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1 Introduction

There is inadequate software support for High Performance Computing (HPC), a fact cited in the call for
this proposal and in numerous recent Federal and Academy reports [48][Chap. 2], [47][Chap. 4], [77][App.
A], [65][Chap. 5], [62][Chap. 5], [57][p. 44]. Among other deficiencies, software is considered too hard to
use, too inefficient (too low a fraction of peak and/or not scalable), or both. The need for better numerical
libraries that encapsulate complicated and widely used algorithms is discussed. The linear algebra libraries
LAPACK [3] and ScaLAPACK [16] are frequently mentioned as positive examples.

We, the principal designers of LAPACK and ScaLAPACK, propose a number of significant improvements
to these libraries. These libraries are widely used: There are over 42M web hits at www.netlib.org (to the
associated libraries LAPACK, ScaLAPACK, CLAPACK and LAPACK95), and they have been adopted by
many vendors as the basis of their own libraries: SGI/Cray, IBM, HP-Convex, Fujitsu, NEC, NAG and
IMSL, and the Mathworks (producers of Matlab). Therefore our proposed changes will have large impact.

We summarize these improvements below. We have identified them by a combination of our own algo-
rithmic research, an on-going user and vendor survey (at icl.cs.utk.edu/lapack-survey.html), the anticipation
of the demands and opportunities of new architectures and modern programming languages, and finally the
enthusiastic participation of the research community in developing and offering improved versions of existing
Sca/LAPACK codes. Indeed, papers proposing new algorithms typically compare their performance with
that of Sca/LAPACK, and over the years several researchers have developed better algorithms that they
would like to provide to us. In some cases they have even done the same level of careful software engineering
and testing that we insist on; in other cases we must do this; in yet other cases much mathematical devel-
opment remains. The opportunity to harvest this bounty of good ideas (and free labor) is not to be missed.
We attach supporting letters from individuals and companies.

Putting more of LAPACK into ScaLAPACK. Sec. 2 documents that ScaLAPACK contains a small
subset of the functionality of LAPACK. For example, there is no ScaLAPACK support for symmetric matrices
using minimal storage (≈ n2/2 instead of n2), parallel versions of only the oldest LAPACK algorithms for
the symmetric eigenvalue decomposition (EVD) and singular value decomposition (SVD), and no support
for the generalized nonsymmetric EVD. See Sec. 2 for a list of current LAPACK functions that we propose
to parallelize and incorporate into ScaLAPACK.

Better Numerical Algorithms for Sca/LAPACK. Sec. 3 lists improvements to algorithms in LA-
PACK and subsequently ScaLAPACK. A new algorithm might improve speed, accuracy, or memory efficiency,
but only occasionally are all three criteria simultaneously maximized by the same algorithm (if we add the
criterion “simplicity of interface” it becomes even harder to maximize all criteria simultaneously). Therefore,
when there is a strong tradeoff among these criteria, we will include more than one algorithm, with appro-
priate documentation and “switches” for the user to pick the appropriate algorithm. For example, since
the fastest algorithm with the “standard” accuracy for the SVD (the MRRR algorithm of Parlett/Dhillon
described below) is significantly faster than the most accurate algorithm with the “standard” speed (the
Drmač/Veselič algorithm described below) we will include both. Indeed, both algorithms are faster than
than “standard” algorithm based on bidiagonalization followed by QR iteration, which is taught in most
textbooks!

Highlights of proposed speed improvements include up to 10x faster for large nonsymmetric EVD using
the SIAM Linear Algebra Prize winning work of Braman/Byers/Mathias in [21, 22]; extensions of this work
to the generalized nonsymmetric EVD; broad propagation of an improved version of the Parlett/Dhillon
algorithm [71, 72, 74, 73, 49] for the symmetric tridiagonal EVD and bidiagonal SVD, replacing O(n3) or
≈ O(n2.3) algorithms with easily parallelized O(n2) algorithms; incorporating “successive band reduction” of
Bischof/Lang [15] to change asymptotically all BLAS2 operations (Level 2 Basic Linear Algebra Subroutines)
to faster, cache-optimizable BLAS3 operations for the SVD and symmetric EVD; and incorporating recursive



data structures to also achieve BLAS3 speeds for solving symmetric linear systems in packed format [52, 42].
Highlights of the proposed accuracy improvements include higher precision iterative refinement for linear
systems, based on our recent release of the new BLAS standard [63, 9, 20, 19]; Drmač’s new SVD routine
which gets even tiny singular values with high accuracy [31], and better pivoting techniques for symmetric
linear systems [7, 54, 55].

Extending the functionality of Sca/LAPACK. In Sec. 4 we discuss a number of useful new functions,
many of which come from user requests. Highlights include updating and downdating factorizations when the
matrix is changed slightly; a new much more efficient algorithm for the special nonsymmetric EVD consisting
of a companion matrix or block companion matrix (the former is used for polynomial root finding in eg
Matlab, and we lower the complexity from O(n3) to O(n2); the latter is used to solve polynomial eigenvalue
problems, and we also significantly improve the complexity); specialized quadratic eigenvalue problems
frequently arising in mechanics and control; and matrix functions like the square root and exponential;
We have also had a number of user requests for out-of-core algorithms (when the matrices do not fit in main
memory, and reside on disk).

