H H H H
H H H H H H H H H H H H

W W W H H H H H H H H H H H
W W W H H H H H H H H H H
W W W H H H H H H H H H
W W W H H H H H H H H
W W W H H H H H H H
W W W H H H H H H
W W W H H H H H
V V V T T T T T T T S D D D
V V V T T T T T T T D D D
V V V T T T T T T T D D

Figure 2: Arrangement of subdiagonal scratch space for xLAQR3 and xLAQR2,
aggressive early deflation. This is a N-by-N = 14-by-14 schematic example
with an NW-by-NW = 3-by-3 deflation window. The H’s are the nontrivial
entries of the Hessenberg QR iterate. The D’s indicate the trailing princi-
pal submatrix in the deflation window. (As the problem deflates, the posi-
tion of the deflation window moves up along the subdiagonal. However, the
scratch arrays W and T do not move. They remain in the leftmost columns
and bottom rows, respectively.) The S is the spike root. The V’s form a
NW-by-NW scratch array for the orthogonal (or unitary in the complex case)
Schur factor of the principal submatrix in the deflation window. The T’s form
an NW-by-NHo horizontal work space for matrix-matrix multiplication where
NHo = N−2NW−1 makes the T array as large as possible for this arrangement
of the subdiagonal scratch space. The quasi-triangular (or triangular in the
complex case) Schur factor is temporarily stored in the left-most NW columns
of T . The W’s form an NVe-by-NW vertical workspace for matrix-matrix mul-
tiplication where NVe = N− 2NW− 1 makes the W array as large as possible
for this arrangement of the subdiagonal scratch space. Subroutines xLAQR2
and xLAQR3 require the width of T to be NHo ≥ NW columns and the height of
W to be NVe ≥ NW rows, so there is room for the triangular factor in T and
enough scratch space in W and T to achieve BLAS 3 speed matrix-matrix
multiplies. With this restriction, there is enough subdiagonal scratch space
for an order NWMAX = b(N− 1)/3c deflation window.

11

H H H H H H H H H H H H H H
H H H H H H H H H H H H H H
. H H H H H H H H H H H H H
. . H H H H H H H H H H H H

. . H H H H H H H H H H H
. . H H H H H H H H H H

Y Y Y . . H H H H H H H H H
Y Y Y . . H H H H H H H H
Y Y Y . . H H H H H H H
Y Y Y . . H H H H H H
Y Y Y . . H H H H H
U U U W W W W W . . H H H H
U U U W W W W W . . H H H
U U U W W W W W . . H H

Figure 3: Arrangement of subdiagonal scratch space for xLAQR5, the small
bulge multi-shift QR sweep. This is an N-by-N = 14-by-14 schematic ex-
ample with only NShfts = 2 simultaneous shifts. The H’s represent the
nontrivial elements of the Hessenberg QR iterate. The two subdiagonal
boarder indicated with dots is used for bulge chasing. The U’s form a
(3NShfts − 3)-by-(3NShfts − 3) work array for the accumulated product
of elementary reflectors. The W’s form a (3NShfts − 3)-by-NHo work ar-
ray for matrix-matrix multiplication where NHo = N − 6NShfts + 3 makes
the W array as large as possible for this arrangement of the subdiagonal
scratch space. The Y’s form a NVe-by-(3NShfts − 3) work array also for
matrix-matrix multiplication where NVe = N − 6NShfts + 3 makes the Y
array as large as possible for this arrangement of the subdiagonal scratch
space. (As the problem deflates, some of the two subdiagonal boarder be-
comes unused. The W array and/or the Y array could be up to two columns
or rows larger, respectively. However, this is unimplemented.) Subroutine
xLAQR5 arbitrarily requires there to be NVe ≥ (3NShfts − 3) rows in Y and
NHo ≥ (3NShfts− 3) columns in W so that there is enough scratch space to
allow BLAS 3 speed matrix-matrix multiplies. With this restriction, NShfts
may be as large as b(N + 6)/9c (less one, if this quantity is odd).

12

Subroutine xLAQR0 obtains the following tuning parameters from ILAENV/
IPARMQ.

NSR: NSR=ILAENV(ISPEC=15)=IPARMQ(ISPEC=15), the recommended num-
ber of simultaneous shifts. To be valid, NSR must be positive and even
(even in the complex case). The largest possible number of shifts for
which there is sufficient subdiagonal workspace is NSMAX = b(N+ 6)/9c
(less one, if this quantity is odd) where N is the order of the Hessenberg
matrix.

If IPARMQ is unmodified, then IPARMQ(ISPEC=15) returns a value as
specified in Table 2. These choices for the recommended number of
shifts were developed from numerical experiments with pseudo-random
Hessenberg matrices. Consequently, it is not unlikely that other com-
puters or other classes of matrices would benefit from different choices
of the recommended number of shifts.

