Table 4: Timi ngs for Wi 1 ki nson Shi ftand Perfect Shift Al gorithms

n = 100 n =200
time | no. vector | no. inner tine | no. vector| no. inner
Case Routi ne secs iterationg loop passes| (secs.)] iterationg loop passes
Case 1.
Constant SSTEQR 7.6 176 8970 81 335 33741
Di agonal SSTEPS 6.8 141 7338 72 292 30107
Case 2.
Graded SSTHCR, 31 113 6776 200 240 27794
fromSmall | SSTEPS 31 113 6776 200 242 27858
to Large
Case 3.
Graded SSTHCR, 31 113 6776 200 240 27794
fromLarge | SSTEPS 31 113 6776 200 242 27858
to Small
Case 4.
Sawtooth | SSTHCR 9.8 115 2126 39 214 4289
SSTEPS 9.3 105 2011 45 200 4084
Case 5.
More SSTHCR, 8.9 100 1397 20 184 2746
O agonal 1y | SSTEPS 8.2 96 1426 20 190 2762
Dom nant
Sawt oot h
Case 6.
Deflatable | SSTHCR .69 100 755 2.6 199 1535
Sawt oot h SSTEPS .72 91 720 2.6 183 1471
Case 7.
Random SSTHCR, 11 178 9723 150 358 37207
SSTEPS 9.3 150 8200 150 314 31379
Chse 8.
Random SSTHCR, 7.9 186 9307 110 361 35706
SSTEPS 7.4 155 7941 120 309 31721
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Chse 4. IMICLL L2145 .97
Sawt oot h SSTHCR, 11| .27 .82
TQLRAT .12 .28 1.3
SSTERF 120 .34 1.5
Case 5.
Mre I MIQLL 12 .26 .72
O agonal 1y| SSTHR .09] .20 .65
Tom nant TQLRAT 07| .15 .63
Sawtooth | SSTERF .08] .19 .59
Chse 6. I MIQLL .08] . 18| .54
Leflatable | SSTHR .05] . 13| .53
Sawt oot h TQLRAT .04 .18 .62
SSTERF .04 .11 .44
Chse 7. I MIQLL .891 2.9 18.
Random SSTECR, .b21 1.9 11.
TQLRAT 2341 1.2 8.0
SSTERF .45 1.5 8.9
Chse 8. I MIQLLL .91 3.0 18.
Random SSTECR, .b1) 1.9 12
TQLRAT 2321 1.21 8.9
SSTERF .42 1.5 11.
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Table 2: Accuracyof Different QR/QL Strategies. (e=.59e—07)

Mx. Abs. FError

Chse Foutine over Mitrix Norm| Mx. Rl. FEror
Case 2. I MIQLL . T7e-07 . 20e4-02
G aded SSTHR( 1) . 14e-06 . 12e-02
from SSTHR( 2) . 14e-06 . 12e-02
Small to | SSTHOR(3) . 14e-06 . 12e-02
Large

TQLRAT . 14e-06 . 84e-06

SSTERE( 1) “21e-06 “19¢-05

SSTERE( 2) “21e-06 “19¢-05

SSTERF( 3) .21e-06 . 19e-05
Chse 3. I MIQLL . 70e-07 .12e-02
G aded SSTHR( 1) . T7e-07 . 27e-02
from SSTHR( 2) . 14e-06 . 12e-02
Large to | SSTHR(3) . 14e-06 . 12e-02
Snal 1

TQLRAT .11e-06 . bbe 406

SSTERF( 1) .79e-07 . 69e406

SSTERE( 2) ~21e-06 “19¢- 05

SSTERF( 3) .21e-06 . 19e-05

Table 3: Tim ngs for Implicit QR/QL and Root-Free Variants

Chse Foutine Tine 1n seconds
n=100 | n=200 | n=500
Chse 1. I MIQLL .86 3.1 19.
Constant SSTHCR, .50 1.7 10.
[ agonal TCLRAT .32 1.2 7.8
SSTERF .38 1.4 8.7
Chse 2. ITMITY1 failed
G aded SSTHR, .30 1.2 7.7
fromSnall | TCLRAT .18 .74 4.2
to Large SSTERF .19 .74 4.4
Chse 3. I MIQLLL .70 2.9 14.
G aded SSTHR, .34 1.4 7.6
fromlLarge | TQLRAT .19 .63 3.6
to Small SSTFRF .20 .90 4.4
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continued fromprevi ous page

