
PERFORMANCE AND ACCURACY OF LAPACK’S SYMMETRIC
TRIDIAGONAL EIGENSOLVERS

JAMES W. DEMMEL†, OSNI A. MARQUES‡, BERESFORD N. PARLETT†, AND

CHRISTOF VÖMEL‡

Abstract. We compare four algorithms from the latest LAPACK 3.1 release for computing
eigenpairs of a symmetric tridiagonal matrix. These include QR iteration, bisection and inverse
iteration (BI), the Divide-and-Conquer method (DC), and the method of Multiple Relatively Robust
Representations (MR).

Our evaluation considers speed and accuracy when computing all eigenpairs, and additionally
subset computations. Using a variety of carefully selected test problems, our study includes a variety
of today’s computer architectures.

Our conclusions can be summarized as follows. (1) DC and MR are generally much faster than
QR and BI on large matrices. (2) MR almost always does the fewest floating point operations, but
at a lower MFlop rate than all the other algorithms. (3) The exact performance of MR and DC
strongly depends on the matrix at hand. (4) DC and QR are the most accurate algorithms with
observed accuracy O(

√
nε). The accuracy of BI and MR is generally O(nε). (5) MR is preferable to

BI for subset computations.

Key words. LAPACK, symmetric eigenvalue problem, inverse iteration, Divide & Conquer,
QR algorithm, MRRR algorithm, accuracy, performance, benchmark.

AMS subject classifications. 15A18, 15A23.

1. Introduction. One goal of the latest 3.1 release [25] of LAPACK [1] is to pro-
duce the fastest possible symmetric eigensolvers subject to the constraint of delivering
small residuals and orthogonal eigenvectors.

For an input matrix A that may be dense or banded, one standard approach is
the conversion to tridiagonal form T , then the eigenvalues and eigenvectors of T are
found, and last the eigenvectors of T transformed to eigenvectors of A.

Depending on the situation, all the eigenpairs or just some of them may be de-
sired. LAPACK, for some algorithms, allows selection by eigenvalue indices (‘find
λi, λi+1, ...λj , where λ1 ≤ λ2 ≤ · · · ≤ λn are all the eigenvalues in increasing order’,
and their eigenvectors) or by an interval (‘find all the eigenvalues in [a, b] and their
eigenvectors’).

This paper analyzes the performance and accuracy of four algorithms:

1. QR iteration, in LAPACK’s driver STEV (QR for short),
2. Bisection and Inverse Iteration, in STEVX (BI for short),
3. Divide and Conquer, in STEVD (DC for short),
4. Multiple Relatively Robust Representations, in STEVR (MR for short)

Section 2 gives a brief description of these algorithms with references.

For a representative picture of each algorithm’s capacities, we developed an ex-
tensive set of test matrices [7], broken into two classes: (1) ‘practical matrices’ based
on reducing matrices from a variety of practical applications to tridiagonal form, and
generating some other tridiagonals with similar spectra, and (2) synthetic ‘testing ma-
trices’ chosen to have extreme distributions of eigenvalues or other properties designed
to exercise one or more of the algorithms, see Section 3.1 for details. The timing and

†Mathematics Department and Computer Science Division, University of California, Berkeley,
CA 94720, USA. {demmel@cs,parlett@math}.berkeley.edu

‡Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
USA. {oamarques,cvoemel}@lbl.gov

1

2 J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel

accuracy tests were performed on a large set of current computing platforms which
are described in Section 3.2.

Ideally one of these algorithms would be the best in all circumstances. In reality,
the performance of an algorithm may depend on the matrix, the platform, and possibly
underlying libraries like BLAS, so we do need to judge very carefully. To study and
illuminate some aspects of the astonishing variability in behavior is the goal of this
paper.

Section 4 presents performance results when computing all eigenpairs. Its first
part, Section 4.1, consists of an overall summary of performance on practical matrices
across all investigated architectures. DC and MR are usually much faster than QR
and BI for these matrices. Section 4.2 looks at one architecture in detail and shows
that MR almost always does the fewest floating point operations, but at a lower
MFlop rate than all the other algorithms. For certain matrix classes for which there
is a great deal of deflation, DC becomes much faster. Section 4.3 further illustrates
the dependence of algorithm performance on certain matrix characteristics by closely
studying the behavior on selected synthetic test problems.

The performance of subset computations is analyzed in Section 5. Only BI and
MR allow the computation of subsets at reduced cost. We show that MR beats BI on
average and identify matrices with subsets where one algorithm wins over the other.

Section 6 shows that QR and DC are the most accurate algorithms, measured both
in terms of producing pairwise orthogonal eigenvectors and small residuals norms. MR
is less accurate but still achieves errors of size O(nε), where n is the dimension and ε

is machine epsilon. Depending on the matrix and platform, it is known that BI may
completely fail to guarantee orthogonal eigenvectors [9], though this is rare and did
only occur in a few subset calculations with our test matrices.

Summary and conclusions are given in Section 7.

2. Description of Algorithms. Table 2.1 gives an overview of LAPACK’s sym-
metric eigensolvers.

Algorithm Driver Subsets Workspace References
QR algorithm (QR) STEV N real: 2n − 2 [6, 21, 28]
Divide & Conquer (DC) STEVD N real: 1 + 4n + n2, int.: 3 + 5n [3, 4, 22]
Bisection/Inverse Iter. (BI) STEVX Y real: 8n, int.: 5n [9, 24]
MRRR algorithm (MR) STEVR Y real: 18n, int.: 10n [8, 29, 30, 11, 12, 14]

Table 2.1

LAPACK codes for computing the eigenpairs of a symmetric matrix of dimension n. See
also [1, 2]. The driver column lists the LAPACK driver name. The subset column indicates whether
the algorithm can compute subsets at reduced cost. With respect to memory, we note that QR uses
the least, then MR and BI, and DC uses the most. Note that the workspace that is reported for DC
corresponds to the case COMPZ = ‘I’. The workspace that is reported for BI is for SYEVX, the
driver that combines STEBZ and STEIN.

2.1. QR Iteration (QR). QR applies a sequence of similarity transforms to
the tridiagonal T until its off-diagonal elements become negligible and the diagonal
elements have converged to the eigenvalues of T . It consists of a bulge-chasing proce-
dure that implicitly includes shifts and only uses plane rotations while preserving the
tridiagonal form [28]. The plane rotations are accumulated to find the eigenvectors
of T . The overall complexity of the method is 3bn3 + O(n2), where b denotes the
average number of bulge chases per eigenvalue, see [6]. No part of the bulge-chasing
procedure currently makes use of higher level BLAS.