Improving Ease of Use. In Sec 5 we discuss how better interfaces using features of up-to-date pro-
gramming languages are important to hide some of complex distributed data structures and other features,
and make Sca/LAPACK easier to use. Based on the detailed justifications in Sec. 5, and results from our
on-going user survey we currently propose to maintain a single F77 source (to simplify maintaining the large
code base), but provide “wrappers” in other languages: LAPACK95 for Fortran 95 users; CLAPACK for
C users (i.e. using wrappers instead of continuing to translate LAPACK to C), and most important new
wrappers in popular scripting languages like Matlab, Python, Mathematica, etc. We will leave C++ support
to the many other active projects in this area, as well as Java support.

Performance Tuning. Sec 6 discusses how LAPACK can be tuned at two levels: within the BLAS, and
in LAPACK itself. The BLAS can be tuned for each architecture (and even workload) by ATLAS [89, 90].
LAPACK itself has a plethora of tuning parameters at a higher level (eg at which matrix or blocksize to
switch from the BLAS2 code to the BLAS3 code) which are set by calling the routine ILAENV, which in
turns looks up a value in a table depending on the algorithm and input parameters. The tables returning
these values to the over 1300 ILAENV calls have never been carefully tuned or studied to determine their
effect on performance. We propose to apply our successful automatic tuning techniques to tuning the values
returned by ILAENV to achieve as high performance on individual processors and SMPs (the building blocks
of larger machines) as possible.

Tuning ScaLAPACK for very large machines is even more important. Some of the largest machines will
likely be heterogeneous in performance, if only because they are shared resources. Current ScaLAPACK
assumes a uniform machine for load balancing purposes. We plan to incorporate load balancing for machines
with heterogeneous performance and interconnection capabilities.

Reliability and support. Sec. 7 identifies the need for a large and widely used library like Sca/LAPACK
to have ongoing support and maintenance, a need mentioned by the abovementioned Federal reports. Beyond
fixing the known and future bugs (eg ensuring thread safety throughout) we want to establish a formal
mechanism for user feedback (enhancing the abovementioned website), for tracking bugs (eg with bugzilla),
systematically using version management software (eg cvs), and organizing the code to facilitate installation
(eg autoconf).

The above list of six topics is our larger vision, and so a superset of what we will likely be able to
accomplish with the funding provided by this grant. Depending on the funding level and results of the
ongoing user survey, we will prioritize the list to first provide the features that have the highest potential
impact on the user community. Our current priorities are presented below.

External Collaboration and Management. Sec. 8 describes how we will manage the operation
between the 2 PIs and the numerous outside collaborators we have assembled.

Educational outreach. The recent origin of most algorithms described here means that they have not
yet had easily accessible descriptions suitable for education appear, let alone been described in widely used
textbooks, such as [46, 83, 29, 88]. We will remedy this by providing tutorial material, and incorporating
appropriate descriptions in the textbook [29] and the widely-used on-line course notes [30].

2



2 Putting more of LAPACK into ScaLAPACK.

We distinguish four categories of routines that we want to include in ScaLAPACK: (1) functions for matrix
types appearing in LAPACK but not yet supported in ScaLAPACK (discussed here), (2) functions for
matrix types common to LAPACK and ScaLAPACK, but implemented only in LAPACK (discussed here),
(3) improved algorithms for functions in LAPACK, which also need to be put in ScaLAPACK (see Sec. 3),
and (4) new functions for both LAPACK and ScaLAPACK (see Sec. 4).

Table 1 compares the available data types in the latest releases of LAPACK and ScaLAPACK. After the
data type description, we list the prefixes used in the respective libraries, a blank entry indicates that the
corresponding type is not supported. The most important omissions in ScaLAPACK are as follows. (1) There
is no support for packed storage of symmetric (SP,PP) or Hermitian (HP,PP) matrices, nor the triangular
packed matrices (TP) resulting from their factorizations (using ≈ n2/2 instead of n2 storage); these have
been requested by users. The interesting question is what data structure to support. One possibility is
recursive storage as discussed in Sec. 4 [1, 51, 52, 42]. Alternatively we could partially expand the packed
storage into a 2D array in order to apply Level 3 BLAS (GEMM) efficiently. Some preliminary ScaLAPACK
prototypes support packed storage for the Cholesky factorization and the symmetric eigenvalue problem [17],
but they are under development and have not been rigorously tested on all of the architectures to which the
ScaLAPACK library is portable. (2) ScaLAPACK only offers limited support of band matrix storage and
does not specifically take advantage of symmetry or triangular form (SB,HB,TB). (3) ScaLAPACK does not
support data types for the standard (HS) or generalized (HG, TG) nonsymmetric EVDs; we discuss this
further below.

In Table 2, we compare the available functions in LAPACK and ScaLAPACK. We list the relevant user
interfaces (’drivers’) by subject and the acronyms used for the software in the respective libraries. In the
ScaLAPACK column, we indicate what is currently missing. We note that most expert drivers in LAPACK
(which supply extra information, such as error bounds) and their specialized computational routines are
missing from ScaLAPACK and do not include them explicitly in the table.

We discuss our most important priorities for inclusion in ScaLAPACK:

1. The solution of symmetric linear systems (SYSV), combined with the use of symmetric packed storage
(SPSV), will be a significant improvement with respect to both memory and computational complexity
over the currently available LU factorization. It has been requested by users and is expected to be
used widely. In addition to solving systems it is used to compute the inertia (number of positive, zero
and negative eigenvalues) of symmetric matrices.

2. EVD and SVD routines of all kinds (standard - for one matrix - and generalized - for two matrices)
are missing from ScaLAPACK. We expect to exploit the MRRR algorithm for the SVD and symmetric
EVD, and new algorithms of Braman/Byers/Mathias for the nonsymmetric EVD (see Sec. 3).

