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Abstract

The dqds algorithm was introduced in 1994 to compute singular

values of bidiagonal matrices to high relative accuracy but it may also
be used to compute eigenvalues of tridiagonal matrices. This paper
discusses in detail the issues that have to be faced when the algorithm

is to be realized on a computer: criteria for accepting a value, for
splitting the matrix, and for choosing a shift to reduce the number

of iterations, as well as the relative advantages of using IEEE arith-
metic when available. Ways to avoid unnecessary over/under
ows are

described.
In addition some new formulae are developed to approximate the

smallest eigenvalue from a twisted factorization of a matrix. The re-
sults of extensive testing are presented at the end. The list of contents

is a valuable guide to the reader interested in speci�c features of the
algorithm.
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1 The dqds Transform

H. Rutishauser introduced the qd algorithm (not dqds) and the Z notation in
1953/54, see [9], in connection with transformations of continued fractions.
However our interpretation is aimed at tridiagonal matrices. Write

Z = (q1; e1; q2; e2; : : : ; en�1; qn; en)

but, by convention, en = 0. We associate with Z two bidiagonal matrices

U = bidiag

�
1 1 : 1 1

q1 q2 : : qn�1 qn

�

and

L = bidiag

�
1 1 1 : 1 1

e1 e2 : : en�1

�
:

Rutishauser's qds transform (qd with shifts) and the dqds transform each
with shift � map Z into Ẑ where the associated bidiagonals L̂, Û satisfy

L̂Û = UL� �I

provided that the transformation does not break down. However the formulae
in dqds are di�erent from those in qds as shown later in this section. The
algorithms consist of repeated applications of the transforms with various
shifts � and it is obligatory to introduce �, the accumulated sum of all shifts
� used so far. At any stage in the algorithm, the current qd-array Z and the
current � de�ne a matrix

�I + LU

that has the same eigenvalues as the matrix LU associated with the original
Z. In exact arithmetic if initially Z is positive, and if all � = 0, then Z
converges, very slowly, to

(�1; 0; �2; : : : ; �n�1; 0; �n; 0)

where �1 > �2 > : : : �n > 0, are the wanted eigenvalues. The shift � is used
to hasten convergence. In practice the algorithm uses de
ation: as soon as
en�1 is negligible qn is declared an eigenvalue and n is replaced by n� 1.

In exact arithmetic the LR, qds and dqds transforms are the same but the
advantage of qds and dqds is that L and U together hold more information
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than the product UL used by LR and the advantage of dqds over qds is that,
in the positive case, in �nite precision, dqds preserves the eigenvalues to high
relative accuracy (in the absence of under
ow) whereas qds does not. Next
we o�er a few historical remarks.

The �rst d in dqds stands for di�erential- a somewhat misleading adjective
coined by Rutishauser in his notes. The algorithm is quite distinct from the
LR and QR 
ows introduced in the 1980's. See [1] and [12], [13].

Rutishauser never used the dqds transform except with � = 0 and he
seems to have invoked that option (we call it dqd) only when his preferred,
and faster algorithm, qds or \qd with shifts", got into diÆculties. He never
published the dqd algorithm. See [11, Appendix]. The lower case letters qd
stand for quotient-di�erence, the name he chose in 1953/54 for his opera-
tionally minimal implementation.

The dqds algorithm was rediscovered independently by Fernando and
Parlett in 1992 and they showed that the extra multiplication, compared
to Rutishauser's qds, allowed dqds to compute all the eigenvalues, however
small, to high relative accuracy. See [3]. Here ends the historical commen-
tary.

Here is the transform applied to a segment of Z, Z(i0 : n0), with shift � .

dqds (1�) : d = q(i0)� �

for i = i0; n0 � 1 do

q̂(i) = d + e(i)

temp = q(i+ 1)=q̂(i)

ê(i) = e(i) � temp

d = d � temp� �

end for

For contrast we present Rutishauser's qd transform with shift

qds: q̂(i0) = q(i0) + e(i0)� �

for i = i0; n0 � 1 do

ê(i) = e(i) � q(i+ 1)=q̂(i)

q̂(i+ 1) = (q(i+ 1) � ê(i)) + e(i+ 1) � �

end for

2



No intermediate variables are needed in qds and the arithmetic e�ort is min-
imal. Note that the intermediate quantity in dqds satis�es

d(i+ 1) = q(i+ 1)� ê(i)� �:

The initial array Z is rarely the primary data. For example, to compute the
singular values of a bidiagonal

B = bidiag

�
b1 b2 : bn�2 bn�1

a1 a2 : : an�1 an

�

one de�nes qi = a2i , ei = b2i , i = 1; : : : ; n, and remembers, at the end, to take
the square roots of the eigenvalues (of B�B) which are computed by the dqds
algorithm.

Given a symmetric tridiagonal matrix T with diagonal entries �i, o�
diagonals �i, i = 1; : : : ; n and a scalar � such that �I + T is positive de�nite
one computes Z by Gaussian elimination as follows.

q1 = �1 + �

for j = 1; n� 1 do

ej = (�j=qj) � �j
qj+1 = �j+1 � ej + �

end for

An alternative, careful, expression for qj+1 is

qj+1 = (max(�j+1; �)� ej) + min(�j+1; �):

One must remember to subtract � from the eigenvalues computed by the
algorithm in order to recover those of T .

1.1 Over
ow

In [3] it was shown that dqds preserves eigenvalues to high relative accuracy
in the absence of over
ow and under
ow. In this section we identify and
eliminate those exceptions that are "unnecessary".

The concerns of this subsection arise almost exclusively in single precision
where the exponent range is so small thatmacheps�6 over
ows andmacheps6
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under
ows. The rest of the paper is independent of the material presented
here. Example 1 is important to the understanding of dqds when the exponent
range is narrow.