Performance and Accuracy of LAPACK’s Symmetric Tridiagonal Eigensolvers 3

2.2. Bisection and Inverse Iteration (BI). Bisection based on Sturm se-
quences requires O(nk) operations to compute k eigenvalues of T . If the distance
between the eigenvalues is large enough (relative to ‖T ‖), then computing the cor-
responding eigenvector by inverse iteration also is a O(nk) process. If however the
eigenvalues are not well separated, Gram-Schmidt orthogonalization is employed to
try to achieve numerically orthogonal eigenvectors. In this case the complexity of the
algorithm increases to O(nk2). In the worst case where almost all eigenvalues of T

are ‘clustered’, the complexity can increase to O(n3). Furthermore, from the accu-
racy point of view this procedure is not guaranteed to be reliable, see [6, 9]. Neither
bisection nor inverse iteration make use of higher level BLAS.

2.3. Divide and Conquer (DC). The Divide & Conquer method can be de-
scribed in terms of a binary tree where each node corresponds to a submatrix and
its eigenpairs, obtained through recursively dividing the matrix in halves, see the
exposition in [6].

The tree is processed bottom up, starting with submatrices of size 25 or smaller.1

DC uses QR to solve the small eigenproblems and then computes the eigenpairs of a
parent using the already computed eigenpairs of the children.

A parent’s eigenvalues can be computed as solutions of a secular equation. The
eigenvector computation consists of two steps. The first one is a relatively inexpensive
scaling step. The second one, which is most of the work, multiplies the eigenvectors of
the current matrix by the eigenvector matrix accumulated so far. This step uses the
BLAS3 routine DGEMM. In the worst case, DC is an O(n3) algorithm. On practical
matrices studied in Table 4.1 of Section 4.1, the effective exponent is less than three.

The complexity of the eigenvector computation can sometimes be reduced sub-
stantially by a a process called deflation. If a submatrix eigenvalue nearly equals
another, or certain entries in the submatrix eigenvector are small enough, the matrix
column can be excluded from the BLAS 3 operation. In Table 4.3 from Section 4.3, we
will see that for some matrices, deflation may occur for most eigenpairs, substantially
accelerating the computation.

2.4. Multiple Relatively Robust Representations (MR). MR is a sophis-
ticated variant of inverse iteration that avoids Gram-Schmidt orthogonalization and
thus becomes an O(n2) algorithm. The algorithm can be described in terms of a
(generally irregular) representation tree. The root node describes the entire spectrum
of T and the children define gradually refined eigenvalue approximations. See the ref-
erences in Table 2.1 for the details. The overall complexity of the algorithm depends
on the clustering of the eigenvalues. If some eigenvalues of T agree to d digits on
average, then the algorithm has to do work proportional to dn2. The algorithm uses a
random perturbation to ensure with high probability that eigenvalues cannot be too
strongly clustered, see [13] for details. MR cannot make use of higher level BLAS.

3. The Testing Environment.

3.1. Description of Test Matrices. In this section, we give a brief overview
of the collection of test matrices used in this study. A more detailed description of
the testing infrastructure is given in [7]. We focus on two types of matrices.

The first class of tridiagonals stems from important applications and thus are
relevant to a group of users. For the smaller matrices, the tridiagonal form of the

1In a future release, the current fixed threshold 25 will be tunable for each platform to get the
highest performance.

4 J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel

sparse matrices was obtained with LAPACK’s tridiagonal reduction routine sytrd.
For the larger matrices we generated tridiagonals by means of a simple Lanczos algo-
rithm without reorthogonalization which, in finite precision, tends to produce copies
of eigenvalues as clusters.

• Matrices obtained from G. Fann using the NWChem computational chemistry
package [20, 19]: these matrices have clustered eigenvalues that require a large
number of reorthogonalizations in BI. This motivated the development of the
MR which can cope well with this type of matrix, see [8, 10].

• Examples from sparse matrix collections, including matrices from the BC-
SSTRUC1 set in [16, 17, 18] and matrices from the Alemdar, NASA, and
Cannizzo sets in [5]. These matrices, coming from a variety of applications
including power system networks, shallow wave equations, and finite-element
problems, were chosen for their spectrum which typically consists of a part
with eigenvalues varying almost ‘continuously’ and another one with several
isolated large clusters of eigenvalues of varying tightness.

The second class of matrices are synthetic ‘test matrices’ that exhibit the strengths,
weaknesses, or idiosyncrasies of a particular algorithm. This class includes distribu-
tions that are already used in LAPACK’s tester, synthetic distributions, and matrices
that are used in [8]. Furthermore, it includes Wilkinson matrices [31, 23] and glued
Wilkinson matrices (see for example [13]). A detailed description of these matrices is
given later, in Table 4.3 of Section 4.3.

3.2. Description of Test Platforms. In order to reliably quantify accuracy
and performance and also to detect architecture-specific issues, we perform tests on
a large number of today’s computer systems including a variety of superscalar ones
(Power 3 & 5, Xeon, Opteron), an EPIC (Itanium 2), and a vector computer (X1).
Table 3.1 summarizes the architectures, compilers, and timers used for our experi-
ments.

Architecture Symbol (MHz) OS Compiler Timer BLAS
Power 3 SP3 375 AIX IBM xlf90 -O3 PAPI ESSL
Power 5 SP5 1900 AIX IBM xlf90 -O3 PAPI ESSL
Sun UltraSparc 2i SUN 650 Solaris SUN f90 forte 7.0 -O4 CPU TIME SUNPERF
MIPS R12000 SGI 600 IRIX MIPS pro 7.3.1.3m -O2 ETIME SCS
Itanium 2 ITN2 1400 Linux Intel ifort 9.0 -O2 ETIME MKL
Pentium 4 Xeon P4 4000 Linux Intel ifort 9.0 -O3 ETIME MKL
Cray X1 X1 800 UNICOS/mp Cray ftn 5.4.0.4 -O2 CPU TIME LIBSCI
Opteron OPT 2200 Linux Pathscale pathf90 2.1 -O3 CPU TIME ACML

Table 3.1

Platforms, timers, and BLAS libraries used for testing.