Note that except in case of a rare QR convergence the double implicit
shift algorithm (single implicit shift in the complex case) xLAHQR which
does not reference NSR is used for matrices of order less than or equal to
NMIN. The parameter NMIN is set by the unmodified IPARMQ to NMIN =
75.

It is not unusual that the actual number of simultaneous shifts in a
small bulge multi-shift QR sweep may be less than NSR. See below.

NMIN: NMIN=ILAENV(ISPEC=12)=IPARMQ(ISPEC=12), the threshold matrix or-
der at or below which xLAHQR, the implicit double shift algorithm (im-
plicit single shift algorithm in the complex case), is preferred to xLAQR0,
the new algorithm. To be valid, NMIN must be greater than or equal to
eleven.

If IPARMQ is unmodified, then ILAENV(ISPEC=12)=IPARMQ(ISPEC=12)

returns the default value of 75.

NIBBLE: NIBBLE=ILAENV(ISPEC=14)=IPARMQ(ISPEC=14), a threshold control-
ling whether or not to call xLAQR5, the small bulge multi-shift QR
sweep, between two successive calls to xLAQR3, aggressive early defla-
tion. After a call to xLAQR3, xLAQR0 skips a call to xLAQR5, if there is
a heuristic reason to expect that a subsequent call to xLAQR3 will find
many converged eigenvalues without an intervening call to xLAQR5. A

13

If . . . but less . . . IPARMQ(ISPEC=15)
IHI− ILO + 1 than . . . returns . . .
is greater than
or equal to . . .

0 30 2
30 60 4
60 150 10

150 590
⌊

IHI−ILO+1
log

2
(IHI−ILO+1)

⌋

590 3000 64
3000 6000 128
6000 ∞ 256

Table 2: If IPARMQ is unmodified, then IPARMQ(ISPEC=15), the default rec-
ommended number of simultaneous shifts, is specified in this table. If the
ad-hoc, increasing function used for 150 ≤ IHI− ILO + 1 < 590 is odd, then
its value is decreased by one. Note that except in case of a rare QR conver-
gence failure, the double implicit shift algorithm (single implicit shift in the
complex case) xLAHQR which does not reference NSR is used for matrices of
order less than or equal to NMIN. The parameter NMIN is set by the unmodified
IPARMQ to NMIN = 75.

14

QR sweep is skipped if the last call to xLAQR3 discovered at least one
converged eigenvalue and either of the following occur.

– Skip the next call to xLAQR5, if the active unreduced Hessenberg
submatrix fits entirely within the next deflation window. In this
case, if there is no QR iteration convergence failure, then the next
call to xLAQR3 will discover all the eigenvalues of the active block
without an intervening call to xLAQR5. (Convergence failures are
rare.)

– Skip the next call to xLAQR5 if the last call to xLAQR3 used deflation
window size NW and found more than

(

NIBBLE

100

)

×NW converged eigen-
values. In particular, if NIBBLE ≤ 0, then xLAQR0 skips xLAQR5
except if the last call to xLAQR3 found no converged eigenvalues. If
NIBBLE ≥ 100, then xLAQR0 always calls xLAQR5 between succes-
sive calls to xLAQR3 except in case the active Hessenberg principal
submatrix fits entirely within the next deflation window.

If IPARMQ is unmodified, then ILAENV(ISPEC=14)=IPARMQ(ISPEC=14)

returns the default value of NIBBLE = 14. (This is not a typographical
error: both ISPEC and the default return value are 14.) This small
value of NIBBLE reflects the expectation that the computational cost
of performing a small bulge multi-shift QR sweep with xLAQR5 is sub-
stantially greater than the cost of looking through the deflation window
with xLAQR3. In some computational environments, e.g., one with well-
tuned parallel BLAS, a larger value of NIBBLE may be appropriate.

NWR: NWR=ILAENV(ISPEC=13)=IPARMQ(ISPEC=13), the recommended defla-
tion window size. To be valid, NWR must be positive, but for heuristic
reasons, the code requires that the deflation window size be greater than
or equal to two. The largest possible deflation window size for which
there is sufficient subdiagonal scratch space is NWMAX = b(N − 1)/3c
where N is the order of the Hessenberg matrix. The actual deflation
window size may differ from NWR as described below.

If IPARMQ is unmodified, then ILAENV(ISPEC=13)=IPARMQ(ISPEC=13)

returns the default value of NWR = NSR for matrices of order less than
or equal to 500 and NWR = 3NSR/2 for matrices of larger order.

KACC22: KACC22=ILAENV(ISPEC=16)=IPARMQ(ISPEC=16), recommended compu-
tational path to follow in xLAQR5. Subroutine xLAQR0 simply passes this

15

parameter into xLAQR5 (which keeps a call to ILAENV and IPARMQ out
of the main loop). KACC22 is described below in Subsection 3.4.