3. LAPACK provides software for the linearly constrained (generalized) least squares problem, and users
in the optimization community will benefit from a parallel version. In addition, algorithms for rank
deficient standard least squares problems based on the SVD are missing from ScaLAPACK; it may be
that a completely different algorithm based on the MRRR algorithm (see Sec. 3) may be more suitable
for parallelism instead of the divide & conquer (D&C) algorithm that is fastest for LAPACK.

4. Expert drivers that provide error bounds, or other more detailed structural information about eigen-
value problems, should be provided.

3 Better numerical algorithms.

In Section 2, we have given an outline of how ScaLAPACK needs to be extended in order to cover the
functionalities of LAPACK. However, LAPACK itself needs to be updated in order to include recent de-
velopments since its last release. Whereever possible, we plan to extend these functionalities subsequently
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LAPACK SCALAPACK
general band GB GB, DB
general (i.e., unsymmetric, in some cases rectangular) GE GE
general matrices, generalized problem GG GG
general tridiagonal GT DT
(complex) Hermitian band HB
(complex) Hermitian HE HE
upper Hessenberg matrix, generalized problem HG
(complex) Hermitian, packed storage HP
upper Hessenberg HS LAHQR only
(real) orthogonal, packed storage OP
(real) orthogonal OR OR
positive definite band PB PB
general positive definite PO PO
positive definite, packed storage PP
positive definite tridiagonal PT PT
(real) symmetric band SB
symmetric, packed storage SP
(real) symmetric tridiagonal ST ST
symmetric SY SY
triangular band TB
generalized problem, triangular TG
triangular, packed storage TP
triangular (or in some cases quasi-triangular) TR TR
trapezoidal TZ TZ
(complex) unitary UN UN
(complex) unitary, packed storage UP

Table 1: Data types supported in LAPACK and ScaLAPACK. A blank entry indicates that the corresponding
format is not supported in ScaLAPACK.

to ScaLAPACK. The expected benefits higher accuracy and/or speed in the solution of linear systems and
eigensolvers. We list each set of improvements in our current priority order (highest first).

3.1 Algorithmic improvements for the solution of linear systems

1. The recent developments of extended precision arithmetic [63, 9, 20, 19] in the framework of the new
BLAS standard allow the use of higher precision iterative refinement to improve computed solutions.
We have recently shown how to modify the classical algorithm of Wilkinson [91, 55] to compute not just
an error bound measured by the infinity (or max) norm, but a componentwise relative error bound,
i.e. a bound on the number of correct digits in each component. Both error bounds can be compute
for a tiny O(n2) extra cost after the initial O(n3) factorization [32].

2. Gustavson, Kågström and others have recently proposed a new set of recursive data structures for dense
matrices [51, 52, 42]. These data structures represent a matrix as a collection of small rectangular
blocks (chosen to fit inside the L1 cache), and then stores these blocks use ones of several “space filling
curve” orderings. The idea is that the data structure, and associated recursive matrix algorithms,
are cache oblivious [43], that is they optimize cache locality without any explicit blocking of the sort
conventionally done in LAPACK and ScaLAPACK, or any of the tuning parameters (beyond the L1
cache size).
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LAPACK SCALAPACK
Linear Equations GESV (LU) PxGESV

POSV (Cholesky) PxPOSV
SYSV (LDLT ) missing

Least Squares (LS) GELS (QR) PxGELS
GELSY (QR w/pivoting) missing driver
GELSS (SVD w/QR) missing driver
GELSD (SVD w/D&C) missing

Generalized LS GGLSE (GRQ) missing
GGGLM (GQR) missing

Symmetric EVD SYEV (inverse iteration) PxSYEV
SYEVD (D&C) missing
SYEVR (RRR) missing

Nonsymmetric EVD GEES (HQR) missing driver
GEEV (HQR + vectors) missing driver

SVD GESVD (QR) PxGESVD
GESDD (D&C) missing

Generalized Symmetric EVD SYGV (inverse iteration) PxSYGVX
SYGVD (D&C) missing

Generalized Nonsymmetric EVD GGES (HQZ) missing
GGEV (HQZ + vectors) missing

Generalized SVD GGSVD (Jacobi) missing

Table 2: LAPACK codes and corresponding parallel version in ScaLAPACK. Underlying LAPACK algorithm
shown in parentheses. “Missing” means both drivers and computational routines are missing. “Missing
driver” means that underlying computational routines are present.

The reported benefits of these data structures and associated algorithms to which they apply is usually
slightly higher peak performance on large matrices, and a faster increase towards peak performance
as the dimension grows. Sometimes slightly modified tuned BLAS are use for operations on matrices
assumed to be in L1 cache. The biggest payoff by far is for factoring symmetric matrices stored in
packed format, where the current LAPACK routines are limited to the performance of BLAS2, which
do O(1) flops per memory reference, whereas the recursive algorithms can use the faster BLAS3, which
do O(n) flops per memory reference, and so can be optimized to hide slower memory bandwidth and
latencies

The drawback of these algorithms is their use of a completely different and rather complicated data
structure, which only a few expert users could be expected to use. That leaves the possibility of
copying the input matrices in conventional column-major (or row-major) format into the recursive
data structure. Furthermore, they are only of benefit for “one-sided factorizations” (LU , LDLT ,
Cholesky, QR), but none of the “two-sided factorizations” needed for the EVD or SVD. (There is a
possibility they might be useful when no eigenvectors or singular vectors are desired; see below.)

We will incorporate the factorization of symmetric packed matrices using the recursive data structures
into LAPACK, copying the usual data structure in-place to the recursive data structure. The copying
costs O(n2) in contrast to the overall O(n3) operation count, so the asymptotic speeds should be the
same. We will explore the use of the recursive data structures for other parts of LAPACK, but for the
purposes of ease of use, we will keep the same column-major interface data structures that we have
now.