3.3. Important metrics. For a tridiagonal matrix T and computed eigenvec-
tors Z = [z1 z2 · · · zm] and corresponding eigenvalues Λ = (λ1 · · ·λm), m ≤ n, we
compute both the loss of orthogonality

O(Z) = max
i6=j

|zT
i zj |

nε
, (3.1)

and the largest residual norm

R(Λ, Z) = max
i

||Tzi − λizi||

||T ||nε
. (3.2)

Performance and Accuracy of LAPACK’s Symmetric Tridiagonal Eigensolvers 5

The factor nε in the denominators of (3.1) and (3.2) is used for normalization. For
an algorithm to be satisfactorily accurate, both of these metrics should be bounded
by a ‘modest constant’ for all matrices.

Because of its prominent role in DC, we also measure the amount of deflation
encountered during the algorithm. We define the fraction of deflated eigenvalues
frdefl as the total number of deflations over the total number of submatrix eigenvalues,
over all submatrices encountered while running DC. If frdefl is close to 1, nearly all
eigenvalues and eigenvectors were computed with little work, and if frdelf is close to
0, then the maximum amount of floating point work was done, mostly in calls to
DGEMM.

4. Performance when computing all eigenpairs.

4.1. Comparison on practical matrices across architectures. Table 4.1
summarizes the full spectrum comparison over all architectures. DC and MR are
usually much faster than QR and BI for large practical matrices (dimension 500 or
larger). The median ratio runtime(QR)/runtime(MR) varies from 1.8 to 69 across
platforms (10 to 69 omitting the Cray X1), and is as large as 710. The median ratio
runtime(BI)/runtime(MR) varies from 2.0 to 7.1 across platforms, and is as large as
310. MR is faster than DC on large practical matrices (i.e. the median value of the
ratio runtime(DC) over runtime(MR) exceeds one) on 5 of our 8 platforms, and is
slower than DC on 3 platforms. MR ranges from 12x faster than DC to 40x slower
on these matrices (12x faster to 17x slower omitting the Cray X1).

Performance Summary for Large (n ≥ 500) Practical Matrices
Mach Slope of time trends Minimum, median, maximum for time ratios

QR BI DC MR QR/MR BI/MR DC/MR
min med max min med max min med max

SP3 3.3 2.1 2.8 2.5 1.5 10 48 .66 4.1 75 .10 1.3 2.8
SP5 3.0 2.6 2.5 2.3 1.5 12 110 .66 3.8 150 .067 1.1 7.0
SUN 3.8 2.0 2.6 2.4 11 70 710 .91 4.7 180 .35 2.5 4.6
SGI 3.5 3.2 2.7 2.3 2.0 26 180 .75 7.1 310 .17 1.9 11
ITN2 3.0 2.4 2.5 2.3 1.6 15 110 .63 3.3 72 .060 .82 6.0
P4 3.0 2.6 2.5 2.4 1.6 15 92 .50 2.9 91 .058 .86 4.4
X1 2.4 2.0 1.9 2.2 .56 1.8 5.2 .86 3.2 16 .024 .24 .66
OPT 2.9 2.9 2.5 2.2 4.3 41 190 .74 6.3 300 .18 2.1 12

Table 4.1

Performance summary when computing all eigenpairs. The ‘slope of time trend’ refers to the
fitting of a straight ‘trend’ line to the timing data on a log-log plot. If the running time satisfied the
simple formula t = c ·ne for some constants c and e, then the measured values of its runtime would
lie on the straight line log t = log c + e · log n with slope e when plotted on a log-log plot.

4.2. Performance Details for Practical Matrices on the Opteron. This
section studies in-depth the situation on one target architecture, the Opteron. In this
section, we call a matrix small whenever its dimension is less than n = 362, which
marks the largest n for which an n-by-n double precision matrix (of eigenvectors) can
fit in the Opteron’s 1MB L3 cache.2

2Note that in this section, because of the cache, we call slightly more matrices ‘large’ than in
Section 4.1 which looks at all architectures simultaneously.

6 J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel

Performance summary on Practical Matrices on Opteron
n < 363 n ≥ 363

Metric Alg(s) Min Median Max Min Median Max
Time QR/MR .57 1.3 4.5 2.6 38 190
Ratios BI/MR .75 1.3 4.8 .74 5.8 300

DC/MR .34 .46 1.6 .18 2.0 12
Flop QR/MR 2.4 4.8 12 9.0 74 390
Count BI/MR 1.2 2.1 6.4 1.1 9.8 380
Ratios DC/MR .72 1.0 3.3 .5 8.3 66
GFlop QR 1.9 2.2 2.5 1.0 1.4 2.0
Rates BI .66 .92 1.1 .6 .9 1.3

DC 1.1 1.4 1.7 1.5 2.9 4.1
MR .55 .58 .8 .5 .6 .8

GFlop QR/MR 2.6 3.5 4.1 1.5 2.1 3.5
Ratios BI/MR .83 1.6 2.0 .9 1.6 2.3

DC/MR 1.7 2.3 2.7 2.5 4.4 6.9
Table 4.2

Performance Summary for Practical Matrices on Opteron.

Table 4.2 summarizes the performance of the four algorithms on the Opteron, for
eigenvector matrices that fit in cache (n < 363) and those that do not (n ≥ 363).

Figures 4.1 and 4.2 show the run time and flop counts, respectively, of all algo-
rithms on a log-log plot.

The color and symbol code used for all plots is as follows: QR data is blue, using
‘+’, BI data is magenta, using ‘x’, DC data is red, using ‘o’, and MR data is black,
using diamonds to mark data points.

The straight lines in the plots are least-squares fits to the data of the same color,
for n ≥ 363. The slopes of these lines are shown in the legend of each plot in paren-
theses after the name of the corresponding algorithm.

The slopes indicate that QR is an O(n2.9) algorithm measured by time, and an
O(n3.0) algorithm measured by flop counts, reasonably matching the expected O(n3).

The same is true of BI, although we see that the BI data is actually rather more
spread out. This is because BI does O(n) flops on eigenvectors with well-separated
eigenvalues, and up to O(n2) work per eigenvector on matrices with tightly clustered
eigenvalues.

MR is O(n2.2) measured either way, and has the lowest exponent of any algorithm,
though slightly higher than the anticipated O(n2). Given the spread out nature of
the data, it is not clear how significant the ‘.2’ part of the slope is.

Interestingly, DC is O(n2.5) measured using time and O(n2.8) measured using flop
counts. As we will see, this is because the MFlop rate for DC increases considerably
with dimension. Note that the runtimes for n < 363 are increasing somewhat more
slowly than these slopes for larger matrices would indicate; these are the dimensions
where the output matrix fits in the L3 cache.