At the beginning of each iteration, xLAQR0 examines the current Hessen-
berg iterate and locates an unreduced Hessenberg principal submatrix setting
KTOP and KBOT to the first and last row index, respectively. Hence, the active
block has order NH = KTOP− KBOT + 1 and occupies rows and columns KTOP

through KBOT.
Ordinarily, the deflation window size NW is set as follows.

• If NH ≤ min(NMIN, NWMAX), then NW = NH. With this choice, the entire
active unreduced Hessenberg block fits in the deflation window. If there
is no QR convergence failure, then the next call to xLAQR3, aggressive
early deflation, will use xLAHQR to discover all the eigenvalues in the
active block. This choice reflects the heuristic expectation that matrices
of order NMIN or less are more efficiently processed by xLAHQR, the
implicit double shift algorithm than by the new algorithm.

• Let H be the current Hessenberg iterate and let L = min(NWR, NH, NWMAX).
Ordinarily, if NH > min(NMIN, NWMAX), then the deflation window size
is set to L or L + 1 depending upon which choice corresponds to the
smaller of |H(KBOT − L + 1, KBOT− L)| and |H(KBOT − L, KBOT − L− 1)|.

This choice is motivated by the following heuristic. The aggressive de-
flation spike “hangs” from and is scaled by the (KBOT−NW+1, KBOT−NW)
subdiagonal entry. The above choice selects the subdiagonal entry of
smaller magnitude from two neighbors. Heuristically, the smaller sub-
diagonal entry helps discover converged eigenvalues by scaling the spike
by a smaller number. Searching through just two neighboring subdiag-
onal entries reflects the fact that complex eigenvalues, i.e., eigenvalues
with nonzero imaginary part, cause the real quasi-triangular Schur fac-
tor of a real matrix to have nontrivial 2-by-2 bumps. A poor choice of
NW might hang the spike from a relatively large magnitude subdiagonal
entry that is part of a converging 2-by-2 bulge. The heuristic assumes
that a much smaller magnitude neighboring subdiagonal would be a
better choice.

There might be a benefit from searching for the smallest magnitude
of several neighboring subdiagonal entries. Experiments with pseudo-
random Hessenberg matrices indicate that there is little to be gained

16

from this, but it is possible that there is a greater benefit for other
classes of matrices.

Experiments with many classes of matrices show that it is unusual for a
call to xLAQR3, aggressive early deflation, to fail to discover some converged
eigenvalues. However, in rare cases convergence may be slow or stagnant and
calls to xLAQR3 do not discover converged eigenvalues. Subroutine xLAQR0
adopts the following strategies to try to break away from stagnant conver-
gence. If xLAQR3 discovers no converged eigenvalues in five successive calls,
then, because larger deflation windows tend to be more effective than smaller
ones, xLAQR0 doubles the size of the deflation window. If xLAQR3 still finds no
converged eigenvalue, then xLAQR0 continues to double the deflation size until
it reaches min(NH, NWMAX). If xLAQR3 still finds no converged eigenvalues, it
reduces the deflation window size by one to try to break up the symmetries
that lead to convergence failures.

In addition, if xLAQR3 discovers no converged eigenvalues in a multiple of
six successive calls, a set of arbitrary, ad hoc shifts are used in place of shifts
chosen from a trailing principal submatrix.

The unconverged eigenvalues returned by xLAQR3 are eigenvalues of a
trailing principal submatrix of the active block. Empirically, these make good
shifts for a small bulge multi-shift QR sweep. Depending on the deflation
window size, there may be more shifts, as many shifts or fewer shifts than
the recommended NSR. If there are more shifts, xLAQR0 arbitrarily uses the
smallest NSR of them to minimize the variation of the shifts from one iteration
to the next. (Five different shift strategies are discussed by Bai and Demmel
[3] in the context of the large bulge multi-shift QR Algorithm. The shift
strategy used by xLAQR0 is closest to Bai and Demmel’s S5. An awkward,
untested alternative that is even closer to Bai and Demmel’s S5 would be to
use the NSR shifts that are closest to the previous set of shifts.)

If there are between NSR/2 and NSR shifts, then xLAQR0 uses all of them
(possibly discarding one if this number is odd) which results in a small bulge
multi-shift QR sweep with fewer than the recommended NSR shifts.

If IPARMQ is unmodified (and there is no QR iteration convergence failure
calculating the Schur decomposition of the deflation window in xLAQR3), then
there will be at least (1−NIBBLE/100)×NW ≥ 0.86×NSR shifts, i.e., at worst
there will be 86% of the recommended NSR shifts.