3. Ashcraft, Grimes and Lewis [7] proposed a variation of Bunch-Kaufman factorization for solving sym-
metric indefinite systems Ax = b by factoring A = LDLT with different pivoting. The current Bunch-
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Kaufman factorization is backward stable for the solution of Ax = b but can produce unbounded L
factors. Better pivoting provides better accuracy for applications requiring bounded L factors, like
optimization and the construction of preconditioners [55, 27]. In addition, Livne [64] has developed
alternative equilibration strategies for symmetric indefinite matrices whose accuracy benefits we need
to evaluate.

4. A Cholesky factorization with diagonal pivoting [54, 55] that avoids a breakdown if the matrix is nearly
indefinite/rank-deficient is valuable for optimization problems (and has been requested by users), and
is also useful for the high accuracy solution of the symmetric positive definite EVD, see below. For
both this pivoting strategy and the one proposed above by Askcraft/Grimes/Lewis, published results
indicate that on uniprocessors (LAPACK), the extra search required (compared to Bunch-Kaufman)
has a small impact on performance. This may not be the case for distributed memory (ScaLAPACK),
in which the extra searching and pivoting may involve nonnegligible communication costs; we will
evaluate this.

5. Progress has been made in the development of new algorithms for computing or estimating the condition
number of tridiagonal [34, 53] or triangular matrices [41]. These algorithms play an important role
in obtaining error bounds in matrix factorizations and we plan to evaluate and incorporate the most
promising algorithms in a future release.

3.2 Algorithmic improvements for the solution of eigenvalue problems

Algorithmic improvements to the current LAPACK eigensolvers concern both accuracy and performance.

1. Braman, Byers, and Mathias proposed in their SIAM Linear Algebra Prize winning work [21, 22] an
up to 10x faster Hessenberg QR-algorithm for the nonsymmetric EVD. This is the bottleneck of the
overall nonsymmetric EVD, for which we expect significant speedups. Byers recently spent a sabbatical
visiting PI Demmel where he did much of the software engineering required to convert his prototype into
LAPACK format. We also expect an extension of this work with similar benefits to the QZ algorithm
for Hessenberg-triangular pencils, with collaboration from Mehrmann (see the attached letter). We
will also be able to exploit these techniques to accelerate our routines for (block) companion matrices;
see Sec. 4.

2. An early version of an algorithm based on Multiple Relatively Robust Representations (MRRR) [71,
72, 74, 73] for the tridiagonal symmetric eigenvalue problem (STEGR) was incorporated into LAPACK
version 3. This algorithm promised to replace the prior O(n3) QR algorithm (STEQR) or ≈ O(n2.3)
divide & conquer (STEDC) algorithm with an O(n2) algorithm. In fact, it should have cost O(nk)
operations to compute the nk entries of k n-dimensional eigenvectors, the minimum possible work,
in a highly parallel way. In fact the algorithm in LAPACK v.3 did not cover all possible eigenvalue
distributions, and resorted to a slower and less accurate algorithm based on classical inverse iteration for
“difficult” (highly clustered) eigenvalue distributions. The inventors of MRRR, Parlett and Dhillon,
have continued to work on improving this algorithm, and very recently have proposed a solution
for the last hurdle [75] and now pass our tests for the most extreme examples of highly multiple
eigenvalues. (These arose in our tests from very many large “glued Wilkinson matrices”, constructed
so that large numbers of mathematically distinct eigenvalues agreed to very high accuracy, much
more than double precision. The proposed solution involves randomization, making small random
perturbations to an intermediate representation of the matrix to force all eigenvalues to disagree in
at least 1 or 2 bits.) Given the solution to this last hurdle, we can propagate this algorithm to
all the variants of the symmetric EVD (banded, generalized, packed, etc.) in LAPACK (this has
NPACI funding through the end of 2004). For this proposal we will go beyond this and parallelize
this algorithm for the corresponding ScaLAPACK symmetric EVD routines. Currently ScaLAPACK
only has parallel versions of the oldest, least efficient (or least accurate) LAPACK routines, because we
had been waiting for the completion of the sequential MRRR algorithm. This final MRRR algorithm
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requires some care at load balancing because the Multiple Representations used in MRRR represent
subsets of the spectrum based on how clustered they are, which may or may not correspond to a good
load balance. Initial work by our collaborators in this area is very promising [14].

3. The MRRR algorithm can and should also be applied to the SVD, replacing the current O(n3) or
≈ O(n2.3) bidiagonal SVD algorithms with an O(n2) algorithm. The necessary theory and a preliminary
prototype implementation have been developed [49]. Grosser, the author of [49] visited us to help with
this development, and we expect a visit from the same team to help again (see the attached letter from
Lang, who was Grosser’s adviser).

4. There are three phases in the EVD (or SVD) of a dense or band matrix: (1) reduction to tridiagonal (or
bidiagonal) form, (2) the subsequent tridiagonal EVD (or bidiagonal SVD), and (3) backtransforming
the eigenvectors (or singular vectors) of the tridiagonal (or bidiagonal) to correspond to the input
matrix. If many (or all) eigenvectors (or singular vectors) are desired the bottleneck had been phase
2. But now that the MRRR algorithm promises to make phase 2 cost just O(n2) in contrast to
the O(n3) costs of phases 1 and 3, our attention turns to these phases. In particular, Howell and
Fulton [44] recently devised a new variant of reduction to bidiagonal form for the SVD, that has the
potential to eliminate half the memory references, by reordering the floating point operations (flops).
Howell and Fulton fortunately discovered this algorithm during the deliberations of the recent BLAS
standardization committee (led by PI Dongarra, and participated in by PI Demmel), because they
required new BLAS routines to accomplish this, which we added to the standard (routines GEMVT
and GEMVER [19]). We call these routine BLAS2.5, because they do many more than O(1) but fewer
than O(n) flops per memory reference. Preliminary tests indicate speed ups of up to nearly 2x.