Flop counts offer an interesting insight. MR always does fewer flops than QR and
BI, up to 390x and 380x times fewer, respectively. MR does up to 66x fewer flops
than DC, and never more than twice as many, with a median of 8.3x fewer flops than
DC for large matrices. Figure 4.3 shows the flop counts of each algorithm relative to
the one of MR. PAPI [15] was used to obtain the flop counts.

Performance and Accuracy of LAPACK’s Symmetric Tridiagonal Eigensolvers 7

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Time vs n for Opteron, practical

Dimension

R
un

ni
ng

 ti
m

es
 in

 s
ec

on
ds

QR (2.9)
BI (2.9)
DC (2.5)
MR (2.2)

Fig. 4.1. Runtime of all algorithms on
Opteron. The slopes of the least squares fit, shown
in parentheses, are computed from the larger ma-
trices.

10
1

10
2

10
3

10
4

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

Flop count vs n for Opteron, practical

Dimension

F
lo

p
co

un
t

QR (3.0)
BI (2.9)
DC (2.8)
MR (2.2)

Fig. 4.2. Flop counts of all algorithms on
Opteron. The slopes of the least squares fit, shown
in parentheses, are computed from the larger ma-
trices.

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

Flop count/Flop count(MR) vs n for Opteron, practical

Dimension

F
lo

p
co

un
t/F

lo
p

co
un

t(
M

R
)

ra
tio

s

QR (0.8)
BI (0.7)
DC (0.7)

Fig. 4.3. Flop counts divided by flop counts
of MR for Practical Matrices on Opteron.

10
1

10
2

10
3

10
4

10
2

10
3

10
4

MFlops vs n for Opteron, practical

Dimension

M
F

lo
ps

QR (0.0)
BI (0.0)
DC (0.3)
MR (−0.0)

Fig. 4.4. MFlop Rates for Practical Matrices
on Opteron.

Figure 4.4 shows the MFlop rates. MR generally is the slowest algorithm by this
metric. Thus MR does the fewest flops but at higher cost. Indeed, an inspection shows
that the number of divides MR performs always exceeds a fixed significant nonzero
fraction of the total number of floating point operations, see [27, 14].

It is also natural to ask why QR’s MFlop rate drops when n increases past 362,
BI’s and MR’s remains roughly the same for all n, and DC’s MFlop rate increases
continuously with n. In the case of QR, the algorithm updates pairs of columns of the
eigenvector matrix during the course of a QR sweep. This means that many sweeps
touch the whole eigenvector matrix, performing just a few floating point operations
per memory reference. This BLAS1-like operation on the eigenvector matrix explains
the drop in MFlop rate when the eigenvector matrix no longer fits in L3 cache. In
contrast, BI and MR compute one eigenvector at a time, so as long as a few vectors of
length n fit in cache, there will be minimal memory traffic and the MFlop rate should
remain constant.

DC’s flop count and MFlop rate are more complicated, and depend on two phe-

8 J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel

nomena unique to DC: the use of BLAS3 to update the eigenvector matrix, and
deflation, as discussed in section 2.3. If there is little deflation, most of the flops
will be performed in calls to DGEMM on large matrices, so the MFlop rate should
increase, as long as the larger matrices on which DGEMM is called result in faster
MFlop rates. On the other hand, if there is a lot of deflation, DC will perform many
fewer flops, but they will be scalar and not run fast. In the case of practical matrices,
the fraction of deflated eigenvalues, frdefl, never exceeds .502, and has a median value
of .125. So we expect DC to perform many flops as shown by the slope, O(n2.8). It
is thus crucial for DC to use the fastest available BLAS library. Table 4.1 shows that
on the Cray X1, DC on practical matrices behaves like an O(n1.9) algorithm; this is
because the speed of BLAS3 increases very rapidly as size of these matrices increases.

4.3. Performance details for synthetic matrices on the Opteron. In this
section, we study in-depth how the performance of an algorithm can depend on the
matrix at hand, focusing on the differences between DC and the MR. The goal is to
push algorithms to their extremes, in the positive and negative sense. Table 4.3 lists
the matrices considered. For more details and references, see [7].

Property Line Color Line Type Symbol Fraction deflated (DC)
Minimum Maximum

More strongly clustered eigenvalues blue S
n − 1 evs at 1/κ, 1 ev at 1 solid S1 .98 1
n − 1 evs at 1, 1 ev at 1/κ dashed S2 .88 .98

Weakly clustered eigenvalues red W
Evs at 1 and 1/κ · [1 : n − 1] solid W1 .34 .81

Evs at 1/κ, 2, and 1 + 1/
√

κ · [1 : n − 2] dashed W2 .01 .05
Evs at 1 + 100/κ · [1 : n] dash-dot W3 .06 .09
Geometric distributions green G

Exactly geometric solid G1 .16 .36
Randomly geometric dashed G2 .16 .19
Uniform distributions black U

Exactly uniform solid U1 0 .03
Randomly uniform dashed U2 0 .03
Wilkinson Wm+1 cyan solid Wi .35 .84
Glued Wilkinson dashed GW .59 .78

Table 4.3

Selected synthetic test matrices from [7]. Matrices that are generated from a given eigenvalue
distribution using the LAPACK tester have a trailing ‘p’ or ‘n’ indicating that all eigenvalues are
positive or are randomly negated, respectively. κ means the matrix condition number. By default,
we choose κ = 1/ε, with ε being the working accuracy. For the strongly clustered eigenvalues, we
use both κ = 1/ε or κ = 1/

√
ε, indicated by an additional trailing ‘e’ and ‘s’, respectively. As an

example, ‘S1ne’ refers to a matrix from class S1 with randomly negated eigenvalues and κ = 1/ε.
The last two rows refer to Wilkinson-type matrices.

The last two columns of Table 4.3 show the fraction of deflations in DC as de-
fined in Section 3.3. For some matrix classes (S,W1,Wi,GW), the fraction deflated is
significant, sometimes even close to 1, while for others (U,W2,W3), there are nearly
no deflations.