If Z is positive and if � < �min then the new qd-array Ẑ computed by dqds
will also be positive. If � > �min then dmin = mini di will be negative and if
some q̂(i) = 0 then the next d =1 and the one after that is1� 0� � which
is recorded (in IEEE conforming arithmetic units) as NaN (Not a Number).
See [4].

When dmin > 0 then the new variables q̂(i) and ê(i) are bounded by old
values: ê(i) � q(i + 1), q̂(i) = di + e(i) � q(i + 1) + e(i). However for the
variable temp we can only say

tempi := q(i+ 1)=(di + e(i))

� q(i+ 1)=e(i);

� qmax=emin:

Thus there is danger of over
ow unless the quantities qmax and emin are
monitored. Sometimes reversal of the qd array (see Section 6.2) can avert an
over
ow and sometimes a careful check for splitting (see Section 3) can allow
a tiny e(i) to be neglected. Unfortunately these measures are not suÆcient
to avoid all over
ows and a small example is given next. Suppose that 1038

and 10�38 are the thresholds for over
ow and under
ow.

Example 1

q e d (true) q̂ ê temp

10�25 1020 10�25 1020 1020 1
1020 10�25 10�25 210�25 1

210
20 1

2 (10
20=10�25) = over
ow

1020 1020 1
210

20 3
210

20 2
310

�25 2
3 (10

�25=1020) = under
ow
10�25 0 1

310
�25 1

310
�25 0 �����

Even though Ẑ is well de�ned the algorithm dqds (1�) in Section 1 provokes
over
ow in temp. Looking ahead to Section 3 we can say that even though
e2 = 10�25 appears to be negligible compared to its neighbors the criterion
for setting e2 to zero is not satis�ed and so the replacement of e2 by 0 would
provoke large relative changes in the smaller eigenvalues. Note that the
determinant �iqi is preserved by the transformation.
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The obvious remedy in this case is simple but expensive.

dqds (2�) : d = q(i0)� �

for i = i0; n0 � 1 do

q̂(i) = d + e(i)

ê(i) = q(i+ 1) � (e(i)=q̂(i))
d = q(i+ 1) � (d=q̂(i))� �

end for

The quotients are bounded by one and over
ow will not occur. If � = 0 or
dmin > 0 then no intermediate quantity exceeds �max(LU).

Unfortunately dqds (2�) escapes the disaster (Scylla) of over
ow only to
fall into the misfortune (Charybdis) of under
ow.

q e d (comp) q̂ (comp) ê (comp)

10�25 1020 10�25 1020 1020

1020 10�25 1020(10�25=1020) = 0 10�25 1020

1020 1020 0 1020 10�25

10�25 0 0 0 0

Note that the determinant �iq̂i = 0 instead of 10�10 ! The small eigenvalues
of Ẑ have huge relative errors.

There is a way out of the diÆculty: test at each step. The parameter
sfmin is the smallest number whose reciprocal is representable.

dqds (safe): d = q(i0)� �

for i = i0; n0� 1 do

q̂(i) = d + e(i)

if (q̂(i) = 0) then

ê(i) = 0

d = q(i+ 1)� �

else if (safemin � q(i+ 1) � q̂(i)) then

temp = q(i+ 1)=q̂(i)

ê(i) = e(i) � temp
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d = d � temp� �

else

ê(i) = q(i+ 1) � (e(i)=q̂(i))
d = q(i+ 1) � (d=q̂(i))� �

end if

end for

This algorithm produces the correct values and, in general, is close in arith-
metic operations to dqds (1�) but it does su�er from tests in the inner loop.

There is a subtle point to be made here. If � exceeds �min because of an
aggressive shift strategy then a d can be negative and a q̂ can vanish. Our
code expects this to happen and reacts appropriately. However when � = 0
then, in exact arithmetic, the dqd transform is well de�ned and may be used
as a default after a failure (di � 0) in dqds. Thus it is essential to have code
that can execute a dqd step without over
ow or unnecessary under
ow. By
scaling up the initial Z as much as possible the occurrence of under
ow is
minimized.

Our policy is perhaps too cautious. We keep variables emin and qmax up
to date. As shown at the beginning of the section temp � qmax=emin for any
shift � � �min. Our strategy is:

if (safemin � qmax � emin) then

use dqds (1�)
else

use dqd (safe) ( i.e. � = 0)

end if

It is not essential to force � = 0 in the safe version of dqds but we chose to
do it.

1.2 Under
ow

The emphasis so far has been on over
ow. However under
ow, marked by

ushing to zero, also undermines the high accuracy property of the algorithm.
If the true value of a variable is too small to be represented then there is
nothing to be done. On the other hand we can have expressions of the form
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a(b=c) which will under
ow as written but can return a correct value when
rewritten as (a=c)b. Neither the (1�) nor the (2�) version is safe from these
"unnecessary" under
ows but we can modify the test in the safe dqd given
above so that such under
ows do not occur. The new test is

else if (safemin � q(i+ 1) � q̂(i) and safemin � q̂(i) � q(i+ 1)) then

When should safe dqd be invoked? In contrast to over
ow we do not have
an easily computed lower bound on ê(i) nor q̂(i) so we test after each dqds
transform. If emin = 0 or dmin = 0 we assume that the under
ow was not
necessary, we disregard Ẑ, and invoke safe dqd on Z. Such caution degrades
performance slightly on diÆcult cases but on the LAPACK test matrices of
type 16 (wild exponent ranges) our code, in single precision, did compute
correctly some tiny eigenvalues that had previously been recorded as 0. The
same phenomenon in double precision is shown in Section 15.

2 The Prototype dqds Algorithm

The �nal procedure for computing the eigenvalues of a tridiagonal matrix
with the aid of the dqds algorithm is made complicated by �ve features:

splitting, 
ipping, ping-pong, an aggressive shift strategy,
and over/under
ow.