N R/QL No. Passes through| QRor (J.or
(hse Fouti ne Iterations Inner Loop No. Swi tches
Chse b. I MIQLL 136 1429 Q.
Mre SSTHR( 1) 100 1397 QL
[ agonal 1 y| SSTHOR(2) 106 1501 10
Do nant SSTHOR( 3) 100 1397 QL
Sawt oot h
TCLRAT 89 1037 QL
SSTERF( 1) 82 1325 QL
SSTERF( 2) 82 1311 16
SSTERF( 3) 82 1325 QL
Chse 6. I MIQLL 141 912 Q.
Dxflatable | SSTHCR(1) 132 903 QL
Sawtooth | SSTHOR(2) 124 865 7
SSTHOR( 3) 100 755 8
TCLRAT 87 488 QL
SSTERF( 1) 111 772 Q.
SSTERF( 2) 99 705 7
SSTERF( 3) 59 496 8
Chse 7. I MIQLL 199 10455 QL
Random SSTHR( 1) 184 9716 Q.
SSTHR( 2) 177 9798 4
SSTHOR( 3) 178 9723 R
TCLRAT 193 10033 QL
SSTERF( 1) 182 9714 Q.
SSTERF( 2) 176 9866 4
SSTERF( 3) 173 9514 R
Chse 8. I MIQLL 201 10278 QL
Random SSTHR( 1) 186 9307 QL
SSTHR( 2) 187 9354 4
SSTHOR( 3) 186 9307 QL
TCLRAT 193 9579 QL
SSTERF( 1) 183 9213 QL
SSTERF( 2) 184 9155 4
SSTERF( 3) 183 9213 QL
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Table 1: Tteration Counts for Different QR/QL Strategies

N, /AL No. Passes through| QRor (. or
(hse Fouti ne Iterations Inner Loop No. Switches
Chse 1. I MIQLL 195 10520 QL
(Constant | SSTHCR(1) 176 8970 Q&
O agonal | SSTHCR(2) 172 8963 1
SSTHOR( 3) 176 8970 QL
TCLRAT 184 9905 QL
SSTERF( 1) 170 8926 QL
SSTERF( 2) 170 8926 QL
SSTERF( 3) 170 8926 QL
Case 2. I MIQLL failed
G aded SSTHR( 1) 113 6776 QL
from SSTHR( 2) 113 6776 QL
Small to | SSTHCR(3) 113 6776 QL
Large
TCQLRAT 57 4254 Q.
SSTERF( 1) 57 4189 QL
SSTERF( 2) 57 4189 QL
SSTERF( 3) 57 4189 QL
Chse 3. I ML 199 9999 QL
G aded SSTHR( 1) 197 9997 QL
from SSTHR( 2) 113 6776 R
Large to | SSTHOR(3) 113 6776 R
Snal 1
TCLRAT 135 3905 QL
SSTERF( 1) 184 9955 QL
SSTERF( 2) 57 4189 R
SSTERF( 3) 57 4189 R
(hse 4. I MIQLL 147 2391 Q.
Sawtooth | SSTHCR(1) 115 2126 Q.
SSTHR( 2) 130 2502 15
SSTHOR( 3) 115 2126 Q.
TCLRAT 93 2664 Q.
SSTERF( 1) 75 2417 QL
SSTERF( 2) 75 2417 1
SSTERF( 3) 75 2417 QL
continued on next page
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values. It is important to understand howthis affects the perform
knowthat if aninternedi ate subdi agonal el ement were zero, it woul
zeroinall iterations. Insuchacaseif Awere aneigenval ue bel o
upper tridiagonal matrix, we coul d never make the ei genval ue move
the bottomright-hand corner even with an exact Aand exact comput
One m ght expect thenthat if asubdiagonal issmall, it mi ght take
erations to make aneigenval ue that belongedto the upper tridiago
move down to the bottomitf we were using a Athat was not exact. In
the situationis worse;a succession of smallish (but by no means j
callysmall) subdiagonal elements has the effect of al most decoupl
tridiagonal matrix fromthe bottomand several iterations may be
evenif Ais acorrectlyrounded eigenval ue. The phenomenon has |1
with the rounding errors made inthe QRal gorithm, and this actual
only a minimal role inthe performance. W th an accurate but non-
it may take a number of steps of QRexecuted inexact arithmetic t
the relevant ei genval ue to the bottom

The usual W lkinson shift strategy (SSTEQR) was compared with
perfect shift algorithm(SSTEPS), and results are shown in Tabl e
table gives times on the Sun 4 for problems of size n=100 and n=21(
well as counts of the number of vectoriterations and the number of
through the inner loop during the vector iterations. This latt
should be roughly proportional tothe total work. Similar experi
run on a CRAY X- MP wi th t he same general behavior.

