
June 2, 2006 1

On the failure of rank revealing QR factorization software
– a case study

LAPACK Working Note 176

Zlatko Drmač∗and Zvonimir Bujanović†

Abstract

This note reports an unexpected and rather erratic behavior of the LAPACK software
implementation of the QR factorization with Businger–Golub column pivoting. It is shown
that, due to finite precision arithmetic, software implementation of the factorization can
catastrophically fail to produce triangular factor with the structure characteristic to the
Businger–Golub pivot strategy. The failure of current state of the art software, and a
proposed alternative implementations are analyzed in detail.

1 Introduction

During the implementation and testing of a new Jacobi–type SVD algorithm [8, 9], we encoun-
tered an exceptional behavior in one test case: safety switches were triggered and an emergency
branch of the code was activated. This worst case scenario was unexpected because the theory
had guaranteed smooth run with no need for exceptional treatment of the input matrix. An
inspection of control parameters computed by numerical poka–yoke devices in our software has
shown that the exceptional behavior was caused by an objectionable result of the pivoted QR
factorization in the preprocessing phase of the algorithm. Namely, the computed triangular fac-
tor failed to have properly ordered diagonal entries. This fact prompted separate testing of the
LAPACK routine xGEQP3, which is used in our SVD software. It implements the Businger–
Golub [2] pivot strategy which, for A ∈ Rm×n, computes permutation matrix P , orthonormal
Q and upper triangular matrix R such that

AP = QR, where |Rii| ≥

√√√√
j∑

k=i

|Rkj|2, for all 1 ≤ i ≤ j ≤ n. (1)

The issue addressed in this note is relevant to the rank revealing problem, but it is not about
the rank revealing capabilities of the factorization (1). Instead, the main object of our study is
software implementation of (1).

∗Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia.
†Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia.



June 2, 2006 2

It is well known that the QR factorization in floating point arithmetic is backward stable.
Therefore, in proper software implementation, the computed Q̃, R̃ and the actually used per-
mutation matrix P̃ should satisfy (A+∆A)P̃ = Q̃R̃ with small ∆A, and, in addition, Q̃ should
be numerically orthonormal and R̃ upper triangular. Strictly speaking, Q̃ is close to an ortho-
normal matrix Q̂ such that (A+ δA)P̃ = Q̂R̃ is a QR factorization with column pivoting. Here
δA is similar in size to ∆A. Notice that in the statement of the backward (or mixed) stability
we insist on structure: R̃ must be upper triangular and Q̃ must be numerically orthonormal.

But, although the factorization is computed with pivoting, which should impose certain
structure on the triangular factor (cf. the property of R in (1)), the structure of R̃ is never
mentioned in backward error analysis. It certainly cannot be taken as granted, as e.g. the
triangular form of R̃. It could be that it is tacitly assumed that the structure will be nearly
attained (up to roundoff), or that the issue is simply pushed into the forward error – the struc-
ture of the computed R̃ is considered not to be the responsibility of backward error analysis.

The purpose of this note is to warn that in currently available implementations (e.g. LAPACK,
MATLAB) the code can catastrophically fail to produce such structured triangular factor.
Thus, strictly speaking, such implementation is not backward (nor mixed) stable computation
of the Businger–Golub QR factorization (1). Since the QR factorization is well understood
and numerically stable, without inherent difficulties (such as in e.g. symmetric definite and
indefinite factorizations or e.g. in the QR factorization in indefinite inner product spaces), a
failure of its implementation with column pivoting of paramount importance is unacceptable
and we propose an alternative.

The material is organized as follows. In §2 we give several examples which illustrate how
state of the art implementations of the factorization (1) can fail to produce satisfactory results,
and how this failure affects solvers based on the pivoted QR factorization. This examples
should convince the reader that the problem is serious, and that it may lead to numerical
catastrophes in engineering applications. Section 3 offers an analysis of the erratic behavior
and proposes modifications of the current LAPACK code. The first modification is a quick
fix for the current LAPACK code and it does not affect the input/output specifications of the
routines. The second approach we propose requires n extra locations in the work space. In §4,
we present new software implementations of the Businger–Golub pivoting. The new software
runs at the speed similar to current LAPACK code, and it is fail safe. Finally, section 5 recalls
the importance of pivoting from the numerical point of view. We discuss forward error in the
computed factorization, and changes of certain condition numbers.

2 Examples of software failure

To make our case, we first give several examples of software failure. The matrix which first
exposed the weakness of the code was the famous Kahan [12] matrix K = K(n, c), but the nature
of the weakness was unexpected and, to our best knowledge, not reported elsewhere. Recall, K



June 2, 2006 3

e.g. in the case n = 6 reads

K =




1 0 0 0 0 0
0 s 0 0 0 0
0 0 s2 0 0 0
0 0 0 s3 0 0
0 0 0 0 s4 0
0 0 0 0 0 s5







1 −c −c −c −c −c
0 1 −c −c −c −c
0 0 1 −c −c −c
0 0 0 1 −c −c
0 0 0 0 1 −c
0 0 0 0 0 1




, c2 + s2 = 1,

and in general,

K(n, c) =

(
1 −c − c . . . − c
0 sK(n− 1, c)

)
, c = cos ψ, s = sin ψ.

This matrix is known to be a counterexample for the rank revealing property of the factor-
ization (1) because it is already upper triangular with the property of R from (1), and |Knn|
overestimates σmin(K) by a factor of order 2n−1. The QR factorization (1) applied to A = K

gives Q = In, P = In, R = K. (In fact, even the Powell–Reid complete pivoting [13] leaves K

unchanged. Moreover, R = K is the matrix which almost attains the O(2n) upper bound for
‖R−1

r ‖2 in Proposition 5.1.)
It is also well known that rounding errors during the computation may provoke permutation

different from the identity, and the computed R̃ 6= K is rank–revealing in the sense that |R̃nn|
correctly estimates the magnitude of the minimal singular value σmin(K) of K. The phenomenon
we are going to describe is of different kind.

Our first examples were generated using the LAPACK xGEQP3 and xGEQPF procedures un-
der a GNU FORTRAN compiler. (Both single and double precision routines failed, for both real
and complex matrices.) Later on, we have tested other software packages (MATLAB, SciLab,
Octave, Intel Fortran compiler) and found the same problem.

For this presentation we will use examples generated in MATLAB 6.5.

2.1 Loss of structure in the triangular factor

To control the structure of R, we compare |Rii| with

µi = max
j=i+1:n

|Rij|, i = 1 : n− 1.

In exact computation, (1) implies that maxi=1:n−1 µi/|Rii| ≤ 1. (Note that (1) implies even
stronger structure.)

Example 2.1 Take n = 300 and c = 4.664999999999993e − 001, define A = K(n, c) and
compute [Q,R, P ] = qr(A). If one routinely looks after the sudden drop along the diagonal of
R, checking the quotients |Rk+1,k+1/Rkk| will point to the index 281 where |R281,281/R280,280| <



June 2, 2006 4

0 50 100 150 200 250 300
10

−60

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

this spike should not be here 

Figure 1: The values of |Rii| (red line) and µi (blue line) for the matrix K(300, c) in Example
2.1. Here maxi=1:n−1 µi/|Rii| ≈ 9.2734e + 043 (and it should be at most 1).

10−44. Having the property (1) of R in mind, one concludes that ‖R(281 : 300, 281 : 300)‖F ≤√
20 · 10−44 · |R280,280| and that in the partition

R =




R11 · · · R1,280 R1,281 · · · R1,300

. . .
...

...
...

R280,280 R280,281 · · · R280,300

R281,281 · · · R281,300

. . .
...

R300,300




the sub–matrix below the line (rows with indices above 280) can be discarded. Visual inspection
(Figure 1) shows that we are misled into a wrong conclusion. The same (wrong) conclusion is
reached if an incremental condition estimator is deployed with the task to find maximal leading
well–conditioned matrix.

If the initial A is changed by random permutation of its columns, some permutations will
produce satisfactory triangular factor, but some (very quickly found by random search) will lead
to a catastrophic loss of diagonal dominance, but always at the positions around 281 (280, 281,
282). If the rows and the columns are permuted simultaneously, catastrophic loss of diagonal
dominance is less frequent, but the loss of the non–increasing order of the diagonal entries is
found very quickly, see Figures 2, 3.
To show the subtlety of the problem, take c̃ = c ∗ (1 + eps) = 4.664999999999994e − 001
(MATLAB notation), and then Ã = K(n, c̃). After computing [Q̃, R̃, P̃ ] = qr(Ã), one can easily
check that R̃ is diagonally dominant with decreasing absolute values along the diagonal.1 A

1The results of these experiments depend on the way we generate K because one bit of difference can change
the result. With his/her own code for K the reader can find other interesting values of c.