If IPARMQ has been modified or there is a rare QR iteration convergence
failure in xLAQR3, then it is possible that there are fewer than NSR/2 shifts

17

from xLAQR3. In this case, xLAQR0 uses the eigenvalues of an NSR-by-NSR
trailing principal submatrix as calculated by xLAQR4 or xLAHQR depending
on NMIN and the number of shifts requested. In the rare case of a QR conver-
gence failure while calculating the shifts, xLAQR0 uses the eigenvalues that
did converge as shifts or, if none converged, it uses the eigenvalues of the
trailing 2-by-2 principal submatrix.

An unimplemented alternative strategy in case of a convergence failure
calculating shifts would be to use diagonal entries of the unconverged, would-
be-triangular factor as was done in the Lapack 3.0 version of xHSEQR. How-
ever, convergence failures are very rare and it takes two convergence failures
to bring execution through this section of code: one calculating the Schur
decomposition of the deflation window in xLAQR3 and one calculating shifts
in xLAQR0.

3.3 xLAQR2 and xLAQR3:

Subroutine xLAQR3 implements aggressive early deflation [5]. It performs a
similarity transformation of a minute perturbation of the Hessenberg iterate
to obtain a Hessenberg matrix which (it is to be hoped) has more zeros
among the subdiagonal entries and displays some converged eigenvalues in
1-by-1 and 2-by-2 blocks along the trailing diagonal entries. (In the complex
case, converged eigenvalues appear in 1-by-1 blocks only.) Subroutine xLAQR2
is a near duplicate of xLAQR3 used to implement one level of recursion.

Aggressive early deflation is illustrated by Figure 4.
In the notation of Figure 4, the spirit of the xLAQR3 convergence crite-

rion is to set a trailing spike element to zero if it is rounding error small
compared to the magnitude of the trailing 1-by-1 or 2-by-2 diagonal block
of T . (If the corresponding diagonal block of T is zero and the trailing spike
element is rounding error small compared to the norm of the spike itself, then
the tailing spike element is set to zero.) This mimics the small-compared-to-
nearby-elements convergence criterion of the Lapack 3.0 version of xHSEQR.
In particular, it often allows xHSEQR to calculate eigenvalues of graded ma-
trices to high relative accuracy.

To be precise, subroutine xLAQR3 uses the following criteria to deter-
mine whether to set a tailing spike entry to zero. Let µ be the machine
precision returned by xLAMCH(’P’) and let σ be the near underflow quantity
σ = xLAMCH(’S’)N/µ where N is the order of the Hessenberg matrix. (The
value of σ may be modified through a call to DLABAD or SLABAD on some

18

I 0 0
0 1 0
0 0 V

T

H11 H12 H13

H21 H22 H23

0 H32 H33

I 0 0
0 1 0
0 0 V

 =

H11 H12 H13V
H21 H22 H23V
0 s T

=

. . .
...

...
...

...
...

...
...

...
. . . x x x x x x x x

x x x x x x x x

x x x x x x x

s1 x x x x x

s2 x x x x

ε x x x

ε x x x

0 x

.

Figure 4: Illustration of aggressive early deflation. The deflation window
is the trailing NW-by-NW principal submatrix H33. Its Schur factorization
H33V = V T where, in the real case, V is orthogonal and T is quasi-triangular
and, in the complex case, V is unitary and T is triangular. The orthogonal
similarity transformation illustrated in this figure puts the quasi-triangular
(triangular in the complex case) factor T into the trailing NW-by-NW principal
submatrix and fills in a spike s immediately to its left. Often some trailing
entries of the spike are small enough to be safely set to zero revealing con-
verged eigenvalues in the corresponding trailing 1-by-1 and 2-by-2 blocks of
T . If the trailing entries of the spike s are not small enough to be set to zero,
then a further similarity transformation that reorders the eigenvalues along
the diagonal of T and correspondingly modifies the spike s sometimes gives
trailing spike entries that can be set to zero.

19

machines.) Let the tailing spike element be sk.

• If the trailing block of the quasi-triangular matrix T is a 1-by-1 block
representing an eigenvalue λ 6= 0 of T , and if the tailing spike element
sk satisfies

|sk| ≤ max(σ, µ |λ|),

then sk is set to zero and λ is accepted as a converged eigenvalue.

• If the trailing block of the quasi-triangular matrix T is a 1-by-1 block
representing an eigenvalue λ = 0 of T , and if the tailing spike element
sk satisfies

|sk| ≤ max(σ, µ ‖s‖2),

then sk is set to zero and λ = 0 is accepted as a converged eigenvalue.

• If the trailing block of the quasi-triangular matrix T is a 2-by-2 block
representing a complex conjugate pair of eigenvalues α+βi, α−βi with
α, β ∈ R, and if the trailing two spike elements sk and sk−1 satisfy

max(|sk| , |sk−1|) ≤ max(σ, µ(|α| + |β|)),

then both sk and sk−1 are set to zero and both α + βi and α − βi are
accepted as converged eigenvalues.