For cases with a significant amount of deflation, we expect a noticeable speedup for
DC. Moreover, Wilkinson and glued Wilkinson matrices are known to be notoriously
difficult for MR due to strongly clustered eigenvalues [13]. Thus we expect to see
MR perform poorly on these classes of matrices. To verify our intuition, we show
least-square-fits of time and flop counts normalized by n2 separately for each matrix
class. Figures 4.5 and 4.6 show the data for DC, and Figures 4.7 and 4.8 for MR.
Note that the vertical axes in Figures 4.5 and 4.7 are the same, going from 10−8 to

Performance and Accuracy of LAPACK’s Symmetric Tridiagonal Eigensolvers 9

10
2

10
3

10
4

10
−8

10
−7

10
−6

Time(DC)/n2

T
im

e(
D

C
)/

n2 in
 s

ec
s

Dimension

U1n U2p U1p W2n W2p

U2n
W3n W3p

G2p
G2n

G1p
G1n

W1n

W1p

S1ne S1pe S2ne S2pe
S1nsS1ps S2ns S2ps GW

Prac

Wi

Fig. 4.5. Performance trend lines of DC for
runtime divided by n2 on Opteron.

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

Flop count(DC)/n2

F
lo

p
co

un
t(

D
C

)/
n2

Dimension

U2p W2n U1n U1p U2n
W2p W3n W3p

G2p G2n

G1p G1n

W1n

W1p

GW

S2ns S2ne
S2ps

S1pe S1ne
S2pe S1ps S1ns

Prac

Wi

Fig. 4.6. Performance trend lines of DC for
flop counts divided by n2 on Opteron.

106. However, the vertical axis for MR in Figure 4.8 is ten times lower than the one
for DC in Figure 4.6. For reference, we also added ‘Prac’, the practical matrices from
Section 4.2. The dotted black lines indicate the slopes +1 and -1, in order to better
recognize slopes of the trend lines.

10
2

10
3

10
4

10
−8

10
−7

10
−6

Time(MR)/n2

T
im

e(
M

R
)/

n2 in
 s

ec
s

Dimension

GW

S2ne S2ns

S2ps S2pe
W3n

G2n G1n U2n U2p U1n
W1n

W2n
W2p

W3p
W1p

U1p
G2p

G1p

S1ns

S1ne S1pe

S1ps

Wi

Prac

Fig. 4.7. Performance trend lines of MR for
runtime divided by n2 on Opteron.

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

Flop count(MR)/n2

F
lo

p
co

un
t(

M
R

)/
n2

Dimension

GW S2ne S2ns
S2ps S2pe W3n
U2n U2p G2n U1n G1n
W1n W2n

W2p
W3p W1p
U1p

G2p G1p

S1ns

S1ne S1pe S1ps

Wi

Prac

Fig. 4.8. Performance trend lines of MR for
flop counts divided by n2 on Opteron.

The figures exhibit how much the performance of both algorithms depends on the
matrix class and can vary dramatically.

Figure 4.6 shows that DC either does close to an O(n3) flops (trend lines nearly
parallel to the upper diagonal dotted black line) or does close to O(n) flops (the other
trend lines), when deflation is extreme. It is interesting to compare to the runtime of
DC shown in Figure 4.5. As noted in Section 4.2, the majority of flops in DC is done
using BLAS 3 so that the trend lines for the timings do not completely align with
those for the flop counts.

The nearly horizontal trend lines of MR in Figure 4.8 indicate that the algorithm
does close to O(n2) flops for the corresponding matrix classes. Runtime trends do
fairly well correspond to the flop trends here.

We now report on some of the classes individually. Our examples are classes

10 J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel

where

• both DC and MR are much faster than on practical matrices, Figure 4.9
showing ‘Strongly Clustered’ Matrices with Positive Eigenvalues (S1pe),

• MR is much faster than DC, Figure 4.10 showing ‘Uniformly Distributed’
Matrices with Positive Eigenvalues (U2pe), and

• DC is much faster than MR, Figure 4.11 showing Glued Wilkinson Matrices
(GW).

Each of the the Figures has six subplots. The rows, from top to bottom, show run
time, flop counts, and MFlop rate. The left column shows the data (except for the last
one, the MFlop rate) normalized by n2, the right column presents the data relative
to MR results.

For the ‘strongly clustered’ matrices in Figure 4.9, the fraction of eigenvalues
deflated in DC is at least 88% and often 100%. This makes DC appear to be much
faster than O(n2). In fact both DC and MR perform much faster for these matrices
than they do on practical matrices of the same size.

10
2

10
3

10
4

10
−8

10
−6

10
−4

Time/n2 for S1pe

T
im

e
/n

2
 i
n

 s
e

c
o

n
d

s QR (1.4)
BI (1.2)
DC (−0.3)
MR (−0.7)

10
2

10
3

10
4

10
0

10
1

10
2

10
3

Time/Time(MR) for S1pe

T
im

e
/T

im
e

(M
R

)

QR (2.1)
BI (1.9)
DC (0.4)

10
2

10
3

10
4

10
0

10
5

Flop counts/n2 for S1pe

F
lo

p
 c

o
u

n
ts

/n
2

QR (1.2)
BI (0.9)
DC (−1.5)
MR (−1.3)

10
2

10
3

10
4

10
0

10
5

Flop count/Flop count(MR) for S1pe

F
lo

p
 c

n
t/

F
lo

p
 c

n
t(

M
R

)

QR (2.5)
BI (2.2)
DC (−0.2)

10
2

10
3

10
4

10
1

10
2

10
3

10
4

MFlop rate for S1pe

Dimension

S
p

e
e

d
 i
n

 M
F

lo
p

s

QR (−0.2)
BI (−0.2)
DC (−1.2)
MR (−0.6)

10
2

10
3

10
4

10
0

10
1

10
2

MFlop rate/MFlop rate(MR) for S1pe

Dimension

M
F

lo
p

/M
F

lo
p

(M
R

) QR (0.4)
BI (0.4)
DC (−0.6)

Fig. 4.9. Performance data for Strongly Clustered Matrices with Positive Eigenvalues (S1pe)
on Opteron. κ = 1/ε.

Performance and Accuracy of LAPACK’s Symmetric Tridiagonal Eigensolvers 11

DC runs uniformly slower on the ‘uniformly distributed’ matrices than on prac-
tical matrices. One example is shown in Figure 4.10. Note that the fraction deflated
in DC is less than 3%. This means that the algorithm performs O(n3) work, at the
speed of DGEMM. Several other matrix classes with similarly few deflations are given
in [7]. Classical orthogonal polynomials such as Chebyshev, Legendre, Laguerre, and
Hermite that are defined by three-term recurrence give rise to symmetric tridiago-
nal matrices with very small amounts of deflation in DC. It is interesting that on
the other hand, these matrices pose no difficulties for MR: their eigenvalues are not
very strongly clustered. For such matrices, as for the Uniformly distributed ones in
Figure 4.10, MR can run much faster than DC.