June 2, 2006 5

0 50 100 150 200 250 300
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Figure 2: The values of |Rii| (red line) and µi (blue line) for a row and column permuted matrix
K(300, c) in Example 2.1.

0 50 100 150 200 250 300
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Figure 3: The values of |Rii| (red line) and µi (blue line) for the row and column permuted
matrix K(300, c) in Example 2.1. Here maxi=1:n−1 µi/|Rii| ≈ 2.7330e + 005.



June 2, 2006 6

50 100 150 200 250 300

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Figure 4: The values of |Rii| (red line) and µi (blue line), i = 1 : 300 for the matrix M = B+BT ,
B = K(300, 0.4630). Here maxi=1:n−1 µi/|Rii| ≈ 1.6633e + 003.

comparison of the diagonal entries of the computed factors R and R̃ is given in (2).

i |Rii| |R̃ii|
...

...
274 4.146036291985283e− 015 4.146036291985283e− 015
275 3.667256988614787e− 015 3.667256988614787e− 015
276 3.243766545541791e− 015 3.243766545541791e− 015
277 2.869180271424214e− 015 2.869180271424215e− 015
278 2.537850771426260e− 015 2.537850771426261e− 015
279 2.244782805101268e− 015 2.244782805101268e− 015
280 1.985557976384244e− 015 1.985557976384244e− 015

281 1.510608517753438e-059 1.756268120293820e− 015
282 1.191304454419907e− 015 1.553456382058059e− 015
283 1.173764088030493e− 015 1.374065100352209e− 015
...

...
...

298 2.180875970060762e− 016 2.180876095640635e− 016
299 1.929031096752219e− 016 1.929031137161460e− 016
300 2.021325892754739e− 019 3.350097232677502e− 066

(2)

Example 2.2 Almost identical situation is obtained with B = K(300, 0.4630). Now, M =
B+BT shows more irregular behavior of the diagonal of the computed triangular factor (Figure

4). One can easily construct more interesting examples. For instance, take N =

(
A X
Y M

)

with various X and Y . With X = Y = 0 we obtain maxi=1:n−1 µi/|Rii| ≈ 4.1037e + 009. (The
structure of the matrix R is shown in Figure 6.)



June 2, 2006 7

2.2 Consequences in applications

The QR factorization with column pivoting is computational routine used as core procedure in
other solvers in numerical linear algebra, and its failure can have bad impact to their reliability.
We give few examples and illustrate how the improper structure of R can fool more complex
solvers.

Example 2.3 As we mentioned in the Introduction, we first experienced this problem in con-
text of the new Jacobi type SVD algorithm [8, 9]. To illustrate, we first describe a simplified
variant based on the accelerated Jacobi algorithm [18].

Let A ∈ Rm×n have full column rank and AP = Q

(
R
0

)
be its QR factorization with

pivoting as in (1). Instead of implicit diagonalization of M ≡ RT R = P T (AT A)P , accelerated
Jacobi diagonalizes W ≡ RRT . This is easier task to accomplish because W tends to be very
strongly diagonally dominant for any full rank A, and suitable implementation of Jacobi itera-
tions can exploit such structure. The relevant condition number (for accuracy and convergence)
is ‖R−1

r ‖2, which is expected to be moderate (See Proposition 5.1).
If the computed R̃ ≈ R violates (1), as in examples in §2.1, then all inequalities ”≤”

in Proposition 5.1 may become ”À”. The value of ‖R̃−1
r ‖2 may even overflow. This means

that preconditioner completely fails – instead of reducing, it drastically increases the condition
number. (For instance, computing the QR factorization of such a badly structured R̃T is not
safe in the context of high accuracy SVD computation.) An occurrence of this situations triggers
safety switches in our algorithm [8, 9].

Best illustration is to plot the matrix Ws = ( Wij/
√

WiiWjj ) using the mesh() command in
MATLAB. In an ideal case, Ws should have clearly visible unit diagonal which dominates all
off–diagonal entries. If the pivoting fails, we can have situation as in Figure 5. Instead being
close to identity, Ws(150:200, 150:200) is highly ill–conditioned.

Example 2.4 Linear least squares problem solvers are also at high risk. Brief inspection of
the source code of xGELSX and xGELSY in LAPACK is enough to conclude that failure
of xGEQPF and xGEQP3 will go undetected, and that the least squares solution will have
unnecessary and unacceptably large error. The reason is that the numerical rank is detected
by a naive incremental condition estimator (ICE) which gets fooled by the first deep drop on
the diagonal of the computed triangular factor.2 We use the term naive ICE to denote an
ICE which merely records the condition numbers of leading principal submatrices, without any
attempt to recompute the triangular factor and find better submatrix in each particular step.
Naive ICE relies on the assumed structure of the triangular factor.

For the sake of brevity, we will not list bad examples generated using LAPACK. Instead,
we illustrate the nature of failure using one example generated in MATLAB. We use the slash
operator to solve ‖Ax− d‖2 → min.

Let A = N(:, 1 : 560), where N is the matrix from Example 2.2. To solve ‖Ax− d‖2 → min
with randomly generated right hand side d, we use the slash, A\d, which computes the solution
using the QR factorization with column pivoting of the coefficient matrix A. The result is
delivered with the warning

2See the source code http://www.netlib.org/lapack/single/sgelsy.f.



June 2, 2006 8

Figure 5: The matrix Ws, where R̃ is the matrix used in Figure 4. The ill–conditioned ”tower”
Ws(150:200, 150:200) is a result of wrong pivot choices.

Warning: Rank deficient, rank = 304 tol = 1.0994e-012.

Note that in this case rank(A,1.0994e-12) returns 466. (Since ‖A‖2 < 20, 466 can be taken
as correct number of singular values above the threshold.) We first note that 304 severely
underestimates the numerical rank 466, as defined by the singular value threshold. (Expected
is the opposite, due to the Eckart–Young–Mirsky theorem.)

To understand what caused this warning, we compute [Q,R,P] = qr(A) and analyze the
structure of R. See Figure 6. It is clear where 304 comes from – here |R(305, 305)| ≈ 9.7560e−
013 is the first diagonal absolute value below the threshold 1.0994e-012. Then, R is assumed
to have block partition

R =

(
R[11] R[12]

0 R[22]

)
, where R[11] = R(1 : 304, 1 : 304), ‖R[22]‖F ≤ 1.5610e− 011.

Setting R[22] to zero implicitly defines a rank 304 matrix A + δA with ‖δA‖F ≤ 1.5610e− 011.
If we compute the singular values of A, then the computed value 2.0470e − 008 of σ305(A) is
sufficiently accurate to conclude that the distance to the closest matrix of rank at most 304 is
more than 2.0470e − 008. On the other hand, if we just count the number of |R(i, i)|’s above
1.0994e-012 we obtain exactly 466.

Example 2.5 To compute the GSVD of the pair (A,B) ∈ Rm×n×Rp×n, it can be advantageous
to reduce the pair to joint triangular form by orthogonal transformations:

UT AQ =




n− k − ` k `

k 0 A12 A13

` 0 0 A23

m− k − ` 0 0 0


 for m− k − l ≥ 0,



June 2, 2006 9

0 100 200 300 400 500 600
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Figure 6: The values of |Rii| (red line) and µi (blue line), i = 1 : 559 for the matrix A in
Example 2.4. The green line marks the tolerance 1.0994e-012 used to determine numerical
rank.

or UT AQ =

(n− k − ` k `

k 0 A12 A13

m− k 0 0 A23

)
, if m− k − ` < 0;

V T BQ =

(n− k − ` k `

` 0 0 B13

p− ` 0 0 0

)
.

Here A12 and B13 are upper triangular nonsingular matrices. Note that reduction of B represents
the URV decomposition which starts with the QR factorization with column pivoting, BP̃ ≈
Q̃BR̃. The numerical rank ˜̀ of B (computed `) is determined by counting the number of
diagonal entries in the triangular factor R̃ which are above certain threshold. Such strategy
may give correct value of the numerical rank, but the problem arises when R̃ is replaced with
the first ˜̀ rows of R̃. (See SGGSVP.F in LAPACK.)

Similar problems arise in computation of the generalized QR factorization with pivoting,
URV decomposition etc. We omit the details for the sake of brevity.