Whilethe perfect shiftstrategy givessomeimprovement over the
W lkinson shift for most problems, the difference is not great.

problems, it is slightly slower. It is feared that when eigenval
computedtohighrelativeprecision, the computedeigenval ues m g
be ineffective shifts. For this reason, it was decided to use th:

W lkinsonshift algorithminthe LAPACKroutine SSTEQR.



TQLRAT: ~3.9FE—5 scconds
SSTERF : ~4.7TE—35 seconds

Fromthese timngs it appears that the root-free algorithms off
cant advantage over the standard implicit QL method on a machine w
hardware square root. The Reinsch algorithmTQLRAT1s somewhat f:
than the Pal- Wal ker- Kahan variant SSTERF, but because the differe

not great, we opted to use the more elegant Pal- Wal ker- Kahan al go:
LAPACK.

7 Wilkinsors Shift vs. Perfect Sifts far
Eigawada Canputatian

Whenit is desiredto compute the ei genvectors of the tridiagonal
of a full matrix that has been reduced to tridiagonal form) as we
eigenval ues, one mi ght consider the followingstrategy:

1.Make a copyadf the matrix 7.

2. Compute an ei genval me iofglQR/ QL wi th the standard W 1 ki n-
son shift.

3.Usethiseigenvalueas ashiftinaQR/QLeigenvector computati
T. After finding an ei genvector (probably, but not necessarily
corresponding tothe computedeigenvalue), gotostep 1.

When the ei genvectors are required, the bulk of the workis inco
the product of the plane rotations. The following observation ma
to reduce the amount of work. Suppose we had an exact eigenvalu
and we were to performone exact step of the QRalgorithmusing A
shift. For this one step the eigenval ue would be moved down to the
right hand corner, and the final subdi agonal el ement would be zero
the eigenvector of the transformed tridiagonal matrix correspo
woul d be ethe last col umn of the i dentity matrix) and the correspo
eigenvector of the original tridiagonal matrix would be the proc
successive plane rotations.

Agood algorithmwill produce very accurate eigenval ues, but t
not ingeneral exact. Since they are usuallyirrational we cannot
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6 Raot-Freew Sadad Mdlds

Standard versions of the QR/QL al gorithmrequire computing squar
in the inner loop. On machines that do not have a hardware squar
function, this computationcan be time-consum ng. Considerable
gone intoderiving al gorithms that are mathematicallyequival ent
but do not require square roots.

One such algorithm, derived by Reinsch [3], has been i mpl ement
t he EI SPACKroutine TQLRAT. At one point inthe Reinsch al gorithmi
necessary to divide by a quantity that could be zero. If it is too
replacedbysomethingonthe order of the machine precision. This j
can be justified in a backward error sense, as changing the proble
amount that is tiny comparedto the normof the matrix; but if this
ment is made, then very small eigenvalues will certainly not be c
accuratelyinarelative sense.

Aroot-free algorithmthat avoids this check for a zero diviso
veloped by Pal, Wal ker, and Kahan [2]. [t, too, may fail to find ve
eigenval ues to highrelative accuracy, but it is somewhat more el
the Reinsch al gorithmin that there are no requirements for repl:
divisors. This algorithmhas been implenented in the LAPACK ro
SSTERF.

Table 3 shows tim ngs onthe Sun-4 for EISPACKroutines I MIQL1 a
TQLRAT and f or LAPACKroutines SSTEQRand SSTERF (using strategy
(3) for selecting between QRand QLiteration). The Sun-4 does nof
hardware square root function, and, infact, evenif it did, it wo
EI SPACKroutine I MIQLT as it stands. This routine was written to
software square root routine, PYTHAG, whi chshouldcertainlybere
abetter square root functionis available. (W didnot modifythe
routines for this test, except for the convergencetest, describec
problems of size n=100, 200, and 500 were used. ;Fromthe timi ngs
n=100 col umn of Table 3 and t he counts of passes throughthe inner
Table 1, one can determi ne the approximate time required for a sirz
through the inner loopineachof these algorithms:

IMTQLl : ~8.4FE—5 seconds
SSTEQR: ~b5.1E—5 secconds



of number of iterations. Surprisingly, TQLRAT (which uses QL ite
actually required the fewest trips through the inner loop and,

seen in the next section, the least amount of time. For a fixed al
however, the QR variant appears to offer a significant advantage i
number of iterations andtotal work. Wtheither option (2) or opti
entire computation happened to be performed with QRiteration, r
insignificantly fewer iterations and passes through the inner lo
corresponding QL met hods .