These features receive due attention above or below. For the moment let
us ignore them and see how simple the resulting program can be. As each
eigenvalue is accepted the qd-array Z discards the last q and the last e. One
while loop gives the whole procedure.

while Z un�nished do

examine Z 0s �nal entries;

if negligible then reduce Z accordingly end if

if Z un�nished then

choose a shift (less than �min)

apply the dqds transform to Z

end if
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end while

The body of the while loop given above constitutes what we will call below
`a good step'. It has three vital parts:

1. De
ate any converged eigenvalues

2. Choose a shift

3. Invoke dqds with that shift

The whole procedure may be put in one line,

while Z un�nished do take a good step end while

The complications in the actual program are of two kinds. The low level
ones are those hidden in the procedure Goodstep. The high level ones force
us to embed our while loop inside another one.

These high level troubles are not obvious. In order to guarantee high
relative accuracy the code accepts the limitation of computing the eigenvalues
in monotone increasing order. Thus the code is constrained to bring the
smallest eigenvalue to the end of Z. However this cannot be done if one
or more of the e-values in Z vanishes: No information can cross over a
zero ej. Consider, as an extreme case, the array Z = (1; 0; 2; 0; 3). This
corresponds to the diagonal matrix (1; 2; 3). When the 0's are replaced by
tiny positive numbers then the simple code described above will waste much
time slowly converting (1; 2; 3) into (3; 2; 1). This phenomenon was called
`disorder of the latent roots' by Rutishauser. If an e-value is negligible then
we say that Z `splits' into two independent qd-arrays Z1 and Z2 that may
be processed independently. A split enhances eÆciency but complicates the
program. Even to check for any negligible e's seems to require a pass through
the Z-array and this will degrade performance. Details are discussed in
Section 3.

The program looks for the smallest eigenvalue to appear at the end of the
qd-array. If, at some stage, the small entries in Z are at the beginning then
it is prudent to simply reverse the array. This is called a 
ip.

Flip(q1; e1; q2; e2; q3) = (q3; e2; q2; e1; q1):

8



Flipping is equivalent to reversing the associated tridiagonal matrix, an
operation that preserves the eigenvalues.

Splitting and Flipping are high level complications. The ping-pong for-
mulation and aggressive shifting are low level features that are discussed
later.

A switch to allow the user to select either relative accuracy or absolute
accuracy (error < �kTk) also complicates the program and after extensive
tests we have simply disabled this option because the reduction in total time
using absolute accuracy was only 10% or 15%.

3 Splitting

3.1 Monotonicity Properties

In order to justify the criteria for neglecting an ei certain properties of the
transforms are needed. These elementary results have not appeared elsewhere
so we present them here. This subsection may be skipped without loss of
continuity.

At any step in the algorithm we possess L, U , and � � 0 but might wish
we had �L and �U satisfying �L �U = LU + �I. So Lemma 1 can be useful.

Lemma 1 Let L and U be the bidiagonals associated with the positive qd-
array Z and let �Z be the qd-array associated with �L and �U de�ned by

�L �U = �I + LU; � > 0: (1)

Then �ek < ek and �qk+1 > qk+1 + � for k = 1; : : : ; n � 1.

Proof. By equating corresponding entries in (1)

�q1 = q1 + �;

�ek =
ekqk
q̂k

;

�qk+1 = qk+1 + (ek � �ek) + �; k = 1; : : : ; n� 1:

The relation �q1 � q1 + � is the base for an inductive argument: �qk � qk + �
implies that �ek = (qk=�qk)ek < ek and hence �qk+1 > qk+1 + �. 2

Even more useful than �L and �U would be the quantities �di that occur in
the dqd transform of �Z. Lemma 2 assures us that �di > �.
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Lemma 2 As in Lemma 1 let �L �U = LU+�I. Let f �dig be the auxiliary quan-
tities that appear in the dqd transform of �Z = f�q1; �e1; : : : ; �en�1; �qng. Then

di > �; i = 1; 2; : : : ; n:

Proof. In [3] it was shown that

�dj =
1

[(�L �U)�1]jj
:

Since Bjj � �max(B) for any matrix B that is diagonally similar to a positive
de�nite matrix and since �L �U (as well as its inverse) is such a matrix,

dj � 1

�max[(�L �U)�1]
= �min(�L �U); j = 1; 2; : : : ; n:

Thus
dj � �min(LU + �I) = � + �min(LU) > �

with strict inequality since Z = fq1; e1; : : : ; en�1; qng is assumed positive in
Lemma 1. 2

We will often be in possession of the auxiliary d's after invoking dqds
with a shift � > 0 on Z to produce another positive qd-array Ẑ. For testing

ej we would prefer to have auxiliary
o

d's that come from dqd (� = 0) applied

to Z. Fortunately 0 < di <
o

di, i = 1; : : : ; n.

Lemma 3 Consider a successful dqds transform with shift � , 0 < � < �min

that maps Z into ~Z. Let fdi = di(� )gn1 be the associated d's but write
o

di for
di(0). Then

0 < di <
o

di; i = 1; : : : ; n:

Proof. From the dqds transform in Section 1

di+1 =
di

di + ei
qi+1 � �

whereas
o

di+1=

o

di
o

di +ei
qi+1
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for i = 1; 2; : : : ; n � 1. Initially d1 = q1 � � < q1 =
o

d1. Since x=(x + e) is

monotone increasing in x for x > 0, then if di <
o

di it follows that

di+1 <

o

di
o

di +ei
qi+1 � � <

o

di
o

di +ei
qi+1 =

o

di+1 :

By induction the claim holds for i = 1; : : : ; n. 2

3.2 Results of Demmel/Kahan and Li

For this section we revert to the bidiagonal case. Thus

B = bidiag

�
b1 b2 : bn�2 bn�1

a1 a2 : : an�1 an

�

where ai =
p
qi, bi =

p
ei. The goal is to �nd conditions on an o�-diagonal

entry bk that permit it to be set to 0 without causing a large relative error
in any singular value of B. In [2] several lemmas and theorems were proved
to justify a criterion based on a couple of recurrences. These recurrences are
quite expensive. Later, in [6], Reng-Cang Li found alternative recurrences
that gave sharper (better) criteria for neglecting bk. All the results mentioned
above are impressive, not to say intimidating. Indeed Li's paper [6] does not
present his justi�cation explicitly but only as a Corollary of theorems in other
papers [5, Th1]. Those theorems require signi�cant preparation on the part
of the reader.