In the complex case, the absolute values in the first two convergence criteria
are obtained by interpreting |a + bi| for a, b ∈ R as |a|+ |b|. In the complex
case, there are no 2-by-2 diagonal blocks along the diagonal of T , so the third
convergence criterion does not occur.

Subroutine xLAQR3 reorders the eigenvalues in T using an orthogonal
(unitary in the complex case) similarity transformation that also modifies
the spike. Each eigenvalue of T takes a turn in the trailing 1-by-1 or 2-by-2
block with an opportunity to be accepted as a converged eigenvalue if the
corresponding trailing entries of the spike are small enough.

A final orthogonal (or unitary) similarity transformation is used to order
the converged eigenvalues in decreasing order by magnitude along the diag-
onal. This helps preserve row or column grading if it is present and helps
maintain high accuracy in graded matrices.

Ordinarily, if xLAQR3 finds no converged eigenvalues, then it does not
modify the deflation window. This avoids a little rounding error that would
result from extracting the Schur decomposition of the deflation window and

20

then returning the window to Hessenberg form. However, there is a rare
exception. If the spike is zero but the Schur decomposition of the deflation
window is unavailable due to a QR convergence failure, then the deflation
window is replaced by the final unconverged Hessenberg QR iterate (and
the Hessenberg matrix and converging Schur vectors if required are updated
appropriately). This helps promote ultimate convergence in those cases that
the convergence failure is due to a case of slow convergence.

3.4 xLAQR5:

Subroutine xLAQR5 implements a small bulge multi-shift QR sweep [4]. Us-
ing the set of NShfts shifts selected and passed in by xLAQR0 or xLAQR4,
xLAQR5 forms a chain of NShfts/2 implicit double shift bulges that it chases
3NShfts/2 − 2 columns at a time using 3-by-3 elementary reflectors. (For
efficiency of execution and ease of maintenance implicit double shift bulges
are used even in the complex case.) Depending on the parameter KACC22

described below, it may accumulate each set of reflectors into an orthogonal
matrix for efficient BLAS-3 updating of the far-from-diagonal elements of
the Hessenberg matrix and updating the converging Schur vectors if these
are required.

If NShfts is odd, then one shift is discarded. (In fact, NShfts is never odd.
This is a minor example of defensive programming.) In the case of DLAQR5
and SLAQR5, it is a real shift that is discarded. If the resulting number of
shifts is not positive, then nothing is done. There is no restriction on how
large NShfts may be; it may even be larger than the order of the active block
of the Hessenberg matrix.

As it chases chains of 3-by-3 implicit double shift bulges along the diagonal
of the Hessenberg matrix, xLAQR5 checks for vigilant deflation, i.e., it tests
for small subdiagonals between the bulges that can be safely set to zero
causing the problem to deflate. This test is performed just before forming
the last row of an implicit double shift bulge. Both the small-compared-
to-nearest-diagonal-entries criterion used by the Lapack 3.0 code and the
Ahues and Tisseur [1] stopping criterion must be satisfied in order to set a
small subdiagonal entry to zero.

An implicit double shift bulge may collapse into a single shift bulge or a
zero shift (non)bulge either by encountering a zero subdiagonal entry (due
to vigilant deflation) or by destructive underflow [15, 16]. In either case it
is important to get the bulge started again or the corresponding shifts will

21

be lost before they reach the lower-right-hand-corner where intuition and
experience suggest they will have their greatest effect. As explained in [4],
a bulge that collapses into a zero subdiagonal entry is restarted in the same
way that bulges are initially formed, i.e., by carefully calculating a 3-by-3
elementary reflector from a convenient scalar multiple of the corresponding
three entries of (H − s1I)(H − s2I) where s1 and s2 are the shifts.

A bulge that collapses due to destructive underflow can sometimes also be
restarted using a method similar to the two-small-subdiagonal modification
of the QR algorithm described in [17, Pages 535–537]. Figure 5 illustrates.
The four subfigures in Figure 5 illustrate a implicit double shift bulge in
a Hessenberg matrix H as it collapses due to destructive underflow and as
xLAQR5 attempts to restore it through four successive bulge chasing steps.
Subroutine xLAQR5 calculates a principal elementary reflector and an alter-
native elementary reflector for the matrix in Subfigure 5(c). The principal
one is chosen to reflect the vector [y1, y2, 0]T to a scalar multiple of the first
column of I. It is the reflector that would ordinarily be used to chase the
collapsed bulge one row down and left one column to the left. The alterna-
tive reflects the first column of (Z − s1I)(Z − s2I) onto a scalar multiple of
the first column of I. Here s1 and s2 are the shifts and Z is the Hessenberg
submatrix indicated by the z’s in Subfigure 5(c). If y1 and y2 were zero, then
the alternate reflector would be the natural choice to restore a new implicit
double shift bulge with the given shifts, because it continues the implicit QR
factorization of (H − s1I)(H − s2I). If y1 or y2 are not zero, then using the
alternative reflection causes two fill-ins indicated by the f ’s in Subfigure 5(d).
If the f ’s are small enough to be safely set to zero, then the collapsed bulge is
restored (unless it too suffers destructive underflow). If the f ’s are not small
enough to be safely set to zero, then the principal reflector is used instead.
In this case, the bulge remains collapsed, but xLAQR5 attempts to restore it
again from its new position.