5. For the SVD, when only left or only right singular vectors are desired, there are other variations on
phase 1 to consider, that reduce both floating point operations and memory references [11, 76]. Initial
results indicate reduced operation counts by a ratio of up to .75, but at the possible cost of numerical
stability for some singular vectors. We will evaluate these for possible incorporation.

6. When few or no vectors are desired, the bottleneck shifts entirely to phase 1. Bischof and Lang [15] have
proposed a Successive Band Reduction (SBR) algorithm that will asymptotically (for large dimension
n) change most of the BLAS2 operations in phase 1 to BLAS3 operations (see the attached letter from
Lang). They report speed ups of almost 2.4x. This approach is not suitable when a large number of
vectors are desired, because the cost of phase 3 is much larger per vector. In other words, depending
on how many vectors are desired, we will either use the SBR approach or the one-step reduction (the
Howell/Fulton variant for the SVD, and the current LAPACK code for the symmetric EVD). And if
only left or only right singular vectors are desired, we might want to use the algorithms described in
bullet 5. This introduces a machine-dependent tuning parameter to choose the right algorithm; we
discuss tuning of this and other parameters in Sec. 6. It may also be possible to use Gustavson’s
recursive data structures to accelerate SBR; we will consider this.

7. Drmač and Veselić have made significant progress on the performance of the one-sided Jacobi algorithm
for computing singular values with high relative accuracy [31, 40]. In contrast to the algorithms
described above, theirs can compute most or all of the significant digits in tiny singular values, when
these digits are determined accurately by the input data, and when the above algorithms return only
roundoff noise. The early version of this algorithm introduced by PI Demmel in [33, 31] was rather
slower than the conventional QR-iteration-based algorithms, and so much slower than the MRRR
algorithms discussed above. But recent results reported by Drmač at [59] show that a combination
of clever optimizations have finally led to an accurate algorithm that is faster than the original QR-
iteration-based algorithm. Innovations include preprocessing by QR factorizations with pivoting, block
application of Jacobi rotations, and early termination. Two immediate applications include the (full
matrix) SVD and the symmetric positive-definite EVD, by first reducing to the SVD by using the
Cholesky-with-pivoting algorithm discussed earlier.
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8. Analogous high accuracy algorithms for the symmetric indefinite EVD have also been designed. One
approach by Slapničar [79, 78] uses a J-symmetric Jacobi algorithm with hyperbolic rotations, and
another one by Dopico/Molera/Moro [39] does an SVD, which “forgets” the signs of the eigenvalues,
and then reconstructs the signs. The latter can directly benefit by the Drmač/Veselič algorithm above.
We will investigate which of these two algorithm meets our criteria for inclusion; see the attached letter
from Dopico.

4 Extending current functionality.

In this section, we outline possible extensions of the functionalities available in LAPACK and ScaLAPACK.
These extensions are mostly motivated by users but also by research progress.

1. Following several user requests, we plan to include several updating facilities in a new release. While
updating matrix factorizations like Cholesky, LDLT , LU, QR [46] have a well established theory and
unblocked (i.e. non cache optimized) implementations exist, e.g. in LINPACK [35], the efficient
update of the SVD is a current research topic [50]. Furthermore, divide & conquer based techniques
are promising for a general framework of updating eigendecompositions of submatrices, this will be a
future research topic.

2. Semi-separable matrices are generalizations of the inverses of banded matrices, with the property that
any rectangular submatrix lying strictly above or strictly below the diagonal has a rank bounded by
a small constant. Recent research has focused on methods exploiting semiseparability, or being a sum
of a banded matrix and a semiseparable matrix, for better efficiency [26, 86]. We will consider the
development of such algorithms in a future release. Most exciting is the recent observation of Gu, Bini
and others that a companion matrix is banded plus semiseparable, and that this structure is preserved
under QR iteration to find its eigenvalues. This observation let us accelerate the standard method
used in Matlab and other libraries for finding roots of polynomials from O(n3) to O(n2). Our initial
rough prototype of this code starts being faster than the highly tuned LAPACK eigensolver for n
between 100 and 200, and becomes arbitrarily faster for larger n. While the current algorithm (joint
work with Gu) has been numerically stable on all examples we have tried so far, more work needs to
be done to guarantee stability in all cases. The same technique should apply to finding eigenvalues
of block companion matrices, i.e. matrix polynomials, yielding speedups proportional to the degree of
the matrix polynomial.

3. Eigenvalue problems for matrix polynomials [45] are common in science and engineering. The most
common case is the quadratic eigenvalue problem (λ2M +λD + K)x = 0, where typically M is a mass
matrix, D a damping matrix, K a stiffness matrix, λ a resonant frequency, and x a mode shape. The
classical solution is to linearize this eigenproblem, asking instead for the eigenvalues of a system of

twice the size: λ ·
[

0 I
M D

]
·
[

y1

y2

]
+

[
I 0
0 K

]
·
[

y1

y2

]
= 0 where y2 = x and y1 = λx. But there

are a number of ways to linearize, and some are better at preserving symmetries in the solution of the
original problem or saving time than others. There has been a great deal of recent work on picking
the right linearization and subsequent algorithm for its EVD to preserve desired structures, and we
have had user requests to incorporate some of these structures. In particular, for the general problem∑k

i=0 λi · Ai · x = 0, the requested cases are symmetric (Ai = AT
i , arising in mechanical vibrations

without gyroscopic terms), its even (Ai = (−1)iAT
i ) and odd (Ai = (−1)i+1AT

i ) variations (used with
gyroscopic terms and elsewhere), and palindromic (Ai = AT

k−i, arising in discrete time periodic and
continuous time control). Recent references include [4, 5, 6, 66, 67, 68, 81, 82, 84, 12]; see the attached
letter from Mehrmann.