We are not going to reproduce all that theory. Instead we explain, in
much simpler terms, why these criteria are appropriate and natural.

When bk, 1 < k < n � 1, is set to 0 the resulting matrix is a direct sum
of diag(B1; B2). The surprise is that B may be related to diag(B1; B2) as a
multiplicative perturbation:

B = Dldiag(B1; B2); B = diag (B1; B2)Dr; (2)

where Dl and Dr have the form �
I F
O I

�
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An old result of Ostrowski (rediscovered by Eisenstat and Ipsen) says that
the relative change in any singular value due to annihilating bk is bounded
by kDlD

t
l � Ik and by kDt

rDr � Ik and k � k is the spectral norm. These
bounds equal kFk+ kFk2 and when F is tiny they are essentially kFk.

The old result comes from Weyl's theorem that says that no eigenvalue
of a symmetric matrix can change by more than the (spectral) norm of an

(additive) perturbation. So, if ~� is any singular value of
o

B:= (B1; B2), then
it is only necessary to rewrite (2) above in the illuminating form

BBt � ~�2I = Dl(
o

B
o

B
t

�~�2I)Dt
l + ~�2(DlD

t
l � I): (3)

The �rst term on the right is singular and the second is an additive per-
turbation with norm ~�2kDt

lDl � Ik. Hence there is a singular value � of B
satisfying

j�2 � ~�2j � ~�2kDt
lDl � Ik:

So,

j� � ~�j � ~�

~� + �
~�kDt

lDl � Ik < ~�kDt
lDl � Ik: (4)

Once the idea of using Dl and Dr is absorbed it is not hard to �nd out what
F is in each case. Certainly it is a multiple of bk. Not only is 1

bk
F rank-one

but it has a single non-zero row or column, either the last column of B�1
1 or

the �rst row of B�1
2 . Indeed the recurrences mentioned above generate the

entries in these two vectors. However Demmel/Kahan generate the 1-norm
whereas Li generates the 2-norm of these vectors. This brings us to the
question of cost.

In the context of the singular value QR algorithm with zero shift applied
to B both criteria require 2n divisions to test all bk but the 1-norm requires
fewer multiplications. The miracle is that in the context of the dqd algorithm
the auxiliary quantity dk is precisely k 1

bk
Fk�2 for one of Li's tests (row 1 of

B�1
2 ). Thus kFk � " becomes Li's test

ek := b2k � "2dk: (5)

The other test (involving column 1 of B�1
1 ) would require running dqd

on the reversed, or 
ipped qd array to produce auxiliary quantities
o

di, i =

n; n � 1; : : : ; 1. Then one could test ek � "2
o

dk+1 but that does not come
free.
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As Li remarks at the end of [6] the introduction of nonrestoring shifts
into dqds complicates the situation signi�cantly. That is the focus of Section
3.4.

3.3 In the Beginning

It is worthwhile to apply both of Li's tests at the start of the algorithm. The
variables emin and qmax are formed when the data are checked. If (emin >
"2qmax) then there will be no splits and the standard dqds subroutine may
be employed in the interest of eÆciency.

The following example shows that there may be no splits on the original
data and yet after one dqd transform the new array may have all its e's
negligible. This encourages us to apply Li's tests for at least two iterations.

Example 2 (From No Splits to All Splits) Consider a Toeplitz qd-array
of order 10 with qi = ", all i, and ei = "�1. Here " is the single precision
roundo� unit, " � 10�7. In single precision "6 under
ows.

On the �rst dqd transform there are no splits. Moreover q̂i = "�1, i =
1; : : : ; n� 1, êi = ", i = 1; : : : ; n� 1, but q̂n = "19 = under
ow = 0. On the
second dqd transform the �rst n � 1 d's compute to "�1 and, by Li's test,
each êi is then set to 0. If we applied Li's reverse test to the array Ẑ all d's
would be 0 and no splits would be recorded.

pseudo code for initial checks for splits

input: Z = (q; e); emin; qmax


ip Z if warranted

if (emin � "2qmax) then

apply Li's reverse test on Z;

dqd: Z �! Ẑ with Li's test;

(emin is updated)

else

�  � 0

dqds: Z �! Ẑ

(emin is updated)

end if

update qmax (= max
i

q̂(i))
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if (emin � "2qmax) then

apply Li's reverse test on Ẑ;

dqd: Ẑ �! Z with Li's test;

(emin is updated)

else

�  � 0

dqds: Ẑ �! Z

(emin is updated)

end if

On completion the latest qd-array is in Z, the old array is in Ẑ and all
possible splitting using both of Li's tests have been recorded.

It is possible to repeat this testing cycle until no new splits are recorded
but we decided to run it just twice.

3.4 When to Neglect ej

There are, at least, two obstacles to invoking Li's test inside the main while
loop. First the algorithm uses dqds with � > 0 for most steps. Li's test
is still valid when � > 0, by Lemma 3, but will be stricter than necessary.
Second is the presence of �, the accumulated shift. We want the eigenvalues
of �I + LU , not of LU alone. It is not cheap to incorporate � into Li's
criterion.