Example 2.6 More sophisticated rank revealing factorizations [3], [14], [1] postprocess the
computed triangular factor. The initial triangular factor is computed by Businger–Golub piv-
oting restricted to a sliding window (for better use of memory hierarchy), see TOMS Algorithm
782. Then, fast condition estimators is used to detect and move suspicious columns to the
rear and the triangular form is corrected by a sequence of Givens rotations. (This is a general
scheme for sophisticated rank revealing QR factorizations – an initial factorization is refined in a
process of optimization of suitably chosen objective functions.) Inspection of the code of TOMS
] 782 shows the same problem in the initial phase (see SGEQPC.F, SGEQPW.F, SGEQPB.F).



June 2, 2006 10

Numerical experiments with xGEQPX have shown the same sort of problems as with xGEQPF
and xGEQP3 – as preprocessing module in our SVD algorithm it failed catastrophically.

3 Analysis of the problem

It is well known that K is tough case for rank revealing QR factorization, so one is tempted
to offer that fact as an explanation, without any need to look closer to identify the source of
the problem. However, different manifestations of the problem in various computational tasks
might have substantially different origins, and thus each of them definitely deserves separate
analysis.

In the examples in §2 the pivoting was rank revealing, it has successfully exposed linear
dependence by creating small columns in the submatrices generated in the algorithm, but the
problem was that those small columns have, mistakenly, been taken for pivots in the ensuing
steps.

3.1 Experimental analysis. Compiler issues.

To analyze, explain and correct the erratic behavior of the code, we need to go into the details
of a concrete implementation. We first focus to SGEQPF, because: (i) the code is simpler than
its BLAS 3 implementation SGEQP3; (ii) it has less numerical uncertainties than SGEQP3.
(The same problem occurs in SQRDC from LINPACK. It should be stressed that xGEQP3 and
xGEQPF are not numerically equivalent.) Our machine is Intel Pentium 4 based HP X2100
Workstation running under MS Windows/Suse Linux.3

To remove the unknown factor of machine optimized libraries we use BLAS and LAPACK
compiled from the source code from the NETLIB repository. (Our first bad cases were discov-
ered while using BLAS from the Intel’s MKL library.)

First approach is experimental. Several experiments under different circumstances will provide
useful hints for the ensuing numerical analysis. So far, it is clear that the problem is in wrongly
determined pivotal columns. For the reader’s convenience, we display in Table 1 part of SGE-
QPF.F which is critical for column norms of submatrices in the factorization process. (The
updating strategy is the same as in the LINPACK procedure SQRDC.) What follows is a brief
description of our course of action after facing this problem.
First attempt to resolve the problem is the obvious one – enforce explicit norm computation
by SNRM2() in all cases. With this modification, the problem is gone. That is, of course, not
satisfactory – we still do not know the exact source of the problem that we have removed so
easily by using an expensive modification, which is not even feasible in the block (BLAS 3)
implementation xGEQP3. However, this points to the main suspect: the IF statement which
chooses between the updating formula and explicit norm computation.

We return the code to its original version in order to study the switching mechanism which
chooses between update formula and explicit norm computation. An old fashion debugging
practice calls for writing out the values of the key variable TEMP2. The outcome was one
of the most feared – the run was smooth and the computed R had proper structure. The

3 Same problems are discovered using Athlon and Pentium Xeon processors.



June 2, 2006 11

DO 30 J = I+1, N
IF ( WORK( J ).NE.ZERO ) THEN

TEMP = ONE - ( ABS( A( I, J ) ) / WORK( J ) )**2

TEMP = MAX( TEMP, ZERO )

TEMP2 = ONE + 0.05*TEMP*( WORK( J ) / WORK( N+J ) )**2

IF( TEMP2.EQ.ONE ) THEN
IF( M-I.GT.0 ) THEN

WORK( J ) = SNRM2( M-I, A( I+1, J ), 1 )
WORK( N+J ) = WORK( J )

ELSE
WORK( J ) = ZERO
WORK( N+J ) = ZERO

END IF
ELSE

WORK( J ) = WORK( J )*SQRT( TEMP )

END IF
END IF

30 CONTINUE

Table 1: Critical part in the column norm update. (For the full source see
http://www.netlib.org/lapack/single/sgeqpf.f)

result was as it should be. A bug?! In our code? (Our test code is very simple and, say,
easily checked to be correct. It generates the matrix, calls SGEQPF and checks the structure
of the computed upper triangular factor.) In LAPACK? (There is a W 3 page for LAPACK
bugz, http://icl.cs.utk.edu/lapack-forum/bugz/) In MATLAB? (MATLAB uses LAPACK as
computing engine.) Or in the compiler? (We have found 1999. reports on a bug in g77-2.95
19990629 (prerelease). According to Mathias Fröhlich at the Universität Tübingen, SLAPMT
(which applies permutation returned by SGEQPF) was trapped in an infinite loop, and he was
able to trace the error back to misscompiled SGEQPF.4 But, we have encountered the same
problem with the Intel Fortran compiler.)

Since finding a bug in program which returns correct result is difficult, we removed the
WRITE statements and restored erratic behavior. Just to produce a different executable, we
recompiled SGEQPF with the optimizer switched off. Needless to say, the result (data from our
collection of bad matrices) was as it should be, with no anomalies. Finally a familiar situation,
well known in the computing community.

We focus to a possibility that the GNU FORTRAN optimizer keeps the variable TEMP2 in
long register (80 bit, 64 bit mantissa) which can change some equivalence relations we are used
to take as granted. Note that the test IF ( TEMP2 .EQ. ONE ) was meant to be an equivalent
way of asking

IF ( 0.05*TEMP*( WORK( J ) / WORK( N+J ) )**2 .LT. EPS ), (3)

where EPS=SLAMCH(’Epsilon’) is the working precision. It is known that this is a bad idea
if TEMP2 is kept in a 80 bit register, which is precisely what happens in this case. The two
IF’s are not equivalent.

To prevent the compiler to use TEMP2 in extended precision, the code is compiled with the
-ffloat-store option added to the -O. A quick look at the assembler code shows the effect
of this option: TEMP2 is stored from the register to the memory and reloaded. The same
happens without ffloat-store if WRITE(*,*) TEMP2 is inserted, because writing TEMP2

4We believe that this is pure coincidence that (if) this (is) compiler bug (that it) was found while using
SGEQPF. However, believing in coincidences does not mean trusting them.



June 2, 2006 12

requires popping it from the stack. Our FORTRAN code compiled with -O -ffloat-store

has successfully factorized all our bad examples.

IF( TEMP2 .EQ. ONE ) THEN ... !

g77 -O -S g77 -O -ffloat-store -S

fstps -24(%ebp)
flds -24(%ebp)

flds -104(%ebp) flds -116(%ebp)
fxch %st(1) fxch %st(1)
fucompp fucompp
fnstsw %ax fnstsw %ax
sahf sahf
jne L41 jne L41
jp L41 jp L41

Table 2: Fragments of the assembler code that correspond to the key IF statement.

On the other hand, extra precision (extra 11 bits to the 53 bit mantissa of double precision)
is priceless in floating point arithmetic and switching it off to have numerical program running
correctly (and probably slower) is simply wrong. Extra steps would be required from processor
to prevent it from using extra precision in numerical software!

Careless, aggressive optimizer can destroy numerical accuracy, but is switching it off because
of this story with TEMP2 reasonable? Suppose we had an optimizer which is (almost) perfect
from the numerical point of view. Would we expect it to keep storing and reloading TEMP2,
and would that be the best way around this problem?

One possible way out of this situation is to replace the test IF (TEMP2 .EQ. ONE) with
the one that explicitly uses the machine epsilon (3). For xGEQP3, one has to go to xLAQPS.F
and xLAQP2.F to find the critical IF statements and make this change.5 As the result of this
change, the code compiled with -O runs fine in all our previous cases.

Unfortunately, this is not end of this story. Now, if we turn the optimizer off, or if we have
the optimizer on, but with -O -ffloat-store, the problems reappear. So, in this case the
optimizer works in favor of the accuracy. Again, assembler code reveals that the key point is
keeping TEMP in long register. But, it is simply a matter of time and little (bad) luck to find
bad cases for the -O option. Should we then try some other constellations of compiler options
and hope not to see any bad result? (In fact, using different compiler options for routines
called by xGEQP3 may give such a constellation for which new bad examples have to be con-
structed.) What if changing the rounding mode results in substantially different results? What
if the problem is somewhere else, and everything we have observed thus far are just coincidences?

The problem and the solution can be found only by numerical analysis.