4. Matrix functions (square root, exponential, sign function) play an important role in the solution of
differential equations in science and engineering, and have been requested by users. Recent research
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progress has led to the development of several new algorithms [28, 56, 80, 70, 23, 24, 25, 60, 61, 8] that
could be included in a future release.

5. The eigenvalue and singular value decomposition of products and quotients of matrices plays an im-
portant role in control theory, we consider incorporating such functionalities from the software library
SLICOT [13], using our improved underlying EVD algorithms (Mehrmann, see attached letter, was one
of the designers of SLICOT). Following another request from the control theory community, we could
incorporate efficient solvers for Sylvester and Lyapunov equations that are also currently in SLICOT.

6. Multiple user requests concern the development of out-of-core versions of matrix factorizations. ScaLA-
PACK prototypes [17] are under development which implement out-of-core data management for the
LU, QR, and Cholesky factorizations [37, 36]. Users have asked for two kinds of parallel I/O: to a single
file from a sequential LAPACK program (possible with sequential I/O in the reference implementation),
and to a single file from MPI-based parallel I/O in ScaLAPACK.

5 Improving ease of use.

First we discuss language interfaces to Sca/LAPACK, and then higher level issues related to their use on
possibly heterogeneous clusters.

By exploiting features of modern programming languages and making Sca/LAPACK easier to use we
will be in a position to capture a new generation of users who are not interested in using Fortran 77, the
current implementation language. Balanced against this are the cost in performance, memory usage or
even reliability of some of these features, and the difficulty of building and maintaining one version of these
very large libraries, let alone several versions in different languages. Since we do not believe that we can
simultaneously maximize performance, memory efficiency, ease of use, reliability, and ease of maintenance,
we have decided on the following strategy: Maintain one core version in Fortran 77, and provide wrappers in
other languages just for the driver routines. Based on current user demand, these other languages will include
Fortran 95 and C, as well as selected higher level languages like Matlab, Python and Mathematica (where
ultimate ease of use is possible, such as typing “x = A\b” to solve Ax = b no matter what type, mathematical
properties or data structure A has). Users of the Fortran 77 version will get maximum performance and
memory efficiency, but worst ease-of-use. Users of the wrappers will have better ease of use and reliability,
but worse performance and memory efficiency in some cases. We, the developers, will have a tractable
amount of code to maintain.

We justify the above mentioned tradeoffs in more detail. First consider memory usage. Sca/LAPACK
currently expects the user to pass in the right amount of workspace, since the (old) F77 standard does not
include allocate/malloc. The amount of workspace can be a complicated function of the problem to be solved,
so the user can query each Sca/LAPACK driver routine to inquire what the optimal workspace actually is.
Thus, a wrapper in F95 or C can query the F77 driver to get the optimal workspace, try to allocate it, and
then call the F77 driver again to solve the problem. If the maximum workspace is not available, we could
make drivers queryable for the minimum workspace and try again, and eventually return an error message
if too little space is available. This approach is reliable as long as we allocate workspace on the heap with
allocate/malloc, and not on the stack, since there is generally no graceful way to recover from stack overflow.

The details of the interface can affect the tradeoff between ease of use and performance. For example,
there are two F95 interfaces to LAPACK, LAPACK95 [10] and LAPACK3E [2]. LAPACK95 uses assumed-
size arrays, so that passing in a submatrix can cause a copy of O(n2) input data to a new contiguous space
(and copying back again on output), costing both time and memory. In contrast LAPACK3E supports
the older Fortran 77 style interface that works with submatrices in-place. Based on the larger usage of
LAPACK95 over LAPACK3E, we will go with the LAPACK95 interface. We also plan to drop support for
the CLAPACK translation of LAPACK to C, and just supply a C wrapper. We do not plan to provide a
separate C++ wrapper.

Now we consider ease-of-use issues in a possibly dynamically changing cluster environment, or in one
where the user does not know and does not wish to know the computational resources available, but may
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have other demands like reproducibility. These enhancements will incorporate novel techniques for managing
high latencies, low bisection bandwidths, and other characteristics of the modern computing environment,
and will also be designed to adapt their behavior in response to information obtained from other system
components. Our primary goals are to develop a new generation of software libraries and algorithms needed
for the effective and reliable use of capacity cluster and high performance capability computers, to validate
the libraries and algorithms on important scientific and engineering applications, and to provide mechanisms
for the integration of other software components frequently used in applications.

We will develop parameterizable and annotatable software libraries that will permit performance tuning
and dynamic algorithm selection for a broad range of architectures. These extensions will take the form of
performance models and assertions made by the user and library writer. In addition, we will promote stan-
dards activities for key aspects of execution. The libraries and algorithms will be designed and implemented
for complex and dynamic environments and cover a wide range of scales in time and space. Successful
implementation along these lines requires:

• predictability and robustness of accuracy and performance,

• run–time resource management and algorithm selection,

• support for a multiplicity of programming environments,

• reproducibility and auditability of the computations

• new algorithmic techniques for latency tolerant applications; and

• scalable algorithms that expose enough concurrency to keep resources busy, and for latency hiding.