From a practical point of view the presence of � has lead us to a very
simple set of tests. Since � is a lower bound on the eigenvalues of �I + LU
the following test is always valid.
� �-test: if ej � "2� then set ej to 0.
Li was thinking of an implementation of dqd that would test ej within the
inner loop and thus at every step of the algorithm. In order to keep our dqds
transform free of tests the checking for a split will be a separate calculation
undertaken only when the variable emin is small enough. The code presented
here keeps this test calculation as cheap as possible.

This leaves us with the task of using Li's test in some form because the �-
test is useless when � = 0 and even when � is tiny. Our solution is to exploit
the ping-pong implementation of the algorithm. For our purposes here it
means that two qd-arrays are available, OldZ and Z. Their eigenvalues di�er
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by � . Let
o

di denote the auxiliary variables computed in the dqds transform
of OldZ to Z. From the algorithm in Section 1

qi =
o

di + old ei; i = 1; 2; : : : ; n� 1:

Consequently
o

di can be recovered as qi � old ei. Li's test applied to OldZ is
`neglect old ei if old ei � "2di = "2(qi � old ei)'. Since 1 + "2 computes to 1
the test may be simpli�ed.
� Li's test: neglect old ek if old ek � "2qk.

Note that setting old ek to 0 would automatically force ek to 0 since

ek = old ek � old qk+1
qk

:

Moreover, in `�nite precision', if old ek is negligible then

o

dk+1 = old qk+1

o

dk
o

dk +old ek
� �

= old qk+1 � �

just as though old ek were 0.
Thus, at no cost, we can discover a split but with a one step delay.
It is not necessary to recognize splits as soon as they are warranted.

The only danger in delaying a valid split is that the smallest eigenvalue
might be trapped in the upper part of the qd-array. This could produce the
wretched situation that the shifts would be constrained by the top part and
so not hasten convergence of the bottom part. This would degrade eÆciency
severely.

When should our two tests be invoked? Since our implementation keeps
the variables emin and qmax up to date it is natural to invoke the testing loop
only when

old emin � "2qmax or emin � "2�: (6)

This guarantees that if a split is warranted by our tests then the loop will be
invoked.

The way splits are marked is discussed next.
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3.5 Marking Splits

The Z-array may split up into many subarrays. In order to keep the code
simple the dqds transform is applied only to the last unsplit segment i0 : n0.
The parameter n0 never increases and decreases when, and only when, an
eigenvalue is de
ated. Until a segment is �nished i0 never decreases and
increases when, and only when, a split occurs in i0 : n0.

Suppose that the �rst split occurs at ej when the value of � is �0. The
segment 1 : j of Z then freezes until the segment j + 1 : n is �nished. By
that stage � = �00 � �0. When computation resumes on segment 1 : j it is
essential to know the old value �0. The only book-keeping required when a
split occurs is to record the current value �. The natural place to keep this
information is in the location of the negligible ej. The negative sign attached
to � signals that a split has occurred.

The pseudo-code for the segment Spltck (short for Split Check) �nds the
index `splt' where the last negligible e-value occurs.

Spltck: splt i0� 1

for k  i0; n0� 3 do

if ek negligible then

ek  ��
splt k

end if

end for

By construction of i0, either i0 = 1 or else e(i0�1) < 0. Several e's may be
found negligible during one call of Spltck, each one is marked (by ��) but
only the last one is recorded by splt. Thus after each call to Spltck the new
segment is given by

i0 splt+ 1:

The loop stops at k = n0 � 3 because en�2 and en�1 are checked at every
step. When they become negligible we have de
ation, not a split.

4 The High Level Program

When splitting is incorporated into the program there must be an inner loop
to diagonalize the last unsplit segment and an outer loop over the separate
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segments. This structure demands one extra piece of book-keeping in the
outer loop. The choice of shift makes heavy use of information obtained in
the previous dqds transform. At the start of a new unsplit segment there is
no previous dqds transform available. Inside the inner while loop there is no
way to know whether the current segment is new and so the outer loop must
set a 
ag to signal this situation. We may do this by setting the variable
dmin to a negative value. The current segment is always Z(i0 : n0).

Input Z(1 : n); a positive qd-array (but e(n) = 0):

call Prologue (discussed in Section 10)

n0 = n

while (n0 � 1) do

� = �e(n0) * reset � �
i0 = n0 * seek i0 �
while (i0 > 1 and e(i0� 1) > 0) do i0 = i0� 1 end while

dmin = �0 * signal a new segment *

while (i0 � n0) do

call Goodstep(i0; n0; Z; �; dmin)

if emin is small enough then

check for splits; update i0; emin; qmax;

end if

end while

end while

call Epilogue (discussed in Section 11)

Later we will complicate the while loop that �nds i0 so that it computes qmin

and emax as well. These values give us a cheap lower bound on the Gersgorin
disks. We set dmin = �max(0; qmin � 2

p
qminemax) and give justi�cation in

Section 6.3.1 but here is the motivation.
When Z's matrix is close to one of low rank a stage will occur when all

the small eigenvalues have been found and the smallest eigenvalue of the
remaining Z array is far from 0. Our shift strategy shifts too cautiously in
this situation and � = qmin � 2

p
qminemax is a much better start than � = 0.
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For example, in one case all e's were O(10�15) and all q's were O(10�1). Thus
at the start of a new unsplit segment the variable dmin carries a reasonable
shift that overrides the regular choices because it is 
agged by not being
positive.

5 Low Level Complications

Pseudocode for Goodstep(i0; n0; Z; �; dmin):

1. while (e(n0� 1) or e(n0� 2)) negligible do
record eigenvalues
reduce n0

end while
if (n0 < i0) return end if

2. if warranted then

ip qd array
update qmax, emin

end if

3. if no danger of over
ow or new segment then
choose a shift

4. repeat
call dqds; output dmin; emin
if (shift too big or dmin=NaN or under
ow) then
if (dmin < 0) then

choose another shift
else (a NaN or under
ow)

call safe dqd; output dmin; emin
end if

end if
until dmin > 0

else
call safe dqd; output dmin; emin

end if

5. update �
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As written above Step 4 could give rise to an in�nite loop. For the sake of
eÆciency we want to escape this loop after 3 steps at most. The choice � = 0
ensures a successful transform but the phenomenon of `late failure', discussed
later, exhorts us not to panic and so set � = 0 immediately. Frequently a
failed shift is too large only in the 5th decimal place of �min.