5Note that this changed code compiled with -O and the old code compiled with -O -ffloat-store are not
necessarily numerically equivalent.



June 2, 2006 13

3.2 Updating strategy – numerical analysis

Consider the elimination step in the k–th column. Let A(1) = A and let

A(k)Πk =




· · · ¯ · ⊕ ·
· · ¯ · ⊕ ·
· ¯ · ⊕ ·

¥ · ~ ·
} · ∗ ·
} · ∗ ·
} · ∗ ·
} · ∗ ·




, a
(k)
j =




⊕
⊕
⊕
~
∗
∗
∗
∗




≡




x
(k)
j

η
(k)
j

y
(k)
j


 ,

η
(k)
j = ~ ≡ (A(k))kj,

z
(k)
j =

(
η

(k)
j

y
(k)
j

)
.

(4)

Elements to be annihilated are denoted by }, and ¥ denotes the element Rkk, computed in the
k–th step, after the }’s have been eliminated.

Let ω
(k)
j = ‖z(k)

j ‖2. Permutation Πk ensures that |Rkk| ≥ ω
(k)
j for all j ≥ k. Let Hk be

Householder reflector such that

Hk

(
η

(k)
k

y
(k)
k

)
=

(
Rkk

0

)
, and let, for j > k,

(
β

(k+1)
j

z
(k+1)
j

)
= Hkz

(k)
j . (5)

The goal is to compute ω
(k+1)
j = ‖z(k+1)

j ‖2 by a simple scalar formula with guaranteed and
controlled number of correct digits whenever numerically feasible. Clearly, possible loss of
accuracy by catastrophic cancellation should be avoided by a failsafe safety switch, which
should react in cases of considerable norm reduction.

The following proposition shows that sharp norm reduction is related to the condition num-
ber of Ac (cf. §5.2). In other words, cancellation indicates ill–conditioning.

Proposition 3.1 For each j, k, with ‖z(k+1)
j ‖2 6= 0, ‖A†

c‖2 ≥ ‖z(k)
j ‖2/‖z(k+1)

j ‖2. (If z
(k)
j = 0

for some j, k, then A is singular.)

Remark 3.1 Even if we decided to compute the values ω
(k)
j by explicit norm computations,

we could not guarantee that the computed triangular factor R̃ would satisfy (1). Instead, the
structure of R̃ would be (22) with parameters ρ̃i close to one. £

For the purpose of error analysis, computed quantities will be denoted by tildas, e.g. ω̃
(k)
j is

the computed floating point value of ω
(k)
j . Basic operations +, −, ·, ÷,

√
¦ will be denoted by

⊕, ª, ¯, ®, sqrt(), respectively. The set of floating point numbers is denoted by F, and e is
the gap between one and its first neighbor in F.

3.2.1 LAPACK (LINPACK) updating strategy

Orthogonality of Hk implies that ω
(k)
j =

√
(β

(k+1)
j )2 + ‖z(k+1)

j ‖2
2, and thus

ω
(k+1)
j =

√
(ω

(k)
j )2 − (β

(k+1)
j )2. (6)



June 2, 2006 14

Since ω
(1)
j = ‖aj‖2 (computed explicitly as vector norm), ω

(k+1)
j can be recursively computed

from ω
(k)
j and β

(k+1)
j , using (6). This is the approach taken in LAPACK, see Table 1.

Note that (ω
(k)
j )k≥1 is nonincreasing sequence, obtained by successive substractions. If at

some step k the update (6) is not considered to be numerically safe, the corresponding value

ω̃
(k)
j is computed explicitly as vector norm. In that case, the value of ω̃

(k)
j is also stored in the

variable ν̃j, ν̃j = ω̃
(k)
j . Thus, at any moment in the algorithm, ν̃j contains the last explicitly

computed partial column norm in the j–th column. Initially, ν̃j’s are the computed column
norms of A.

The safety switch in LAPACK which allows using update by (6) has simple and elegant struc-
ture:

computed(


1−

(
β̃

(k+1)
j

ω̃
(k)
j

)2



︸ ︷︷ ︸
predicted

·
(

ω̃
(k)
j

ν̃j

)2

︸ ︷︷ ︸
memorized

) > tol, tol ≈ 20e, (7)

where predicted part estimates loss of accuracy in computing ω̃
(k+1)
j from ω̃

(k)
j , and the memo-

rized part memorizes the cumulative loss of accuracy (by cancellations) since the last update

by explicit norm computation. The two factors together indicate how accurately ω̃
(k+1)
j approx-

imates the corresponding partial column norm.

Remark 3.2 Let t̃
(k)
j = max{1ª (β̃

(k+1)
j ® ω̃

(k)
j )∗∗2, 0}. The LAPACK test

if ( 1⊕ 0.05¯ t̃
(k)
j ¯ (ω̃

(k)
j ® ν̃j)∗∗2︸ ︷︷ ︸

TEMP2

.eq. 1 ) (8)

probes whether or not ω̃
(k+1)
j = sqrt(t̃

(k)
j ) ¯ ω̃

(k)
j (see (6)), sharply drops as compared to ν̃j.

However, depending on the compiler, the optimizer, and given options, (8) implicitly tests

if ( 0.05¯ t̃
(k)
j ¯ (ω̃

(k)
j ® ν̃j)∗∗2 < ` · e), (9)

where ` ∈ (0, 1] denotes the extra precision factor if long registers are used. So, for instance, if
TEMP2 is kept in a long register, it can have the value of 1 + e/2 6= 1. If the code is forced
to spill TEMP2 back to working precision, the resulting value can be 1(= 1) or 1 + e(6= 1),
depending on implementation.

Following (8), if
ω̃

(k+1)
j

ν̃j

is below
√

20
√

`e(1 + O(e)) the value of ω̃
(k+1)
j is obtained by explicit

norm computation. Else, ω̃
(k+1)
j = sqrt(t̃

(k)
j ) ¯ ω̃

(k)
j . Here the use of long registers actually

lowers the threshold and weakens the safety switch. £

From now on, we assume that the test is explicit as in (9), with ` = 1.

How to analyze the accuracy of the ω̃
(k)
j ’s? It makes little sense to compare them with the

exact ω
(k)
j ’s. Instead, we have to attach their values to the norms of the actually computed



June 2, 2006 15

vectors z̃
(k)
j . Let ω̃

(k)
j = ‖z̃(k)

j ‖2(1 + ε
(k)
j ). If ω̃

(k)
j is obtained by computing the norm of z̃

(k)
j

explicitly, then |ε(k)
j | is at most a small multiple of e. We need to know how ε

(k)
j propagates

through repeated applications of the updating formula (6). To this end, consider floating point
version of (5):

(
β̃

(k+1)
j

z̃
(k+1)
j

)
= Ĥkẑ

(k)
j , where ẑ

(k)
j = z̃

(k)
j + δz̃

(k)
j is backward perturbed z̃

(k)
j , (10)

and Ĥk is exactly orthogonal, close to the actually used numerically orthogonal H̃k. The
backward perturbation δz̃

(k)
j is small, and ‖ẑ(k)

j ‖2 = ‖z̃(k)
j ‖2(1 + λ

(k)
j ), where |λ(k)

j | is bounded
by a small multiple of the roundoff e, depending on the implementation details (e.g. simple or
aggregated transformations). Note that in this situation the analog of (6) reads

‖z̃(k+1)
j ‖2 =

√
‖ẑ(k)

j ‖2
2 − (β̃

(k+1)
j )2. (11)

Remark 3.3 The transformation (10) can produce z̃
(k+1)
j with

‖z̃(k+1)
j ‖2

ω̃
(k+1)
j

much smaller than

e. Such a sharp drop may go undetected. Having null vector may go undetected, and it can
happen that zero column z̃

(k+1)
j can be taken as pivot because it appeared of larger norm than

non–zero columns. We have encountered such catastrophic miss–pivoting.

Example 3.1 To illustrate how this strategy can fail, take (in MATLAB)

(
β̃

(k+1)
j

z̃
(k+1)
j

)
=




1ª 11¯ e

s

s

s

s




, |s| ≤ e, and let ω̃
(k)
j = ν̃j = 1.

t = max{1 ª (β̃
(k+1)
j ® ω̃

(k)
j )∗∗2, 0} = 4.884981308350689e−015, and the value of the control

parameter 0.05 ¯ t ¯ (ω̃
(k)
j ® ν̃j)∗∗2 is 2.442490654175345e−016, which is slightly larger than

e. The computed value of ω̃
(k+1)
j is 6.989264130329236e−008, and the true norm of z̃

(k+1)
j is

2e ≈ 4.44e−16. To the pivoting device, z̃
(k+1)
j will appear as roughly 108 times bigger than it

actually is. Further, in the next step, the value of t will be computed as one, the safety check
will allow updating formula, ω̃

(k+2)
j = ω̃

(k+1)
j . From this point on, the partial column norms in

the j–th column will never again be refreshed by explicit norm computation. Note that e.g. in
the case s = 0, even the zero vector can mistakenly be taken for pivot. (We have encountered
such cases using SGEQPF from LAPACK.)