Subroutine xLAQR5 operates in one of three modes depending on the pa-
rameter KACC22.

KACC22 = 0: xLAQR5 does not accumulate reflections and does not use matrix-matrix
multiply to update the far-from-diagonal matrix entries. The entire
small bulge multi-shift QR sweep is performed using 3-by-3 elemen-
tary reflectors. This mode uses the smallest number of floating point
operations.

KACC22 = 1: xLAQR5 accumulates reflections and uses matrix-matrix multiply to up-

22

x x x x x x x x x
x x x x x x x x x

x x x x x x x x
x x x x x x x x
x x x x x x x x

x x x x x
x x x x

x x x
x x

(a) Uncollapsed implicit double
shift bulge.

x x x x x x x x x
x x x x x x x x x

x x x x x x x x
x x x x x x x
x x x x x x x
0 x x x x x x

x x x x
x x x

x x

(b) Implicit double shift bulge be-
gins to collapse. The zero comes
from setting a destructive under-
flow quietly to zero.

x x x x x x x x x
x x x x x x x x x

x x x x x x x x
x x x x x x x

y1 z z z x x
y2 z z z x x
0 0 z z x x

x x x
x x

(c) Collapsed Implicit double shift
bulge. The zeros are a consequence
of the underflow in Subfigure 5(b).
An alternative reflector is chosen
to map the first column of (Z −
s1I)(Z − s2I) onto a scalar multi-
ple of the first column of I . Here s1

and s2 are the shifts and Z is the
Hessenberg submatrix indicated by
the z’s in this subfigure.

x x x x x x x x x
x x x x x x x x x

x x x x x x x x
x x x x x x x

x x x x x x
f x x x x x
f x x x x x

x x x x x
x x

(d) Attempt to restore a collapsed
implicit double shift bulge. Two
fill-ins indicated by f ’s result from
using the alternative reflection. If
the fill-ins are small enough to be
safely set to zero, then the bulge is
restored (unless it also suffers de-
structive underflow). If not, then
the alternative reflector is aban-
doned in favor of the principal re-
flector.

Figure 5: The four subfigures show a implicit double shift bulge as it collapses
and xLAQR5 attempts to restore it through four successive bulge chasing steps.

23

date the far-from-diagonal matrix entries, but it does not take advan-
tage of the block 2-by-2 structure of the accumulated orthogonal factor
(unitary factor in the complex case). This mode uses the greatest
number of floating point operations, but it has the least complicated
implementation and the largest order matrix-matrix multiplications.

KACC22 = 2: xLAQR5 accumulates reflections and takes advantage of 2-by-2 block
structure during matrix-matrix multiplies to update the far-from-diag-
onal matrix entries.

The parameter KACC22 is passed in from xLAQR0 or xLAQR4. It is originally set
by KACC22=ILAENV(ISPEC=16)=IPARM(ISPEC=16). The unmodified version
of IPARMQ returns the following defaults in terms of the default recommended
number of shifts NSR.

If NSR < 14, then IPARMQ(ISPEC=16) returns 0

If NSR ≥ 14, then IPARMQ(ISPEC=16) returns 2

If the BLAS-3 subroutines are not well tuned to the underlying computa-
tional environment (like the untuned Fortran model implementation), then
KACC22 = 0 may be the most efficient choice, because it minimizes the
amount of arithmetic work and there may be little gained from calling un-
tuned BLAS-3 subroutines. Similarly, if NShfts is small, then the matrix
multiplies in xLAQR5 are too small to benefit from a BLAS-3 implementation
and KACC22 = 0 may be more efficient. If the BLAS-3 subroutines are well
tuned to the computational environment but the BLAS-3 subroutine xTRMM

is substantially slower than xGEMM, then, despite the greater arithmetic work,
avoiding calls to xTRMM by setting KACC22 = 1 may be more efficient than
KACC22 = 2.

3.5 IPARMQ:

Function subroutine IPARMQ is called by ILAENV to set the tuning parameters.
Mimicking ILAENV, IPARMQ takes the following input arguments.

ISPEC: Integer specifying which tuning parameter to return.

NAME: Character string specifying which subroutine is requesting a tuning
parameter.