The various parts of Goodstep are discussed in turn below.

6 A Good Step

6.1 Test for Eigenvalues (Eigtest)

Convergence Versus De
ation
In this section let n = n0. The goal of the dqds transform is to drive qn,

the last q, to zero. Even if qn = 0 it is still not valid to de
ate, i. e. to reduce
n by 1, because en�1 must also be negligible. Note that, with � = 0,

ên�1 = en�1qn=q̂n�1 = qn � en�1
dn�1 + en�1

< qn;

so that one more transform, after qn is negligible, will ensure that the new
en�1 will also be negligible.

However we shall not retain this way of thinking because convergence (is
qn close enough to 0?) is secondary to de
ation (n  n � 1 or n � 2) and
that is what we seek. If en�1 = 0 then qn + � is an eigenvalue however large
qn may be.
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Accepting Eigenvalues

We check en�2 as well as en�1 because there is a short section of code
that computes the eigenvalues in the 2�2 case to high relative accuracy. See
Section 8.

From Section 3.4 en�1 is negligible if old en�1 � "2qn�1 or en�1 � "2�.
Similarly en�2 is negligible if old en�2 � "2qn�2 or en�2 � "2�. By using
Li's reverse test we may neglect en�1 if en�1 � "2qn and en�2 if en�2 �
"2qn�1(qn=(qn+en�1)). This is because the dqd algorithm on the 
ipped array
yields dn = qn and dn�1 = qn�1qn=(qn + en�1). Since a+ b � 2max(a; b) we
have invoked the following simple tests (perhaps these tests are too severe):

if old en�1 � "2qn�1 or en�1 � "2(� + qn) then neglect en�1

if old en�2 � "2qn�2 or en�2 � "2
�
� + qn�1

qn
qn + en�1

�
then neglect en�2:

Note that the second test is only invoked when en�1 is not negligible, so the
division is proper. We have softened the test on the old values by multiplying
"2 by 104. This was the largest value that caused no deterioration in accuracy
on our LAPACK test bed of matrices.

When en�2 is negligible the simple de
ating code is

big = larger root of trailing 2� 2 submatrix (Section 8)

qn = qnqn�1=big + �

qn�1 = big + �

n = n� 2

These simple codes become more complicated in the ping-pong implementa-
tion discussed in Section 9. The code that tests en�1 and en�2 is in a repeat
loop so that control passes out of this segment only when either n0 < i0 or
else neither en�1 nor en�2 is negligible. Goodstep is complete if n0 < i0.

6.2 Check for Flipping

The goal of the algorithm is to drive q(n0) to 0. If q(i0) < q(n0) then it
seems plausible that convergence would be faster if the array were 
ipped.
In principle one could make more elaborate schemes for checking whether
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the smallest eigenvalue is `located' near the top of the matrix. To introduce
a bias against 
ipping we demand that

1:5q(i0) < q(n0):

A rival test would demand that 2q(i0)e(i0) < q(n0)e(n0� 1) before 
ipping
but so far we have used the simpler test.

We make the check only after an eigenvalue has been de
ated at the
previous step (signaled by n0in > n0) or when the segment is `new', i. e. has
just been passed from the outer while loop. After 
ipping we set dmin to
�0 so that the 
ipped array is treated as `new'. Thus

if (dmin < 0 or n0in > n0) then

if(1:5q(i0) < q(n0)) then

call Flip

if (n0in:gt:n0) dmin = �0 end if

update emin and qmax

end if

end if

6.3 Choice of Shift

At an abstract level both qds (Rutishauser's qd with shifts) and dqds are
equivalent to LR and two LR steps are equivalent to one QR step. So one
might expect convergence rates to be similar. The advantage of dqds over
the other transforms is the auxiliary variable d and the fact that dmin is an
increasingly good approximation to �min. Section 6.3.2. The index of dmin
(i. e. the index j such that dj = dmin) can also be useful in `locating' �min

before it migrates to the end of the array.
The chief feature of the implementation given here is the decision to

dispense with dmin's index. To make up for this omission we unroll the last
two steps of dqds and record dn, dn�1, dn�2 as well as dmin, dmin1, dmin2,
where dmin1 = mini�n�1 di and dmin2 = minj�n�2 dj. These six values give
the index of dmin in the asymptotic regime when dmin = dn, or dn�1, or
dn�2.

It could be the case that the use of dmin's index can be made cost e�ec-
tive, but that is for the future.
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Our shift strategy is essentially one long if-statement giving a di�erent
value to the shift � for each of about 10 di�erent situations. Each formula
uses information from the previous dqds-transform, in particular the last 3
values of the auxiliary variable d.

At the start of processing a new segment of Z there is no previous trans-
formation. This situation is signaled by dmin � 0. In early versions of this
program we used the obvious choice

� = 0

when dmin < 0, because we seek the smallest eigenvalue. Now we use the
Gersgorin shift when it positive.

6.3.1 The Gersgorin Shift

If the minimum point among all Gersgorin disks is positive then it serves as
a better shift than 0. A straightforward computation of this point mini(qi +
ei �pqiei�1 �pqi+1ei) costs more than a dqds transform because of all the
square roots. Our shift strategy ensures that most of the time the minimum
Gersgorin point is negative. It is only when the e's are much smaller than
the q's that it is appropriate to consider Gersgorin. We use a crude lower
bound qmin�2pqminemax because qmin and emax are cheap to compute in the
loop that �nds i0 at the start of a new segment. Moreover we only update
qmin and emax while qmin � 4emax so that, in most cases, this calculation
stops almost immediately. In special cases (all q's > 0:01, all e's < 10�9) this
feature is most valuable.