Proposition 3.2 Let t̃
(k)
j = max{1ª (β̃

(k+1)
j ® ω̃

(k)
j )∗∗2, 0}. Then t̃

(k)
j ∈ {0}⋃

[e, 1]
⋂

F. (De-
pending on the way the compiler and the optimizer use long registers, e could be replaced by a
smaller value.) As a consequence, if ‖z̃(k+1)

j ‖2 is computed by ω̃
(k+1)
j = sqrt(t̃

(k)
j ) ¯ ω̃

(k)
j (see

(6)), the sharpest drop in the partial column norm that can be observed is of order
√

e, which

is the order of magnitude of smallest nonzero value of sqrt(t̃
(k)
j ).



June 2, 2006 16

Proposition 3.3 Let ω̃
(k)
j = ‖z̃(k)

j ‖2(1+ ε
(k)
j ), and let ω̃

(k+1)
j be computed as in Proposition 3.2,

with t̃
(k)
j > 0. If z̃

(k+1)
j 6= 0, then ω̃

(k+1)
j = ‖z̃(k+1)

j ‖2(1 + ε
(k+1)
j ) with

1 + ε
(k+1)
j = (1 + ε

(k)
j )(1 + α

(k)
j )

√√√√1−
[

(β̃
(k+1)
j )2

‖ẑ(k)
j ‖2

2 − (β̃
(k+1)
j )2

]
σ

(k)
j , where

1 + α
(k)
j =

√
1 + e3(1 + e4)(1 + e5)

1 + λ
(k)
j

, σ
(k)
j =

(1 + λ
(k)
j )2

(1 + ε
(k)
j )2

(1 + e1)
2(1 + e2)− 1

and maxi |ei| ≤ e. If z̃
(k+1)
j = 0 and t̃

(k)
j > 0, then ω̃

(k+1)
j will be computed as

ω̃
(k+1)
j = ‖z(k)

j ‖2

1 + ε
(k)
j

1 + λ
(k)
j

√√√√1− (1 + λ
(k)
j )2

(1 + ε
(k)
j )2

(1 + e1)2(1 + e2)
√

1 + e3(1 + e4)(1 + e5).

This is the lowest nonzero value that can be computed in this update.

We see that the critical condition number for this update is the value

κ̂
(k)
j =

(β̃
(k+1)
j )2

‖ẑ(k)
j ‖2

2−(β̃
(k+1)
j )2

=

(β̃
(k+1)
j )2

‖ẑ(k)
j ‖22

1− (β̃
(k+1)
j )2

‖ẑ(k)
j ‖22

≡ 1− t̂
(k)
j

t̂
(k)
j

, t̂
(k)
j = 1− (β̃

(k+1)
j )2

‖ẑ(k)
j ‖2

2

.

(Note that κ̂
(k)
j ≤ 1 for t̂

(k)
j ≥ 1/2.) Since t̂

(k)
j is not accessible, its role is taken by the computed

t̃
(k)
j . It is easily checked that

t̂
(k)
j =

1

1 + σ
(k)
j

(
t̃
(k)
j

1 + e3

+ σ
(k)
j ). (12)

From the numerical experiments we know that the occurrences of failure are not easily found
and that slightest change of rounding errors decides between success and failure. It seems that
rounding errors can conspire to bring down the updating strategy.

Example 3.2 Here is one realistic scenario: Let ω̃
(k)
j = ν̃j be computed by explicit norm

computation, thus |ε(k)
j | ≤ O(n)e. Then |σ(k)

j | ≤ O(n)e as well; take for instance σ
(k)
j ≈ −30e.

Now assume that t̃
(k)
j = −(1 + e3)σ

(k)
j (1− O(e)) ≈ 30e, which is the value above the threshold

and updating formula will be used. But, t̂
(k)
j = O(e)σ

(k)
j /(1 + σ

(k)
j ) ≈ O(e2), and |ε(k+1)

j | can

be as big as O(1/
√

e). Note that the failure is caused by a severe underestimate of the actual

condition number, and that σ
(k)
j had to be negative to make this scenario possible. £

This example indicates that the threshold tolerance for t̃
(k)
j should be lifted to the level where we

can guarantee satisfactory lower bound for t̂
(k)
j . (We should keep in mind that condition number



June 2, 2006 17

is also computed quantity, and it has its own condition number.) To unroll the recurrence from
Proposition 3.3 after s consecutive updates is rather tedious. Note that

σ
(k)
j = −2ε

(k)
j + 2λ

(k)
j + O(e) + · · ·higher · · · order · · · terms · · · $ −2ε

(k)
j

ε
(k+1)
j =

ε
(k)
j

t̂
(k)
j

+
λ

(k)
j

t̂
(k)
j

+ α
(k)
j + · · ·higher · · · order · · · terms · · · $ ε

(k)
j

t̂
(k)
j

,

where $ indicates dependence on the dominant, potentially largest term (in modulus). (In a

simplified model with λ
(k)
j and all ei’s equal to zero, we have σ

(k)
j = −2ε

(k)
j and ε

(k+1)
j =

ε
(k)
j

t̂
(k)
j

.)

Let us take in (7) tol =
√

e.

Then, starting with ω̃
(k)
j = ν̃j, |ε(k)

j | ≤ O(n)e, t̃
(k)
j >

√
e(1 + O(e)) implies

|σ(k)
j | ≤ O(n)e,

|σ(k)
j |

t̃
(k)
j

≤ O(n)
√

e,

and we see (using (12)) that t̂
(k)
j ' t̃

(k)
j (1 − O(n)

√
e) ≥ O(

√
e), which in turn guarantees

sufficiently small ε
(k+1)
j $ ε

(k)
j /t̂

(k)
j . Thus, the first update after explicit norm computation is

safe. (Cf. Example 3.2.)

Consider the next, second, update. Let t̃
(k+1)
j (ω̃

(k+1)
j /ν̃j)

2 >
√

e(1+O(e)). Hence, t̃
(k+1)
j t̃

(k)
j >√

e(1 + O(e)). Since the dominant part in ε
(k+2)
j is ε

(k)
j /(t̂

(k)
j t̂

(k+1)
j ), the key question is how

small can be the product t̂
(k)
j t̂

(k+1)
j , given the fact that t̃

(k)
j t̃

(k+1)
j >

√
e(1 + O(e)). Note that

t̃
(k+1)
j > (

√
e/t̃

(k)
j )(1 + O(e)), and that by (12)

t̂
(k+1)
j t̂

(k)
j =

t̃
(k+1)
j t̃

(k)
j

(1 + σ
(k+1)
j )(1 + σ

(k)
j )

[
1

1 + f3

+
σ

(k+1)
j

t̃
(k+1)
j

][
1

1 + e3

+
σ

(k)
j

t̃
(k)
j

]
,

where σ
(k+1)
j $ −2ε

(k+1)
j $ −2ε

(k)
j /t̂

(k)
j , and |f3| ≤ e. It follows that

σ
(k+1)
j

t̃
(k+1)
j

$ −2
ε
(k+1)
j

t̃
(k+1)
j

$ −2
ε
(k)
j

t̂
(k)
j t̃

(k+1)
j

$ −2
ε
(k)
j

t̃
(k)
j t̃

(k+1)
j

(1 + O(n)
√

e)

and thus t̂
(k+1)
j t̂

(k)
j ≈ t̃

(k+1)
j t̃

(k)
j . Hence, ε

(k+2)
j $ ε

(k)
j /(t̃

(k+1)
j t̃

(k)
j ) ≈ O(n)

√
e. Note how important

it is that the upper bound on |σ(k+1)
j | does not reach the lower bound on t̃

(k+1)
j in the case of

negative σ
(k+1)
j .