24

OPTS: Character string specifying the options to the calling subroutine. This
is a concatenation of the first character of the option strings passed to
the calling program.

N: Order of the Hessenberg matrix whose eigenvalues and (optionally)
whose Schur factorization are required.

ILO, IHI: The initial active block. It is assumed that the Hessenberg matrix is
upper triangular in rows and columns one through ILO− 1 and IHI+1
through N.

LWORK: The amount of scratch space passed into the calling subroutine.

The original, unmodified version of IPARMQ uses only ISPEC, ILO and IHI.
Better choices of the tuning parameters may depend on the values of the

other parameters. Even better tuning parameters might be determined by
inspecting the entire Hessenberg matrix, but this is not implemented.

As implemented in Lapack 3.1, tuning parameters do not change during
the computation. However the Hessenberg matrix undergoes QR sweeps
and deflation during the computation, so there may be some advantage to
varying the tuning parameters during the computation. A modification in
this direction calls for moving calls to ILAENV into the main loop.

The tuning parameters are discussed in detail above in the context in
which they are used. The summary below collects all the tuning parameters
in one place.

NMIN=ILAENV(ISPEC=12)=IPARM(ISPEC=12): NMIN is the crossover point be-
tween xLAHQR and xLAQR0/xLAQR4. Matrices of order NMIN or less are
sent directly to xLAHQR, the implicit double shift QR algorithm. Larger
order matrices (and xLAHQR failures) go to xLAQR0 or xLAQR4. NMIN

must be at least 11. The default is NMIN = 75.

NWR=ILAENV(ISPEC=13)=IPARM(ISPEC=13): NWR is the recommended defla-
tion window size. NWR is best set greater than or equal to the recom-
mended number of simultaneous shifts NSR, so xLAQR3 and/or xLAQR2
produce a sufficient number of shifts. (See ISPEC=15 below.) If IHI−
ILO + 1 ≤ 500, then the default value is NWR = NSR. Otherwise, the
default value is NWR = 3NSR/2. Larger deflation windows are more
powerful and tend to find more converged eigenvalues, but they require
computational work. Larger matrices benefit from larger deflation win-
dows.

25

NIBBLE=ILAENV(ISPEC=14)=IPARM(ISPEC=14): Let LD be the number of con-
verged eigenvalues discovered by the last call to xLAQR3 or xLAQR2 and
let NW be the order of the deflation window. If LD is positive and
LD > (NW × NIBBLE)/100, then the next small bulge multi-shift QR
sweep is skipped and early deflation is applied immediately to the re-
maining active diagonal block. Setting NIBBLE = 0 causes xLAQR0 and
xLAQR4 to skip a multi-shift QR sweep whenever early deflation finds
a converged eigenvalue. Setting NIBBLE greater than or equal to 100
prevents almost all skipping multi-shift QR sweep. (See Section 3.2
for a complete description of NIBBLE.) The default is NIBBLE = 14. A
particularly efficient implementation of the small bulge multi-shift QR
sweep xLAQR5 (perhaps using well tuned parallel BLAS subroutines)
and/or especially large deflation windows may call for a larger value of
NIBBLE.

NSR=ILAENV(ISPEC=15)=IPARM(ISPEC=15): NSR is the recommended num-
ber of simultaneous shifts to use in a multi-shift QR sweep. This pa-
rameter affects performance in a complicated and ill-understood way.
Larger values of NSR lead to larger matrix-matrix multiplications which
can be executed efficiently by well-tuned BLAS. However, larger values
of NSR also reduces the amount of the computation that does run as
matrix-matrix multiplications. In addition, the choice of NSR typically
affects the other tuning parameters, e.g., typically NWR ≥ NSR. The
choice of NSR also affects convergence patterns.

See Table 2 for the defaults.

KACC22=ILAENV(ISPEC=16)=IPARM(ISPEC=16): KACC22 determines the mode
of execution in xLAQR5.

KACC22=0: During the multi-shift QR sweep, xLAQR5 does not accumulate
reflections and does not use matrix-matrix multiply to update the
far-from-diagonal matrix entries. This may be a good choice in
the absence of well-tuned BLAS subroutines or when the number
of simultaneous shifts is small. This choice performs the fewest
floating point operations.

KACC22=1: During the multi-shift QR sweep, xLAQR5 accumulates reflections
and uses matrix-matrix multiply to update the far-from-diagonal

26

matrix entries. This may be a good choice if the BLAS-3 triangular-
by-full matrix multiplication subroutine xTRMM is significantly slower
than the full-by-full matrix multiplication subroutine xGEMM. This
choice does the most floating point operations.

KACC22=2: During the multi-shift QR sweep. xLAQR5 accumulates reflec-
tions and takes advantage of 2-by-2 block structure during matrix-
matrix multiplies. This may be a good choice if the BLAS-3
triangular-by-full matrix multiplication subroutine xTRMM is faster
than the full-by-full matrix multiplication subroutine xGEMM.