Predictability in accuracy and performance is an often expressed requirement whose importance increases
in the cluster environment. Robustness in accuracy and performance addresses the issues associated with
maintaining an expected level of accuracy or performance for changes in the computing environment, prob-
lem size, or other application parameters. The library will acquire, at run–time, cluster and application
information necessary to make decisions on which components and algorithms will best solve the underlying
problem.

The growing gap between the speed of microprocessors and memory technology, resulting in deep memory
hierarchies imply that the memory subsystem is a critical performance factor posing increased challenges in
the design and implementation of algorithm and software systems [38]. Novel latency tolerant algorithms
that explores a wider range of the latency/bandwidth/memory space are needed. We propose to identify
algorithms and applications that would benefit by a latency tolerant approach and construct new algorithms
where appropriate. Our initial experiments show, for example, that up to 10x speedups are attainable
by using different reduction algorithms and other communication primitives in the Basic Linear Algebra
Communication Subroutines (BLACS) underlying ScaLAPACK [69, 85] In a multithreaded execution, when
a processor reaches a point where remote memory access is necessary, the request is sent out on the network
and a context–switch occurs to a new thread of computation. This effectively masks a long and unpredictable
latency due to remote loads, thereby providing tolerance to remote access latency. As a byproduct, we will
develop standards to profile the degree of parallelism, granularity, precision, instruction set mix, inter–
processor communication, latency etc. These tools will develop and evolve as the cluster environment
matures.

For numerical libraries there are deeper issues relating to portability that we will address. For example,
while it is reasonable to assume IEEE arithmetic, hardware vendors provide variants on the standard resulting
in the same computation producing different results when executed on different parts of the cluster [18].
Furthermore, repeatability is an issue for applications that are ill–conditioned or are sensitive to rounding
errors. We plan to develop high confidence algorithms and software that will address this issue. The
implementation strategies would allow the user to control the application to guarantee repeatability, perhaps
at the expense of performance (Java’s original goal was exact reproducibility, but backed away from this
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for floating point applications because of the performance penalties caused by different platforms having
different width floating point registers, i.e. Intel and Sun).

To meet the above goals, we will develop

• Parameterizable libraries. We propose to design and construct libraries that are parameterized
to allow their performance to be optimized over a range of current and future memory hierarchies,
including the ones expected in computational clusters.

• Annotated libraries. We will identify opportunities where information about algorithms contained
in library functions can aid the compilation process and run–time environment. At the library interface
level, this includes memory-hierarchy tuning parameters and a performance model that depends on
input parameters, such as problem size.

• Cluster environment. We will pioneer new methods for packaging, distributing, and accessing
algorithms and software technology for cluster applications.

In summary, the new libraries will speed transfer of recent algorithmic technology in linear algebra,
hierarchical methods, and other areas to large–scale computer users. A new division of labor between
compiler writers, library writers, and algorithm developers and application developers will emerge. The
capability of controlling large complex heterogeneous and dynamic applications over a distributed network
will enable the assembly of multidisciplinary applications, parts of which are built by independent teams.

6 Performance tuning.

Our experience with automatics tuning of dense linear algebra with ATLAS [90] and sparse linear algebra with
Sparsity [58, 87] shows that their value arises from their ability to discover and use performance information
by empirical methods that would otherwise be difficult to come by. While many of the techniques used by
ATLAS and Sparsity are specific to their particular operations, many others are more generally useful. For
instance, information about o the type and number of floating units, the pipeline length, the number TLB
entries, etc. are all generally useful in code optimization. During this stage of our work we plan to develop
methodologies so we and other developers can query an ATLAS like system for this information in order to
aid in developing automatic performance models for algorithm tuning and selection.

There are a large number of tuning parameters that LAPACK and ScaLAPACK use. There are over 1300
calls in LAPACK to the routine ILAENV which takes as input the name of the calling LAPACK subroutine
(such as SGETRF which performs LU decomposition with partial pivoting) and parameters describing the
size of the problem (such as the matrix dimension n) and returns a tuning parameter (such as a threshold
n2, such that if n ≤ n2 SGETRF will use an unblocked (BLAS2) routine, and if n > n2 SGETRF will use a
blocked BLAS3 routine. The idea is that for small enough n the overhead of the BLAS3 routine outweighs
the speeds and BLAS2 is faster. Exactly where the n2 threshold should be depends on the platform and
BLAS implementation, and is best determined empirically. We propose to develop an automatic tuning
system analogous to ATLAS and Sparsity for this purpose.

In the case of ScaLAPACK there are yet more parameters having to do with the number of processors,
the dimensions determining the block cyclic layout of the data, and so on. Tuning here (depending on the
maximum available number of processors, not all of which we may want to use, and their computational and
communication speeds) will require performance modeling to pick the best configuration.

These are illustrations of the basic problem of designing numerical library software that addresses both
computational time and space complexity issues on the user’s behalf and in a manner as transparent to the
user as possible. The software intends to allow users to either link against an archived library of executable
routines or benefit from the convenience of prebuilt executable programs without the hassle of properly
having to resolve linker dependencies. The user is assumed to call one routine from a serial environment while
working on a single processor of the cluster. The software executes the application. If it is possible to finish
executing the problem faster by mapping the problem into a parallel environment, then this is the thread
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of execution taken. Otherwise, the application is executed locally with the best choice of a serial algorithm.
The details for parallelizing the user’s problem such as resource discovery, selection, and allocation, mapping
the data onto (and off of) the working cluster of processors, executing the user’s application in parallel,
freeing the allocated resources, and returning control to the user’s process in the serial environment from
which the procedure began are all handled by the software. Whether the application was executed in a
parallel or serial environment is presumed not to be of interest to the user but may be explicitly queried.
All the user knows is that the application executed successfully and, hopefully, in a timely manner. Target
systems are intended to be “Beowulf like”. There are essentially three components to the software: data
collection routines, data movement routines, and application routines.