In general case, t̃
(k+s)
j (ω̃

(k+s)
j /ν̃j)

2 >
√

e(1+O(e)), that is
∏s

i=0 t̃
(k+i)
k >

√
e(1+O(s)e). From

previous updates we have

σ
(k+s)
j $ −2ε

(k+s)
j $ −2

ε
(k)
j∏s−1

i=0 t̂
(k+i)
j

,
σ

(k+s)
j

t̃
(k+s)
j

$ −2
ε
(k)
j

t̃
(k+s)
j

∏s−1
i=0 t̂

(k+i)
j

.



June 2, 2006 18

t = |β̃(k+1)
j /ω̃

(k)
j | ; t = max{0, (1− t) · (1 + t)}

t2 = t · (ω̃(k)
j /ν̃j)

2

if ( t2 ≤
√

e ) then

push z̃
(k+1)
j to stack of unresolved columns

else

ω̃
(k+1)
j = ω̃

(k)
j

√
t

end if
Table 3: Modification of the LINPACK/LAPACK column norm update.

If
∏s−1

i=0 t̂
(k+i)
j ≈ ∏s−1

i=0 t̃
(k+i)
j (or at least the two products are of the same order of magnitude),

then by (12) t̂
(k+s)
j ≈ t̃

(k+s)
j , and ω̃

(k+s+1)
j =

√
t̃
(k+s)
j ¯ ω̃

(k+s)
j is sufficiently accurate.

In the previous considerations we have not included possible accumulation of errors, and
have neglected some ’less dangerous’ terms. However, it is shown that in the current LAPACK
code the switch between explicit norm update and scalar updating formula is not safe and that
it is a possible source of numerical catastrophes in engineering applications. It is also shown
that the updating strategy with higher threshold value (

√
e) can survive several updates. In

fact, such a modified updating strategy, shown in Table 3, has successfully passed all our tests,
performed in single precision with tol =

√
e ≈ 2.44e − 4. (It has failed with slightly smaller

threshold, tol = 1.0e− 4.) In Appendix A. we give the critical part of the new routine, to show
that it takes only a minor modification of the current LAPACK code to make it much more
reliable. Numerical experiments in §4 show that the modified code is equally efficient.

3.2.2 An alternative formula

Since accurate partial column norms are crucial for the success of pivoting, it is desirable to have
updating formula with controlled forward error for all partial column norms of the computed
floating point matrices. The goal is to have provably safe implementation of the Businger–
Golub column pivoting.

Set ξ
(k)
j = ‖x(k)

j ‖2, and immediately note that ξ
(k+1)
j =

√
(ξ

(k)
j )2 + (β

(k+1)
j )2, and that

ω
(k)
j =

√
‖a(k)

j ‖2
2 − (ξ

(k)
j )2. (13)

Proposition 3.4 The formula (13) can be used to compute ω̃
(k)
j with controlled forward error.

It involves substraction of two quantities always known to guaranteed high relative accuracy.

Proof: First note that α
(k)
j ≡ ‖a(k)

j ‖2 = α
(1)
j ≡ ‖a(1)

j ‖2 for all j, k, and thus

ω
(k)
j =

√
‖a(k)

j ‖2
2 − (ξ

(k)
j )2 =

√
(α

(1)
j )2 − (ξ

(k)
j )2. (14)

Backward stability (Theorem 5.1) implies that ‖ã(k)
j ‖2 = α

(1)
j (1 + θ

(k)
j ), where upper bound on

|θ(k)
j | depends on the details of the algorithm. In Givens QR factorization |θ(k)

j | ≤ O(m + n)e.

For the Householder algorithm, |θ(k)
j | ≤ O(mk)e. (This means that with e ≈ 10−16 and a



June 2, 2006 19

million–by–million matrix we can have three accurate digits in all norms even with the most
pessimistic case of straightforward computation.)

The computed column norms of the initial A satisfy α̃
(1)
j = α

(1)
j (1 + O(m)e), and thus

α̃
(1)
j = ‖ã(k)

j ‖2
1 + O(m)e

1 + θ
(k)
j

, 1 ≤ j ≤ n, and all k.

Thus, once we have computed the column norms of A (the α̃
(1)
j ’s), we have accurate approxi-

mations of the norms of all columns of all computed Ã(k)’s. Further, at any moment, ξ̃
(k)
j can

be available to high relative accuracy, ‖x̃(k)
j ‖2 = ξ̃

(k)
j (1 + ζ

(k)
j ), |ζ(k)

j | ≤ O(ke).
Rewriting (13) to avoid underflow and overflow gives the following proposal for partial norm

computation:
ω̃

(k)
j = α̃

(1)
j ¯ sqrt(max(1ª (ξ̃

(k)
j ® α̃

(1)
j )2, 0)). (15)

To analyze (15), we need to know how accurately we can compute ω̃
(k)
j , and how accurately the

exactly computed ω̂
(k)
j = α̃

(1)
j

√
1− (ξ̃

(k)
j /α̃

(1)
j )2 approximates ‖z̃(k)

j ‖2. It is straightforward to

show that

ω̂
(k)
j = ‖z̃(k)

j ‖2
1+O(m)e

1 + θ
(k)
j

√√√√1− e
(k)
j ‖x̃(k)

j ‖2
2

‖ã(k)
j ‖2

2−‖x̃(k)
j ‖2

2

, where e
(k)
j =

(1 + θ
(k)
j )2

(1+ζ
(k)
j )2(1+O(m)e)2

−1, (16)

and under the assumption ‖ã(k)
j ‖2 6= ‖x̃(k)

j ‖2; (17)

ω̃
(k)
j = ω̂

(k)
j

√
1 + ε3(1 + ε4)(1 + ε5)

√√√√1− f
(k)
j (ξ̃

(k)
j )2

(α̃
(1)
j )2 − (ξ̃

(k)
j )2

, where (18)

f
(k)
j = (1 + ε1)

2(1 + ε2)− 1, max
i=1:5

|εi| ≤ e, (19)

and under the assumption that α̃
(1)
j 6= ξ̃

(k)
j . (20)

Finally, note that the inverse relative distances (condition numbers for this computation)

χ̃
(k)
j =

(ξ̃
(k)
j )2

(α̃
(1)
j )2 − (ξ̃

(k)
j )2

, χ
(k)
j =

‖x̃(k)
j ‖2

2

‖ã(k)
j ‖2

2 − ‖x̃(k)
j ‖2

2

can safely be compared against given tolerance. Only χ̃
(k)
j is accessible, and it will be below

given tolerance tol if ξ̃
(k)
j /α̃

(1)
j <

√
tol/(1 + tol). In that case χ

(k)
j < tol(1+ ς)/(1− ς · tol) ≈ tol,

where ‖x̃(k)
j ‖2/‖ã(k)

j ‖2 = (ξ̃
(k)
j /α̃

(1)
j )(1+ς), and |ς| is bounded by roundoff e times a modest poly-

nomial in m. Hence, we can always correctly predict and thus avoid conditions for catastrophic
cancelations.

If ξ̃
(k)
j and α̃

(1)
j are too close, then ω̃

(k)
j is evaluated by explicit norm computation of z̃

(k)
j .

Further, in that case the updating formula is reset: α̃
(1)
j = ω̃

(k)
j , and ξ̃

(k)
j is set to zero. £

Assuming familiarity with the xGEQP3 code, we give in Table 4 partial column norm update
strategy, which uses both global (14) and local (6) formulas. Note that we allow at most one use



June 2, 2006 20

ξ̃
(k+1)
j = max{ξ̃(k)

j , β
(k+1)
j }

√
1 + (min{ξ̃(k)

j , β
(k+1)
j }/ max{ξ̃(k)

j , β
(k+1)
j })2

t0 = ξ̃
(k+1)
j /α̃

(1)
j

if ( t0 < γ1 ) then

ω̃
(k+1)
j = α̃

(1)
j

√
(1− t0)(1 + t0)

else

t1 = |β(k+1)
j /ω̃

(k)
j | ; t2 = max{0, (1− t1)(1 + t1)}

if ( (t2 < γ2) and (ω̃
(k)
j > 0)) then

ω̃
(k+1)
j = −ω̃

(k)
j

√
t2

else

push z̃
(k+1)
j to stack of unresolved columns

end if
end if

Table 4: Critical part in the column norm update.

of the formula (6) per Householder reflector per column, and that control counter is obtained

by flipping the sign of ω̃
(k+1)
j . The parameters γ1, γ2 can be taken e.g. around 1 − √

e (for

tol ≈ 1/
√

e), with necessary fine–tuning. (Setting γ2 = 0 switches off updating by the local
formula.)