6.3.2 Use of dmin

At each call of Goodstep there are four situations at each choice of shift: at
Step 1 Eigtest found either 0, 1, 2, or more than 2 eigenvalues.
The �rst situation is the basic one and the others are variations on the �rst.
Before describing the selection we recall some results on eigenvalue bounds.
See [8, Sections 4.5 and 11.7].

Let kxk = 1, � = �(x) = x
�Ax, r = r(x) = Ax� x� for any symmetric

matrix A. Let � be the closest eigenvalue of A to � and let gap be the
distance of � from the rest of A's spectrum. Then

� > �� krk; (7)
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� > �� krk2=gap: (8)

Our main application of this result is to a tridiagonal T with x = (0; : : : ; 0; 1)�.
In that case

� = �n; krk = �n�1:

In our application �2
n�1 = qnen�1 and T = symmetrized UL, as shown at

the end of this subsection.
We also recall some results on the intermediate quantities dj computed

by the dqds transform with shift � . See [3].
If � = 0 then

1

dj
= [(UL)�1]jj <

1

�min(UL)
: (9)

If � > 0 then

�j(Û L̂) = �j(UL)� �;

dmin � �min(Û L̂);
1

dj
� [(Û L̂)�1]jj:

As � increases from 0 to �min(UL) so does dmin decrease

from 1=max
j
[(UL)�1]jj to 0:

Thus the smaller the value of dmin the better it approximates �min(Û L̂) with
equality when, and only when, dmin = 0. However dmin is always too big
and we would prefer to have a lower bound. Our program is set up to reject,
as a failure, any dqds transform in which dmin is not positive. The penalty
for choosing � too large is a wasted dqds transform, except in the case of
late failure discussed below, and in view of all this we use a fairly aggressive
choice of shift and hope to keep failures at the 2 or 3% level.

In order to keep the dqds transform as simple as possible we record
dmin = min1�j�n dj but not its location. To make up for this loss we `unroll'
the last two steps of the dqds transform and this yields, at no cost, 6 useful
d-values: dn, dn�1, dn�2, and dmin, dmin1, dmin2. Here

dmin1 = min
1�j�n�1

dj ;

dmin2 = min
1�j�n�2

dj :
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Our shift formulae make heavy use of these 6 values.
It may turn out that giving up the precise location of dmin, when it is

less than n� 2, is a tactical error. More study is needed.
One more rather subtle point must be borne in mind. Let Mn�1 denote

the leading principal (n � 1) � (n � 1) submatrix of M . Let Tn denote the
symmetrized version of UL = UnLn. Then

Tn�1 6= sym(Un�1Ln�1):

The matrices di�er only in the last diagonal entries which are respectively
qn�1 + en�1 and qn�1. Now dmin1 approximates �min(Un�1Ln�1) while we
want to approximate �min(Tn�1). When dmin1 = dn�1 then we expect the
associated eigenvector of Un�1Ln�1 to be dominated by its last entry. So
we sometimes use some fraction ' of dmin1 + 1

2
en�1 as an approximation to

�min(Tn�1). The choice of ' has been a worry. We use ' = 0:75 but have no
theory to back it up.

Now we turn to our shift selection. It is a long if-then-else statement.
In order to simplify expressions (for humans) we use

�n = qn = dn; �n�1 =
p
qnen�1;

�n�1 = qn�1 + en�1; �n�2 =
p
qn�1en�2

�n�3 =
p
qn�2en�3:

By taking en�1 as an approximate eigenvector of Tn�1 and using its resid-
ual norm we conclude that some eigenvalue exceeds �n�1 �

p
�2
n�1 + �2

n�2.
This is easier for us than the Gersgorin value �n�1 � �n�1 � �n�2.

In the actual code n is replaced by n0.

6.3.3 No Eigenvalues Found in Eigtest (n0in = n0)

The variable n0in is the value of n0 on entry to Eigtest.

Case 1. If dmin � 0 then � = �dmin.
This is the case corresponding to a new qd-segment. No old information
available. See Section 6.3.1.

Cases 2 and 3. dmin = dn and dmin1 = dn�1.
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This is the asymptotic case that determines the rate of convergence (a
misleading term when we strive for between 3 and 4 iterations per eigenvalue,
on average). Our goal is to use (8) in the tests given in Section 6.3.2 and so
we must appproximate �min(Tn�1)��n by a value gap1. To do this we guess
at gap2 to approximate �min(Tn�2)� �n�1.

gap2 =
3

4
dmin2� �n�1:

Now we estimate gap1 by

if (gap2 > 0) and gap22 > �2
n�2 then

gap1 = �n�1 � �2
n�2

gap2
� dn

else

gap1 = �n�1 �
q
�2
n�1 + �2

n�2 � dn;

end if

Finally

if (gap1 > 0 and gap12 > �2
n�1) then

� = max(dn � �2
n�1

gap1
;
1

2
dn) (Case 2)

else (Gersgorin)8>>>><
>>>>:

x1 = maxf0; dn � �n�1g; row n;

x2 = maxf0; �n�1 �
p
�2
n�1 + �2

n�2g; row n � 1;

� = maxf13dn; minfx1; x2gg (Case 3)

end if

Note that � � dn=2 (Case 2) or � � dn=3 (Case 3). Here lies the aggression
in our shift strategy.

We expect Case 2 to occur often. The formulae are simpler than those
for Cases 4 and 5 and give good accuracy. Nevertheless it is possible that the
approximations used for Case 4 would be even better when used in Case 2.
More study is needed.

Case 4. Not quite asymptotic.
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(a) dmin = dn but dmin1 6= dn1.