In problem6, the deflatable sawtooth pattern, the advantages of
(3) over either option (2) or option (1) are seen. Strategy (2) -
the topand bottomdi agonal elements to decide between QRor QL ite
~is really inappropriate here since the matrix splits and only o
the matrixis operatedon at atime. Strategy (2) switched 7 times
QR and QL iteration, but still required more iterations and mor
through the inner loop than strategy (3). A more sophisticated
allowing switchingfromQRto QL within blocks, al ways comparing -
and bottomdi agonal el ements of the blockthat is actually being w
mi ght offer some advantage over strategy (3) but this makes bookk
(keeping track of whichparts of the matrix have and have not been
to diagonal form) more di fficul t.

For most problems, each of these routines gavesimlar levels of
computing ei genval ues to high absolute precision (comparedto th
the matrix), but not necessarily to highrelative precision. Exc
problems 2 and 3, which were strictly graded in one direction or t
For these problems, the root-free variants were able to obtain 1
relative accuracy, providedthe proper choice was made bet ween QR
iteration. Results for these two problems are shown in Table 2.

Based ontheseresults, it was decidedtousestrategy (3) for ch
t ween QL and QRiterationinthe LAPACKroutines SSTEQRand SSTERF.

This is the versionthat will be usedinall following comparisons



smaller, compute the next ei genval ue using QLiteration; if th
element is smaller, compute the next ei genval ue using QRiter:

3.At the beginning, determ ne whether the matrix splits; compe
top diagonal element to the last diagonal el ement before the
the bottomdiagonal element if the matrix does not split. Cho
or QRiteration for that part of the matrix according to whet
top or bottomelement is smaller. If the matrix does split, th
that blockis completed, find where the matrixnext splits and-
same criterionfor applying QLor QRiterationto this block. C

[terationcounts for eachversion, along withiterationcounts
PACK QL routines, for problems of size n=100, insingle precisi
listedin Table 1. Both the number of QR/QLiterations and the tot:
ber of passes through the inner loop for eachalgorithmarelisted
QR/QL iterations that occur early inthe computation, before man
values have converged or before the matrix has split, require mo
through the inner loop and hence more work than the later iterati
total workis roughly proportional tothe number of passes througtl
loop, but may not be proportional to the number of iterations. In
all other comparisons with EISPACK, the only modification that ha
made to the EISPACKroutines is intheir convergence tests. All 1
use the criterion

le(m)| < e-(|dlm]| +|dim+1)]) for QLiteration, or
le(m=1)] < e- (|dm]| +]|d(m=1)]) for QRiteration

to determ ne whether d(m has converged to an eigenval ue.

Note that the EISPACKroutine I MI'QL1 failed on problem2. This
because more than30iterations wererequiredtofindthe first eigen
EI SPACKall ows no more than 30 iterations for anyone ei genval ue. C
first ei genval ue has been found, however, each of the remaining ei
canbe computedinfar fewer than30iterations. Hence the LAPACKro
werewrittentoallowatotal of nomorethan30Oniterations for all e
but not torestrict the number of iterations for any one eigenval u

In problem3, whichis graded fromlarge to small, the method:
allowfor QRiteration significantly outperformthose that do not



be expectedtogive highrelativeaccuracy. W will besatisfiedif t
errors divided by the normof the matrix are less than the proble
times the machine precisione. Eigenvectors will be checked by c«
the residual norm, | | Tv—AXv| |, and seeing that this is less than
normof 7. Results reportedhere arefor thesingle-precisionrout
similar experiments have been performed withthe double-precisio
Tests wererunona Sun-4, where the machi#éprb26e+0h.cis 2

4 Timg Tests ad Opaatian Cauts

Ti m ngs reported here were obtainedonthe Sun-4. Where possible,
accompanied by operation counts or iteration counts, whichare |
dent on the particul ar machine used. In most cases,
method to use are based on such work estimates rather than on actu
ings.

decisions ab

5 QR w QL Ita#ias.

[f the smaller elements of the tridiagonal matrixare located at t
m ght expect faster convergence using the QL method to anni hil af
small elements first; conversely, if the smaller elements are at t
then the QRiteration m ght be expected to converge faster. If th
sizes of the topand bottomel ements change during the course of th
tation, one m ght expect to gain some advantage by switching betw
and QRiterations.
The EISPACKroutines I MI'QL1 and TQLRAT use QL iteration only.

I MIQL1 uses the implicit QL al gorithmwhile TQLRAT uses a root-f
variant developed by Reinsch[3]. LAPACKroutine SSTEQRhas been v
ten based on the same implicit algorithmas I MIQL1. LAPACKrout:
SSTERF i s based on a root-free algorithmdeveloped by Pal, Wil ke
Kahan [2], which will be described further in the following sec
LAPACKroutines were tested with three variations:

1.Use QLiteration only.