10
2

10
3

10
4

10
−7

10
−6

10
−5

10
−4

Time/n2 for U2p

T
im

e
/n

2
 i
n

 s
e

c
o

n
d

s QR (0.9)
BI (0.0)
DC (0.5)
MR (0.0)

10
2

10
3

10
4

10
0

10
1

10
2

Time/Time(MR) for U2p

T
im

e
/T

im
e

(M
R

)

QR (0.9)
BI (0.0)
DC (0.5)

10
2

10
3

10
4

10
2

10
3

10
4

10
5

Flop counts/n2 for U2p

F
lo

p
 c

o
u

n
ts

/n
2

QR (1.0)
BI (0.1)
DC (0.9)
MR (−0.0)

10
2

10
3

10
4

10
0

10
1

10
2

Flop count/Flop count(MR) for U2p

F
lo

p
 c

n
t/

F
lo

p
 c

n
t(

M
R

)

QR (1.0)
BI (0.1)
DC (0.9)

10
2

10
3

10
4

10
2

10
3

10
4

MFlop rate for U2p

Dimension

S
p

e
e

d
 i
n

 M
F

lo
p

s

QR (0.1)
BI (0.1)
DC (0.3)
MR (−0.0)

10
2

10
3

10
4

10
−1

10
0

10
1

MFlop rate/MFlop rate(MR) for U2p

Dimension

M
F

lo
p

/M
F

lo
p

(M
R

) QR (0.1)
BI (0.1)
DC (0.4)

Fig. 4.10. Performance data for Uniformly Distributed Matrices with Positive Eigenvalues
(U2pe) on Opteron.

Finally, the classes on which DC performs nearly fastest, and on which MR per-
forms worst, are the Wilkinson and Glued Wilkinson matrices. The results for the
latter class are shown in Figure 4.11. The difficulties of MR for these matrices are
well understood: since the eigenvalues of glued matrices come in groups of small size
but extreme tightness, the representation tree generated by the MR algorithm is very

12 J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel

broad and the overhead for the tree generation is considerable, see [13, 7]. On top
of the difficulties of MR, the fraction deflated in DC is ∈ [59%, 78%], that is DC is
extraordinarily efficient and even faster than for practical matrices.

10
2

10
3

10
4

10
−8

10
−7

10
−6

10
−5

Time/n2 for GW

T
im

e
/n

2
 i
n

 s
e

c
o

n
d

s QR (0.9)
BI (−0.2)
DC (−0.5)
MR (0.0)

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

Time/Time(MR) for GW

T
im

e
/T

im
e

(M
R

)

QR (0.8)
BI (−0.2)
DC (−0.5)

10
2

10
3

10
4

10
0

10
2

10
4

Flop counts/n2 for GW

F
lo

p
 c

o
u

n
ts

/n
2

QR (0.7)
BI (−0.1)
DC (−1.2)
MR (0.0)

10
2

10
3

10
4

10
−2

10
0

10
2

Flop count/Flop count(MR) for GW
F

lo
p

 c
n

t/
F

lo
p

 c
n

t(
M

R
)

QR (0.7)
BI (−0.1)
DC (−1.2)

10
2

10
3

10
4

10
2

10
3

10
4

MFlop rate for GW

Dimension

S
p

e
e

d
 i
n

 M
F

lo
p

s

QR (−0.1)
BI (0.0)
DC (−0.7)
MR (−0.0)

10
2

10
3

10
4

10
−1

10
0

10
1

MFlop rate/MFlop rate(MR) for GW

Dimension

M
F

lo
p

/M
F

lo
p

(M
R

) QR (−0.1)
BI (0.0)
DC (−0.7)

Fig. 4.11. Performance data for Glued Wilkinson Matrices (GW) on Opteron.

Performance and Accuracy of LAPACK’s Symmetric Tridiagonal Eigensolvers 13

5. Subset computations: performance. Table 5.1 shows timing statistics of
BI relative to MR, for all test matrices. For each matrix, we randomly chose 15
subsets by index range (‘find eigenvalues IL:IU’) and 15 subsets by intervals (‘find
eigenvalues in [VL,VU]’).

Performance Summary for Subset Computations
Mach By index By interval

min med max min med max
SP3 .24 1.3 8.5 .22 1.3 9.0
SP5 .22 1.2 6.5 .20 1.2 6.8
SUN .38 1.7 25.2 .32 1.7 27.4
SGI .30 1.3 15.2 .29 1.4 14.2
ITN2 .24 1.1 4.7 .22 1.1 4.9
P4 .19 1.1 7.2 .16 1.1 7.8
X1 .39 1.4 4.3 .31 1.5 4.5
OPT .30 1.3 21.1 .28 1.3 16.7

Table 5.1

Performance summary when computing subsets of eigenpairs, either by index (‘eigenvalues
IL:IU’) by interval (‘eigenvalues in [VL,VU]’). Shown are the results of BI relative to MR.

One can see that there are subsets for which BI is up to six times faster than MR,
whereas there are others intervals where it is 27 times slower than MR. 3 This shows
that performance depends on the subset. The medians tell that MR on average is
faster and thus preferable to BI for subsets.

It is interesting to investigate what matrices show the biggest differences in run-
time. MR does significantly better than BI on subsets of G. Fann’s practical matrices.
This should not be a surprise as it is known BI require a large number of reorthogo-
nalizations for these matrices, see the remarks in Section 3.1 and [8, 10].

BI’s relatively best performances occur in two different cases. First, there are the
‘very easy’ tests where BI does not require any reorthogonalization and both BI and
MR are very fast. More interesting, in a pathological sense, are the Wilkinson and
Glued Wilkinson matrices. As noted in [13], MR requires a substantial amount of
work to deal with the extremely strong clustering of the eigenvalues and its overhead
turns out to be more significant than the reorthogonalization required by BI.

6. Accuracy.

6.1. Residual norm and loss of orthogonality. Using the metrics for orthog-
onality loss and residual norm in (3.1) and (3.2), respectively, the worst case residuals
and losses of orthogonality for all matrices and all platforms are reported in Table 6.1.

Some plots detailing the accuracy on the Opteron are given in Figure 6.1.
The important trends are that the errors decrease as n increases for DC and QR.

Given the n in the denominators of the above formulas, this means that the DC and
QR errors do not increase proportionally to n. This is confirmed by the slopes of
the trend lines which are shown in the legends. In general, inverse iteration and MR
do not achieve the same level of accuracy as QR and DC, their accuracy is O(nε)
in general. For matrices that split into smaller blocks, the block size governs the
orthogonality loss rather than the matrix dimension.