Our software will dynamically make decisions on how to solve the user’s problem by coupling the cluster
state information with knowledge of the particular application. Specifically, a decision is based upon the
scheduler’s ability to successfully predict that a particular subset of the available processors on the cluster
will enable a reduction of the total time to solution when compared to serial expectations for the specific
application and user parameters. The relevant times are the time that is spent handling the user’s data
before and after the parallel application plus the amount of time required to execute the parallel application.
If the decision is to solve the user’s problem locally (sequentially) then the relevant LAPACK routine is
executed. On the contrary, if the decision is to solve the user’s problem in parallel then a process is forked
that will be responsible for spawning the parallel job and the parent process waits for its return in the
sequential environment. The selected processors are allocated (in MPI), the user’s data is mapped (block
cyclically decomposed) onto the processors (the data may be in memory or on disk), the parallel application
is executed (e.g. ScaLAPACK), the data is reverse mapped, the parallel process group is freed, and the
solution and control are returned to the user’s process.

At runtime our software makes choices at the software and hardware levels for obtaining a best parameter
set for the selected algorithm by applying expertise from the literature and empirical investigations of the
core kernels on the target system. The algorithm selection depends on the size of the input data and empirical
results from previous runs for the particular operation on the cluster. The overheads associated with this
dynamic adaptation of the user’s problem to the hardware and software systems available can be minimal.

7 Reliability and support.

Specifically, we will develop tools, libraries, networking protocols, and methodologies to facilitate:

• Building, tuning, and testing of computational software libraries on multiple computing platforms and
operating environments.

• Automatic cataloging of software libraries according to the target platforms and operating environments
for which they were built.

• Accurate and precise identification of the characteristics of a computing platform and operating envi-
ronment which affect the selection of computational software libraries.

• Automatically locating and incorporating appropriate versions of desired software components, into a
program - where this binding may occur at either build time or run time.

• Distribution and location of software components in a way which preserves the integrity of those
components and which utilizes existing distribution channels (e.g. mirrored web and ftp servers) with
minimal disruption.

• Easy and nearly-automatic configuration of target platforms to support diverse applications for different
computing environments.

In order to facilitate development of software which is portable across a variety of computing platforms,
we will provide a system for automatic compilation and testing of new or updated libraries. This will consist
of:

12



• Facilities for submitting, over the Internet, new or updated libraries for compilation and testing,

• An access control mechanism to prevent the use of this system by unauthorized users,

• A set of computing platforms to which libraries can be submitted for compilation and testing,

• A queuing system for submitting compilation and testing tasks to each platform and monitoring the
progress of these operations,

• A “sandbox” environment on each platform to allow for safe compilation and testing of untrusted codes
without compromising the host environment,

• Reporting of test results to the software author or maintainer, and

• If compilation and tests are successful, automatic cataloging and filing of the compiled libraries.

Our goals in establishing this system include: encouraging development of portable software libraries,
encouraging development of testing methodologies as part of the development of software libraries, providing
a mechanism by which libraries for diverse platforms can be automatically produced, and automatically
cataloging libraries with sufficient precision to allow effective matching of libraries to target platforms.

8 External Collaboration and Management.

Both PIs have a long and successful history of collaboration on LAPACK and ScaLAPACK, and will con-
tinue their past practices of periodic face-to-face meetings, design reviews, presentations of draft designs
at conferences to get user inputs, and so on. The difference between managing this effort and prior ones
is our attempt to enlist the help of a number of outside people and organizations. The ones listed below
have agreed to help, and many of them have sent us letters of support which are attached to the proposal.
Support ranges from offering their software and ideas to help in programming and development (see the
attached letters for details).

1. Cleve Moler, Founder, The Mathworks, www.mathworks.com (email only)

2. Bruce Greer, Principal Engineer, Math Kernel Library, Intel, www.intel.com

3. Greg Henry, Senior SW Engineer, Math Kernel Library, Intel, www.intel.com

4. Richard Altmeier, VP of Storage and SW Engineering, SGI, www.sgi.com

5. John Levesque, Senior Technologist, Cray, www.cray.com (email only)

6. Prof. Froilan Dopico, Univ. Carlos III de Madrid, Spain www.uc3m.es/uc3m/dpto/MATEM/indice.html

7. Prof. Kresimir Veselič, FernUniversität Hagen, Germany,
www.fernuni-hagen.de/MATHPHYS/veselic/welcome.html

8. Prof. Zlatko Drmač, University of Zagreb, Croatia, www.math.hr/~drmac

9. Prof. Sven Hammarling, Principal Consultant, Numerical Algorithms Group Ltd (NAG), www.nag.co.uk

10. Prof. Volker Mehrmann, Technische Universität Berlin, www.math.tu-berlin.de/~mehrmann

11. Dr. Robert Schreiber, Principal Scientist, HP Laboratories, www.hp.com

We will of course include these collaborators in our meetings as appropriate. In addition, since our past
experience is that testing is a major bottleneck, as described in Sec. 7, we plan to develop a web-based
service for testing and timing so that our collaborators can remotely submit routines for extensive testing.
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