4 New software for Businger–Golub pivoting

We now present our new code for the Businger–Golub QR factorization – a modification of
the xGEQP3 subroutine, with new norm updating strategies as outlined above. The goal
is strongly backward stable numerical software (with column–wise small backward error and
properly structured computed upper triangular factor.), which can be immediately used in our
SVD code [8], [9], and which we will recommend as a replacement for the current LAPACK
software.

For this report, we have tested preliminary codes SGEQP3A (Table 3) and SGEQP3Z (Table
4).

A collection of 1792 1000×800 test matrices is generated following [9, §3.3.1]. The matrices
are divided into eight groups, each groups containing 224 matrices of the form A = AcD with
fixed κ2(Ac) = 10i for the i–th group. The diagonal scaling can have arbitrarily high condition
number, we have taken up to 1012. The whole collection is enumerated so that the values
κ2(Ac) form nondecreasing sequence. The first 224 matrices have κ2(Ac) = 10, the next 224
have κ2(Ac) = 102 and so on. Around the index 900, κ2(Ac) reaches 1/

√
e.

In Figure 7 and Figure 8 we show the timing results of one test run with our first versions
of the code, SGEQP3A (Table 3) and SGEQP3Z (Table 4), respectively. In SGEQP3Z we used
only the global update formula, i.e. γ2 = 0. With local formula added to updating strategy,
the performance of SGEQP3Z can be improved by one or two percent.

It is clear that, depending on the matrix, there is a drop in the performance because more
often explicit computation of the column norms interferes with block strategy. From the nu-
merical point of view, we find this few percent increase in run time a negligible price for the



June 2, 2006 21

0 200 400 600 800 1000 1200 1400 1600 1800
0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

test matrices

t(S
GE

QP
3A

) /
 t(

SG
EQ

P3
)

 m = 1000, n = 800 

Figure 7: The relative timings: time(SGEQP3A) / time(SGEQP3).

provable numerical reliability of the software.

5 Importance of pivoting

5.1 Perturbation theory

In the forward error analysis of the QR factorization, one usually ignores the pivoting. For the
backward error analysis of a particular algorithm, it is usually said that pivoting is equivalent
to initial permutation of matrix columns, followed by the factorization without pivoting. Then,
in order to simplify the notation, permutation matrix is replaced with identity, and the subject
of the ensuing forward analysis is factorization without pivoting.

An exception where pivoting enters the backward analysis explicitly and substantially is the
complete pivoting of Powell and Reid [13], for an analysis (which assumes that column pivoting
is executed properly) see Cox and Higham [4] and Higham [11]. For perturbation bounds in
the QR factorization, we refer the reader to [15], [17], [16].

Our goal in this section is to show that pivoting can play important role in the forward error
analysis (perturbation theory) of the QR factorization. To specify the kind of perturbations of
interest, we recall backward stability result for the Householder and Givens QR factorization
algorithms. (For more details see [5], [10].)

Theorem 5.1 Let AP̃ ≈ Q̃R̃ be the computed QR factorization with column pivoting. (P̃ is
permutation matrix obtained by applications of prescribed rule of a concrete pivoting.) Then
there exist backward perturbation δA and an orthonormal Q̂ such that (A + δA)P̃ = Q̂R̃, where
‖Q̂− Q̃‖F ≤ ηQ, and

‖δA(:, i)‖2 ≤ ηA‖A(:, i)‖2, 1 ≤ i ≤ n.



June 2, 2006 22

0 200 400 600 800 1000 1200 1400 1600 1800
0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

test matrices

m=1000, n=800

t(S
GR

QP
3Z

) /
 t(

SG
EQ

P3
)

Figure 8: The relative timings: time(SGEQP3Z) / time(SGEQP3).

The error bounds ηA, ηQ depend on the implementation details, and both are bounded by a low
degree polynomial times the machine precision e. For the Givens rotation based computation
ηA, ηQ ≈ O(m + n)e. For Householder reflection based algorithm ηA, ηQ ≈ O(mn)e.

Under the perturbation from the previous theorem, the QR factorization (A + δA)P̃ = Q̂R̃
must be compared with the exact factorization AP̃ = QR, but with the intended and actually
computed structures of R̃ taken into considerations.
For the sake of simplicity, let us assume that both A and Ã = A + δA have full column rank.

Note that we implicitly deal with the Cholesky factorizations H̃ = R̃T R̃ and H = RT R =
H̃ + δH̃. Following the ideas from [7], we write RT R = R̃T (I + E)R̃, with

E ≡ R̃−T δH̃R̃−1 = −Q̂T δAP̃ R̃−1 − R̃−T P̃ T δAT Q̂ + R̃−T P̃ T δAT δAP̃ R̃−1.

The matrix E expresses the size of δH̃ relative to H̃ = R̃T R̃. To bound E, first define R̃c to
be the matrix obtained from R̃ by scaling its columns to have unit Euclidean norm. Then note
that E = Q̂T F + F T Q̂ + F T F , F = −δAP̃ R̃−1, together with Theorem 5.1, implies

‖E‖F ≤ 2‖(Q̂Q̂T )F‖F + ‖F‖2‖F‖F , ‖F‖F ≤
√

nηA

1− ηA

‖R̃−1
c ‖2. (21)

Theorem 5.2 Let (A + δA)P̃ = Q̂R̃ be the factorization from Theorem 5.1, where the permu-
tation matrix P̃ is determined following the Businger–Golub column pivoting. Let AP̃ = QR
be the exact QR factorization of AP̃ , and let R = R̃ + δR̃. Further, let

|R̃ii| ≥ ρ̃i

√√√√
j∑

k=1

|R̃kj|2, 1 ≤ i ≤ j ≤ n. (22)



June 2, 2006 23

If the pivoting has functioned properly, with correct choices of pivot columns, then ρ̃i ≥ 1 for
all i. Then for all i = 1, . . . , n

‖δR̃(:, i)‖2 ≤ ‖Γ(:, 1 : i)‖2‖R̃(:, i)‖2, δR̃ii = ΓiiR̃ii, (23)

‖δR̃(i, :)‖∞ ≤ 1

ρ̃i

‖Γ(i, :)‖2‖R̃(i, :)‖∞, (24)

where δR̃ = ΓR̃, and the matrix Γ = RR̃−1 − I is bounded as follows:

• If ‖E‖F <
1

2
, then ‖Γ‖F ≤

√
2‖E‖F

1 +
√

1− 2‖E‖F

.

• Let χn = 1/2 + dlog2 ne. If ‖E‖2 ≤ 1

4χ2
n

, then ‖Γ‖2 ≤ 2χn‖E‖2

1 +
√

1− 4χ2
n‖E‖2

.

• It always holds that ‖Γ‖F ≤
√

8n + 2
√

n‖E‖F .

In all cases, the norm of E is bounded using (21). Further, Q̂−Q = QΓ− F .

Proof: Note that we can write R̃−T RT RR̃−1 = I + E, which implies that RR̃−1 is the Cholesky
factor of I + E and it can be written as RR̃−1 = I + Γ. Hence, δR̃ = ΓR̃ and thus (23) follows.
To derive (24), note that

‖δR̃(i, :)‖∞ = max
j=i:n

∣∣∣∣∣
j∑

k=i

ΓikR̃kj

∣∣∣∣∣ ≤ max
j=i:n

‖Γ(i, :)‖2

√√√√
j∑

k=i

|R̃kj|2

≤ ‖Γ(i, :)‖2
1

ρ̃i

|R̃ii| ≤ 1

ρ̃i

‖Γ(i, :)‖2‖R̃(i, :)‖∞.

It remains to estimate Γ, or equivalently, perturbation of the Cholesky factor of the identity
under the perturbation I Ã I + E. We use the perturbation results from [7], and the proof is
completed.

£

Remark 5.1 Perturbation estimates are derived relative to R̃ (instead to R) because (22)
allows us to easily monitor its structure. The structure of exact triangular factor R of AP̃ ,
with the computed permutation P̃ , is not known.

Remark 5.2 Similarly as in [7], we note that the proof of Theorem 5.2 contains an element–

wise bound: δR̃ij =

j∑

k=i

ΓikR̃kj implies |δR̃ij| ≤ ‖Γ(i, :)‖2

√∑j
k=i |R̃kj|2. Note in particular that

|δR̃ii| ≤ |Γii||R̃ii|, which additionally stresses the importance of having dominant elements along
the diagonal.