3There is some variation in the maximum ratios across the machines which we cannot explain
satisfactorily, so the largest ratios should be considered with a grain of salt.

14 J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel

Worst case error for all matrices
Mach Residual Orthogonality loss

QR BI DC MR QR BI DC MR
SP3 .23 100 .13 22 .34 140 .25 70
SP5 .30 59 .13 18 .39 70 .25 163
SUN .20 331 .11 14 .45 440 .19 92
SGI .30 210 .13 14 .46 280 .19 160
ITN2 .30 240 .13 29 .45 320 .19 190
P4 .30 39 .13 33 .38 53 .19 140
X1 .30 34 .11 80 .46 45 .19 160
OPT .30 100 .11 14 .46 130 .19 160

Table 6.1

Summary of all accuracy results. Reported is the worst result that was observed on any practical
or testing matrix. Residual norms and level of orthogonality are given as multiples of nε, see
Section 3.3 on error metrics.

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Resids vs n for Opteron, practical

Dimension

Re
sid

ua
ls

fro
m

1e
−0

05
 to

 10
00

QR (−0.3)
BI (−0.5)
DC (−0.5)
MR (0.4)

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Orth vs n for Opteron, practical

Dimension

Or
tho

go
na

liti
es

 fro
m

0.0
01

 to
 10

00

QR (−0.3)
BI (−0.3)
DC (−0.4)
MR (0.5)

10
2

10
3

10
4

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Resids vs n for Opteron, testing

Dimension

Re
sid

ua
ls

fro
m

1e
−0

08
 to

 10
0

QR (−0.4)
BI (−0.5)
DC (−0.7)
MR (−0.3)

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Orth vs n for Opteron, testing

Dimension

Or
tho

go
na

liti
es

 fro
m

0.0
00

1 t
o 1

00

QR (−0.3)
BI (−0.7)
DC (−0.7)
MR (−0.2)

Fig. 6.1. Residuals and Losses of Orthogonality for all matrices on Opteron. (Top: all practical
matrices. Bottom: all synthetic ‘testing’ matrices. Note the difference in vertical scales on top and
bottom.)

Performance and Accuracy of LAPACK’s Symmetric Tridiagonal Eigensolvers 15

6.2. Reliability: comparing MR from LAPACK 3.1 to version 3.0. For
the LAPACK 3.1 release, we have done extensive development on MR. It now allows
the computation of subsets of eigenpairs [26]. Moreover, the new algorithm is signifi-
cantly more reliable than the version in LAPACK 3.0, which had very large errors on
a significant subset of our test matrices.

Figure 6.2 shows that the version of MR tested here is more accurate than the
old MR from LAPACK 3.0, which not only had numerous large errors as shown in the
plot, but failed to return any answer on 22 of our test matrices, including 9 practical
matrices.

10
1

10
2

10
3

10
4

10
−5

10
0

10
5

10
10

Resids vs n for Old vs New MR on SUN

Dimension

R
es

id
ua

ls
 fr

om
 1

e−
00

7
to

 1
.0

00
00

0e
+

01
4

DC (−0.6)
oMR (−0.3)
MR (0.0)

10
1

10
2

10
3

10
4

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

Orth vs n for Old vs New MR on SUN

Dimension

O
rt

ho
go

na
lit

ie
s

fr
om

 0
.0

00
1

to
 1

.0
00

00
0e

+
01

4
DC (−0.6)
oMR (−0.1)
MR (0.2)

Fig. 6.2. Residual norms and loss of orthogonality. Failures of the LAPACK 3.0 version of
MR have been corrected for version 3.1.

There are two reasons for the improved reliability and accuracy of the 3.1 version
of MR. First, it includes a remedy to the recently discovered problem that for a
tridiagonal where no off-diagonal entries satisfy the splitting criterion, the eigenvalues
can still be numerically indistinguishable down to the underflow threshold, see [13].
Second, the internal accuracy threshold on relative gaps has been tightened. This
threshold is directly proportional to the upper bounds on numerical residual and
orthogonality of the computed vectors, see [14]. Instead of a threshold of one over the
matrix dimension, a fixed threshold of 10−3 in double precision is used. This makes
the new MR more accurate on larger matrices.

7. Summary and conclusions. In preparation for the the latest LAPACK 3.1
release, we performed a systematic study of performance and accuracy of the com-
putation of eigenpairs for a symmetric tridiagonal matrix. Our evaluation considers
speed and accuracy of QR iteration (QR), bisection and inverse iteration (BI), the
Divide-and-Conquer method (DC), and the method of Multiple Relatively Robust
Representations (MR) when computing all, or a subset of, eigenpairs of a variety of
matrices on today’s computer architectures. Our conclusions are as follows.

16 J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel

1. DC and MR are generally much faster than QR and BI on large matrices.
MR is faster than DC on large practical matrices (i.e. the median value of the
ratio runtime(DC) over runtime(MR) exceeds one) on 5 of our 8 platforms,
and is slower than DC on 3 platforms. For matrix classes for which there is
a great deal of deflation, DC becomes much faster.

2. Using hardware performance counters to count floating point operations on
the Opteron, we discover that MR almost always does the fewest floating
point operations, but at a lower MFlop rate than all the other algorithms.
This is because it performs more divides than the other algorithms: the
number of divides MR performs always exceeds a fixed significant nonzero
fraction of the total number of floating point operations, whereas the fraction
of divides for the other algorithms approaches zero as the dimension grows.
DC has a MFlop rate that grows significantly with n (as proportionally more
operations are done using BLAS3 DGEMM operations). This increase in
DC’s MFlop rate is enough to make DC look like an O(n2.5) algorithm as
determined empirically by fitting a straight line to the log of the running
time, even though it is an O(n2.8) algorithm as determined by the operation
count. QR’s MFlop rate drops when the eigenvector matrix is too large to fit
in cache. Its use of memory, repeatedly sweeping over the eigenvector matrix
performing Givens rotations, with just 1.5 flops per memory reference, is
inefficient. BI’s complexity depends on the amount of reorthogonalization,
that is the eigenvalue clustering.

3. QR and DC are the most accurate algorithms, measured both in terms of pro-
ducing pairwise orthogonal eigenvectors and small residuals norms ‖Tx−λx‖.
MR is less accurate but still achieves errors of size O(nε), where n is the di-
mension and ε is machine epsilon, never more than 190nε loss of orthogonality
and 80nε residuals for any matrix on any platform. Depending on the matrix
and platform, it is known that BI may completely fail to guarantee orthogo-
nal eigenvectors [9], though this is rare and did not occur on any of our test
matrices.