The unmodified version of IPARMQ returns the following defaults in
terms of the default recommended number of shifts NSR.

If NSR < 14, then IPARMQ(ISPEC=16) returns 0

If NSR ≥ 14, then IPARMQ(ISPEC=16) returns 2

4 Conclusion.

This dreary report explains the structure and some of the implementation
details of the small bulge, multi-shift QR algorithm with aggressive, early de-
flation [4, 5] as it is implemented in Lapack 3.1 in CHSEQR, DHSEQR, SHSEQR
and ZHSEQR and the subroutines that they call. These codes calculate eigen-
values and optionally a Schur factorization of a Hessenberg matrix. They
do the majority of the work required to calculate eigenvalues and optionally
eigenvectors of a general non-symmetric matrix.

This report provides some guidance on how to adjust the tuning param-
eters provided by IPARMQ for maximum performance. The code itself is well
commented. It is to be hoped that enough of the overall design and struc-
ture of the codes is presented here to allow improvements to be incorporated
without having to rewrite large parts of the code.

Acknowledgments:

The author is grateful to Daniel Kressner and Julien Langou for helpful
comments on an early draft of this report.

27

References

[1] Mario Ahues and Françoise Tisseur. A new deflation criterion for the
QR algorithm. Technical Report CS-97-353, Department of Computer
Science, University of Tennessee, Knoxville, TN, USA, March 1997. LA-
PACK Working Note 122.

[2] Z. Bai, D. Day, J. Demmel, and J. Dongarra. A test matrix collection
for non-Hermitian eigenvalue problems. Prof. Z. Bai, Dept. of Mathe-
matics, 751 Patterson Office Tower, University of Kentucky, Lexington,
KY 40506-0027. Also available online from http://math.nist.gov/

MatrixMarket.

[3] Z. Bai and J. Demmel. On a block implementation of Hes-
senberg QR iteration. Intl. J. of High Speed Comput., 1:97–
112, 1989. Also available online as LAPACK Working Note 8
from http://www.netlib.org/lapack/lawns/lawn08.ps and http://

www.netlib.org/lapack/lawnspdf/lawn08.pdf.

[4] Karen Braman, Ralph Byers, and Roy Mathias. The multi-shift QR al-
gorithm Part I: Maintaining well focused shifts, and level 3 performance.
SIAM J. Matrix Anal. Appl., 23:929–947, 2002.

[5] Karen Braman, Ralph Byers, and Roy Mathias. The multi-shift QR
algorithm Part II: Aggressive early deflation. SIAM J. Matrix Anal.

Appl., 23:948–973, 2002.

[6] David Day. How the shifted QR algorithm fails to converge and how to
fix it. Technical Report 96-0913, Sandia National Labs, PO Box 5800,
Albuquerque, NM 87185, 1996.

[7] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. A set of
level 3 basic linear algebra subprograms. ACM Trans. Math. Software,
16:1–17, 1990.

[8] J. G. F. Francis. The QR transformation: A unitary analogue to the LR
transformation, parts I and II. Comput. J., 4:265–272, 332–345, 1961.

[9] Gene H. Golub and Charles F. Van Loan. Matrix computations, volume 3
of Johns Hopkins Series in the Mathematical Sciences. Johns Hopkins
University Press, Baltimore, MD, second edition, 1989.

28

[10] Kazushige Goto and Robert van de Geijn. On reducing TLB misses in
matrix multiplication, FLAME working note #9. Technical Report TR-
2002-55, The University of Texas at Austin, Department of Computer
Sciences, Taylor Hall 2.124, 1 University Station C0500, Austin, Texas
78712-0233, USA, 2002.

[11] Kazushige Goto and Robert A. van de Geijn. Anatomy of a high-
performance matrix multiplication. ACM Transactions on Mathematical

Software, to appear.

[12] D. Kressner. The effect of aggressive early deflation on the convergence
of the QR algorithm. Technical Report Uminf report, Department of
Computing Science, Umeøa University, Sweden, 2006.

[13] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Algo-
rithm 539: Basic linear algebra subprograms for Fortran usage. ACM

Trans. Math. Software, 5:324–325, 1979.

[14] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear
algebra subprograms for Fortran usage. ACM Trans. Math. Software,
5:308–323, 1979.

[15] David S. Watkins. Forward stability and transmission of shifts in the
QR algorithm. SIAM J. Matrix Anal. Appl., 16:469–487, 1995.

[16] David S. Watkins. The transmission of shifts and shift blurring in the
QR algorithm. Linear Algebra Appl., 241/243:877–896, 1996.

[17] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Claredon Press,
Oxford, UK, 1965.

29