June 2, 2006 24

Remark 5.3 The value of ‖R̃−1
c ‖2 can be estimated by an O(n2) condition estimator and then

Theorem 5.2 and (21) can be used in practice. The relevant condition number in this case is
‖R̃−1

c ‖2 and it properly reflects the column–wise structure of the perturbation (backward error).
Recall that

‖R̃−1
c ‖2 ≤ κ2(R̃c) ≡ σmax(R̃c)

σmin(R̃c)
≤ √

n min
D=diag

κ2(R̃D) =
√

n min
D=diag

κ2(ÃD).

Example 5.1 Let A ≡ I2R =

(
ε ε
0 1

ε

)
, and Ã = A + δA =

(
ε ε
ε2 1

ε

)
. Take ε so small that

1 + ε2 ≈ 1 in the working precision. The QR factorization of Ã reads

Ã =
1√

1 + ε2

(
1 −ε
ε 1

)



ε
√

1 + ε2
1 + ε√
1 + ε2

0
1

ε

1− ε3

√
1 + ε2


 ≈

(
1 −ε
ε 1

)(
ε 1 + ε
0 1

ε

)
.

The column–wise bound (23) holds, but the element R12 and the whole first row of the upper
triangular factor are substantially changed. The cosine of the angle between the first two rows
of R is 1/

√
2, while the first two rows of R̃ are almost parallel.

On the other hand, if we pivot, the QR factorizations are

(
ε ε
0 1

ε

)(
0 1
1 0

)
=

1√
1 + ε4

(
ε2 −1
1 ε2

)



1

ε
+ ε3

√
1 + ε4

ε3

√
1 + ε4

0
−ε√
1 + ε4


 ,

≈
(

ε2 −1
1 ε2

) (
1

ε
ε3

0 −ε

)
;

(
ε ε
ε2 1

ε

)(
0 1
1 0

)
=

1√
1 + ε4

(
ε2 −1
1 ε2

)



1

ε
+ ε3

√
1 + ε4

ε3 + ε2

√
1 + ε4

0
−ε + ε4

√
1 + ε4




≈
(

ε2 −1
1 ε2

) (
1

ε
ε3 + ε2

0 −ε

)
.

In this case, the perturbation of R is column–wise (23) and row–wise ((24), Remark 5.2) small,
although the relative change in R12 is arbitrarily bad.

5.2 Preconditioning

Let AP = QR be the Businger–Golub QR factorization. Denote by Ac, Rc the matrices
obtained from A, R, respectively, by scaling their columns to have unit Euclidean lengths,
A = AcDc, R = RcDc, where Dc = diag(‖R(:, i)‖2). From §5.1 it follows that κ2(Rc) = κ2(Ac)



June 2, 2006 25

is the relevant condition number for perturbations of the QR factorization under column–wise
perturbations of A. Note that κ2(Rc) = κ2(Ac) independent of the permutation P .

However, permutation P can substantially change another condition number related to R.
Let R = DrRr, where Dr is the diagonal matrix of the Euclidean lengths of the rows of R.
Preconditioning property of the Businger–Golub QR factorization is here understood in the
light of the fact that κ2(Rr) can be much smaller and never much bigger that κ2(Ac). The
following Proposition ([5], [6]) gives an estimate.

Proposition 5.1 Let R be a nonsingular upper triangular factor in the factorization (1). Then

‖ |Rr
−1| ‖2 ≤ √

n + max
i<j

(Dr)jj

(Dc)ii

· ‖ |Rc
−1 − diag(Rc

−1)| ‖2 (25)

‖ |Rr
−1| ‖2 ≤ √

n‖ |Rc
−1| ‖2, (26)

where the matrix absolute value is defined element–wise. Moreover, ‖R−1
r ‖2 is bounded by O(2n),

independent of A. With exception of rare pathological cases, ‖R−1
r ‖2 is below n for any A.

The proof is based on the fact that for i ≤ j

(R−1
r )ij = (R−1

c )ij
(Dr)jj

(Dc)ii

≤ (R−1
c )ij

√
n− j + 1

|Rjj|
|Rii| ≤ (R−1

c )ij

√
n− j + 1,

where both the dominance and non–increasing order of the diagonal elements contribute to the
inequalities.

Now, κ2(A) = κ2(R), κ2(Ac) = κ2(Rc), but it is possible that κ2(Rr) ¿ κ2(Ac) ≤
√

nκ2(A).
Since ‖R−1

r ‖2 ≤ n‖R−1
c ‖2, κ2(Rr) is in the worst case only n3/2 times larger than κ2(Ac). In

fact, the stronger the scaling Dc (meaning that A has very differently scaled columns and thus
larger condition number), the Businger–Golub QR factorization will compute R with smaller
κ2(Rr). This feature is one of the important ingredients in the preconditioning Jacobi SVD
algorithm [8], [9].

The fact that column pivoting produces small κ2(Rr) is in accordance with the row–wise
forward error in case of perturbations (Theorem 5.2). Just to illustrate, consider solving Rx = b
and (R+δR)x̃ = b. The perturbed solution is x̃ = (I +R−1δR)x, where R−1δR = R−1

r (D−1
r δR).

Pivoting moves the triangular factor away from ill–conditioning (with respect to row–wise small
perturbations).

6 Acknowledgments

The authors thank Jim Demmel, Jason Riedy (UC Berkeley) and Nick Higham (Manchester)
for constructive comments.

References

[1] C. H. Bischof and G. Quintana-Orti. Computing rank–revealing QR factorizations of dense
matrices. Argonne Preprint MCS–P559–0196, Argonne National Laboratory, 1990.



June 2, 2006 26

[2] P. A. Businger and G. H. Golub. Linear least squares solutions by Householder transfor-
mations. Numer. Math., 7:269–276, 1965.

[3] Sh. Chandrasekaran and I. C. F. Ipsen. On rank–revealing factorizations. SIAM J. Matrix
Anal. Appl., 15(2):592–622, 1994.

[4] A. J. Cox and N. J. Higham. Stability of Householder QR factorization for weighted least
squares problems. In D. F. Griffiths, D. J. Higham, and G. A. Watson, editors, Numerical
Analysis 1997, Proceedings of the 17th Dundee Biennial Conference, volume 380 of Pitman
Research Notes in Mathematics, pages 57–73. Addison Wesley Longman, Harlow, Essex,
UK, 1998.

[5] Z. Drmač. Computing the Singular and the Generalized Singular Values. PhD thesis,
Lehrgebiet Mathematische Physik, Fernuniversität Hagen, 1994.

[6] Z. Drmač. A posteriori computation of the singular vectors in a preconditioned Jacobi
SVD algorithm. IMA J. Numer. Anal., 19:191–213, 1999.

[7] Z. Drmač, M. Omladič, and K. Veselić. On the perturbation of the Cholesky factorization.
SIAM J. Matrix Anal. Appl., 15(4):1319–1332, 1994.

[8] Z. Drmač and K. Veselić. New fast and accurate Jacobi SVD algorithm: I. Technical
report, Department of Mathematics, University of Zagreb, Croatia, June 2005. LAPACK
Working Note 169.

[9] Z. Drmač and K. Veselić. New fast and accurate Jacobi SVD algorithm: II. Technical
report, Department of Mathematics, University of Zagreb, Croatia, June 2005. LAPACK
Working Note 170.

[10] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 1996.

[11] N. J. Higham. QR factorization with complete pivoting and accurate computation of the
SVD. Lin. Alg. Appl., 309:153–174, 2000.

[12] W. Kahan. Numerical linear algebra. Canadian Mathematical Bulletin, 9(6):757–801, 1966.

[13] M. J. D. Powell and J. K. Reid. On applying Householder transformations to linear least
squares problems. In Information Processing 68, Proc. International Federation of Infor-
mation Processing Congress, Edinburgh, 1968, pages 122–126. North Holland, Amsterdam,
1969.

[14] G. Quintana-Orti and E. S. Quintana-Orti. Guaranteeing termination of Chandrasekaran
and Ipsen’s algorithm for computing rank–revealing QR factorizations. Argonne Preprint
MCS–P564–0196, Argonne National Laboratory, 1990.

[15] G. W. Stewart. Perturbation bounds for the QR decomposition of a matrix. SIAM J.
Numer. Anal., 14(3):509–518, 1977.

[16] G. W. Stewart. On the perturbation of LU, Cholesky, and QR factorizations. SIAM J.
Matrix Anal. Appl., 14(4):1141–1145, 1993.



June 2, 2006 27

[17] Ji-Guang Sun. Perturbation bounds for the Cholesky and QR factorizations. BIT, 31:341–
352, 1991.

[18] K. Veselić and V. Hari. A note on a one–sided Jacobi algorithm. Numer. Math., 56:627–633,
1989.