4. MR is preferable to BI for subset computations. Independent of the architec-
ture, the median of the relative time of BI/MR exceeds one on all architec-
tures.

5. The LAPACK 3.1 version of MR addresses some reliability issues of version
3.0.

For computing all eigenpairs of a symmetric tridiagonal matrix, QR, BI and MR
use the least memory (n2 + O(n)), whereas DC uses about twice as much (2n2 +
O(n)). Looking at the dense symmetric eigenvalue problem, QR needs n2 + O(n),
MR and BI need 2n2 + O(n), and DC needs 3n2 + O(n). If memory is not an
obstacle, the choice between DC and MR is matrix-dependent. However, unless the
performance differences are substantial, they will be masked in the dense case by
reduction to tridiagonal form and backtransformation of the eigenvectors. DC always
is the algorithm of choice when the superior accuracy matters. When computing a
subset of the eigenvalues and vectors, MR is the algorithm of choice over BI.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK User’s Guide. SIAM,
Philadelphia, 3. edition, 1999.

Performance and Accuracy of LAPACK’s Symmetric Tridiagonal Eigensolvers 17

[2] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and Henk van der Vorst. Templates for the solution
of algebraic eigenvalue problems - A practical guide. SIAM, Philadelphia, 2000.

[3] J. Bunch, P. Nielsen, and D. Sorensen. Rank-one modification of the symmetric eigenproblem.
Numer. Math., 31:31–48, 1978.

[4] J. J. M. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem.
Numer. Math., 36:177–195, 1981.

[5] T. A. Davis. University of florida sparse matrix collection. NA Digest, vol. 92, no. 42, October
16, 1994, NA Digest, vol. 96, no. 28, July 23, 1996, and NA Digest, vol. 97, no. 23, June
7, 1997.

[6] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, USA, 1997.
[7] J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel. A Testing Infrastructure for

Symmetric Tridiagonal Eigensolvers. Technical report LBNL-61831, Lawrence Berkeley
National Laboratory, 2006.

[8] I. S. Dhillon. A New O(n2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector
Problem. PhD thesis, University of California, Berkeley, California, 1997.

[9] I. S. Dhillon. Current inverse iteration software can fail. BIT, 38:4:685–704, 1998.
[10] I. S. Dhillon, G. Fann, and B. N. Parlett. Application of a new algorithm for the symmetric

eigenproblem to computational quantum chemistry. In Proceedings of the Eighth SIAM
Conference on Parallel Processing for Scientific Computing. SIAM, March 1997.

[11] I. S. Dhillon and B. N. Parlett. Multiple representations to compute orthogonal eigenvectors
of symmetric tridiagonal matrices. Linear Algebra and Appl., 387:1–28, 2004.

[12] I. S. Dhillon and B. N. Parlett. Orthogonal eigenvectors and relative gaps. SIAM J. Matrix
Anal. Appl., 25(3):858–899, 2004.

[13] I. S. Dhillon, B. N. Parlett, and C. Vömel. Glued matrices and the MRRR algorithm. SIAM
J. Sci. Comput., 27(2):496–510, 2005. Revised version of LAPACK Working Note 163.

[14] I. S. Dhillon, B. N. Parlett, and C. Vömel. The design and implementation of the MRRR
algorithm. ACM Trans. Math. Software, 32(4):533–560, 2006.

[15] J. J. Dongarra, S. Moore, P. Mucci, K. Seymour, D. Terpstra, and H. You. Performance
Application Programming Interface (PAPI).

[16] I. S. Duff, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems. ACM Trans. Math.
Software, 15:1–14, 1989.

[17] I. S. Duff, R. G. Grimes, and J. G. Lewis. Users’ guide for the Harwell-Boeing sparse matrix col-
lection (release I). Technical Report RAL-TR-92-086, Atlas Centre, Rutherford Appleton
Laboratory, 1992.

[18] I. S. Duff, R. G. Grimes, and J. G. Lewis. The Rutherford-Boeing Sparse Matrix Collection.
Technical Report RAL-TR-97-031, Atlas Centre, Rutherford Appleton Laboratory, 1997.
Also Technical Report ISSTECH-97-017 from Boeing Information & Support Services and
Report TR/PA/97/36 from CERFACS, Toulouse.

[19] E. Apra et al. NWChem, a computational chemistry package for parallel computers, version
4.7. Technical report, Pacific Northwest National Laboratory, Richland, WA. USA, 2005.

[20] R. A. Kendall et al. High Performance Computational Chemistry: An overview of NWChem a
distributed parallel application. Computer Phys. Comm., 128:260–283, 2000.

[21] G. H. Golub and C. van Loan. Matrix Computations. The John Hopkins University Press,
Baltimore, Maryland, 3. edition, 1996.

[22] M. Gu and S. C. Eisenstat. A divide-and-conquer algorithm for the symmetric tridiagonal
eigenproblem. SIAM J. Matrix Anal. Appl., 16(1):172–191, 1995.

[23] N. J. Higham. Algorithm 694: A Collection of Test Matrices in MATLAB. ACM Trans. Math.
Software, 17(3):289–305, 1991.

[24] I. C. F. Ipsen. Computing an eigenvector with inverse iteration. SIAM Review, 39(2):254–291,
1997.

[25] Lapack 3.1. http://www.netlib.org/lapack/lapack-3.1.0.changes, 2006.
[26] O. A. Marques, B. N. Parlett, and C. Vömel. Computations of Eigenpair Subsets with the

MRRR algorithm. Numerical Linear Algebra with Applications, 13(8):643–653, 2006.
[27] O. A. Marques, E. J. Riedy, and C. Vömel. Benefits of IEEE-754 Features in Modern Symmetric

Tridiagonal Eigensolvers. SIAM J. Sci. Comput., 28(5):1613–1633, 2006.
[28] B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM Press, Philadelphia, PA, 1998.
[29] B. N. Parlett and I. S. Dhillon. Fernando’s solution to Wilkinson’s problem: an application of

double factorization. Linear Algebra and Appl., 267:247–279, 1997.
[30] B. N. Parlett and I. S. Dhillon. Relatively robust representations of symmetric tridiagonals.

Linear Algebra and Appl., 309(1-3):121–151, 2000.
[31] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, 1965.