2.At the beginning, and after each eigenval ue converges, check
the top or bottomdiagonal element is smaller. If the top ele

4



: 1
Dy = 101 ~((i4) med 12) @'f%] i s odd.

Test problemb5, labelled “More Diagonally Dominant Sawtooth,” i s
obtained fromproblem4 by multiplying each dydgohk:l el ement of T

n.

Ts = Ty except that 00, 1) =10(¢7¢), ¢ =1,...,

Test problem6, 1 abelled “Deflatabl e Sawtooth,” i s obtained fromproble
4 bysetting every twelfthsubdiagonal (and superdiagonal ) el eme

Te = Ty except that (120,120 +1 (27 +1,12¢) =0, =1

Test problems 7 and 8, labell ed “Random” are symmetric tridiagonal
trices whose entries are uniform y distributed randomnumbers be
and 1. Theresults obtainedonthesetwoproblems arerepresentati
obtainedon alarger sample of randommatrices of this form

3 Acuay Tests

Ei genval ues computedbythe different routines are compared withth,
singul ar values returned by t he LAPACKroutine DBDSQR[1]. This ro
is able to compute singul ar values of a bidiagonal matrix to hig
accuracy, so that evenif the singular values range over many or de
nitude insize (as they doin many of these test problems), the sn
well as the largest will be computed accurately. The tridiagonal
test problems 1 through 6 are positive definite, so their bidiagon.
factors can be computed, and the squared singul ar val ues of the ¢
Cholesky factors will also approximate the ei genval ues of the ori
tohighrelativeaccuracy [1]. Inproblems 7and 8, a multipleof t
matrix was added toeachtridiagonal to makeit diagonally domi nar
performng its Cholesky factorization. This multiple was then
fromthe values returned by DBDSQR. In these problems the eigenyv
did not range over many orders of magnitude, so no special proced
needed to obtain highrelative accuracy.

Both relative and absolute errors inthe computedeigenval ues w
ported, but, as will be seen, none of the QR/QL methods considered



computation. Based on these results, LAPACKroutines have been
oped to incorporate the most prom sing variations. The newrout
compared with similar EIl SPACKroutines.

2 Tet Prdblan

The test problems i nclude a variety of symmetrictridiagonal matr
of which are strongly graded, with diagonal elements ranging ov
orders of magnitude, inincreasing order, indecreasing order, o
tooth” patternalternating betweenincreasing and decreasing. Te
1, labelled “Constant Diagonal ,” i s t he matri x

Ty = tridi(—1,2, —1).

Test problem?2, 1 abelled “Graded fromSnall to Large,” i s obtained by
mul tiplyingthis matrixontheleft andright bythe squareroot of t
matrtix whose el ements vary bmd geolfktric progression:

n.

T, = DY? Ty D2, where RP=d*, d=180% =1

9 e e ey

Test problem3, labelled “Graded fromLarge to Snall,”is obtained by
mul tiplyyowgmTheleft andright bythe square root of the diagonal o
whose elements vary'fdownlflo 1 ina geometric progression:

T; = D2 Ty D2, where D =d™ , d=180Y i =1,... n

Test problem4, labell ed “Sawtooth,” i s again obtainedfromproblem
mul tiplying on the left and ri ght by the square root of a diagona
The di agonal elements go frothbyubpatcdt ds of 10 and then from

10 back down to 1 by factors of 1/10. This patternis repeated un
end of the matrixis reached:

T, = DY T, DI/Q, where

Dy =104 w1z zf{—Q] 18 even,



Experiments with QR/QL Methods
for the Symmetric Tridiagonal
Figenproblem

A. Greenbaum and J. Dongarrd
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Abstract

Numerical experiments used in determining which variants of the
QR/QL algorithm to include in LAPACK are described. Timing and
accuracy comparisons are presented for the different methods applied
to the symmetric tridiagonal eigenproblem. Specifically, comparisons
are made between root-free and standard versions, between QL and
QR iterations and dynamic strategies for switching between the two,
and between Wilkinson’s shift and the perfect shift strategy for the
eigenvector computation. LAPACK routines that incorporate the
most promising of these strategies are then compared with the cor-
responding FISPACK routines.

1 Inrodwtian

Numerical experiments with variants of the QR/QL algorithmfo
metrictridiagonal eigenproblemare reported. Accuracy and ti
isons are made between root-free and standard versions, betw
QLiterations andstrategies for dynami callyswitching bet wee
bet ween Wil kinson’s shift and the perfect shift strategy for t
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