(b) dmin 6= dn but dmin1 = dn1.

Warning
The long analysis that follows for (a) and (b) uses new re�ned bounds and
leads to only 20 lines of code and approximately 4 divisions. It may be
skipped without loss of continuity. Let

L = bidiag

� p
q1

p
q2

p
q3 :

p
qn�1

p
qnp

e1
p
e2 : :

p
en�1

�
:

For (a) consider one step of inverse iteration starting with endn and yielding
z.

(LtL� �I)z = L̂L̂t
z = endn = enq̂n:

Since L̂�1
en = en=

p
q̂n,

L̂t
z =

enp
q̂n
;

z(n) = 1;

z(i) = �z(i� 1)
p
êi=q̂i; i < n:

As shown in Section 7, the Rayleigh quotient �(z) satis�es

�(z) =
dmin

kzk2 ;

and
kL̂L̂t

z � z�(z)k
kzk = �(z)

p
kzk2 � 1:

Thus there is an eigenvalue � of L̂L̂t satisfying

�(z)(1 �
p
kzk2 � 1) � � � �(z): (10)

and this function is a useful lower bound provided that kzk2 � 2. In the
absence of a satisfactory estimate of

gap(�) = minfj�� �j : � 6= �; � an eigenvalueg

we do not employ a re�ned bound.
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How accurately should ' = kzk2� 1 be estimated? The recurrence for '
is simple:

initial condition: term = ên�1=q̂n�1; ' = 0;

' = '+ term

for i = n� 2; 1;�1 do
old = term (11)

term = term � êi=q̂i
' = '+ term

end for

Our �rst consideration is to run the loop until two consecutive terms are less
than 1% of the current '; repeat until

100max(term; old) < ':

If ' � 1 then the lower bound in (10) is negative and our e�ort is wasted.
However, in the spirit of an aggressive strategy we wish to choose � � dmin=4
in these cases. Consequently when ' � 9=16 we will not employ (10). So we
repeat the for loop until

100max(term; old) < ' or 9=16 < ':

We then increase the computed ' by 5% to compensate for truncating the
loop. Finally set 
 = dmin and

if (' < 9=16) then

shift = 

1 �p'
1 + '

(12)

else

shift =



4
end if

For (b) (dmin 6= dn but dmin = dn1) create a twisted factorization
LtL � �I = NN t with twist at n � 1. Here N t = L̂t except for the last two
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rows shown below. See [7]. N requires three new values: 
n�1;
o
en�1;

o
qn. The

last three rows of the right twisted factor N t are shown here.2
64
p
q̂n�2

p
ên�2 0

0
p

n�1 0

0

q
o
en�1

q
o
qn

3
75

By equating entries in LtL� �I =
o

L
t o

L we �nd

o
qn= qn � � ;

o
en�1= qnen�1=

o
qn; sn�1 = �� (1 + en�1=

o
qn)

and, from the code given in Case 5 below,


n�1 = dn�1 + sn�1 + �;

= dn�1 + [sn(en�1=
o
qn)� � ] + �

= dn�1 � �en�1=(qn � � ) < dn�1 = dmin: (13)

Our estimate of �min is based on one step of inverse iteration starting from
en�1
n�1 (in case (a) we started with endn):

(LtL� �I)z = NN t
z = en�1
n�1:

Since Nen�1 = en�1
p

n�1,

N t
z = en�1

p

n�1;

z(n� 1) = 1;

z(i) = �z(i� 1)
p
êi=q̂i; i < n� 1;

z(n) = �
q

o
en�1 =

o
qn

= �pqnen�1=jqn � � j:

In addition

�(z) =

n�1
kzk2

kNN t
z � z�(z)k
kzk = �(z)

p
kzk2 � 1:
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We can use the same loop (11) as in Case (a) but with di�erent initial con-
ditions, namely

term = ên�2=q̂n�2

' = z(n)2 = qnen�1=(qn � � )2:

Compute 
n�1 from (13), set 
 = 
n�1, and the same code (12) may be used
as in Case (a) for shift.

Case 5. dmin = dn�2.

This condition suggests the use of a twisted factorization of LtL��I with
twist at position n � 2. The upper part of the factorization is given by L̂L̂t

but we do not have the lower part. Write LtL� �I =
o

L
t o

L. The lower part of
o

L is 2
6664
q

o
en�3

q
o
qn�2q
o
en�2

q
o
qn�1q
o
en�1

q
o
qn

3
7775

and the di�erential stationary algorithm yields

sn = ��
o
qn= = qn + sn
o
en�1 = qn(en�1=

o
qn)

sn�1 = sn(en�1=
o
qn)� �

o
qn�1 = qn�1 + sn�1
o
en�2 = qn�1(en�2=

o
qn�1)

sn�2 = sn�1(en�2=
o
qn�1)� �:
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That is all that we need. The lower part of the twisted factor N t is2
66666666664

p
q̂n�3

p
ên�3

p

n�2

q
o
en�2

q
o
qn�1

q
o
en�1

q
o
qn

3
77777777775
:

The quantity 
n�2 is given by


n�2 = q̂n�2+
o
qn�2 �(qn�2 + en�2 � � )

= (dn�2 + en�2) + (qn�2 + sn�2)� (qn�2 + en�2 � � )

= dn�2 + sn�2 + �

= dn�2 + [sn�1(en�2=
o
qn�1)� � ] + �

= dn�2 + sn�1(en�2=
o
qn�1);

= dn�2 + sn�1[en�2=(
o
qn�1 +sn�1)]:

Write the twisted factorization as LtL� �I = NN t and de�ne z by

NN t
z = en�2
n�2; z(n� 2) = 1:

Thus

N t
z = en�2

p

n�2;

z(n� 1) = �
q

o
en�2 =

o
qn�1

z(n) = �z(n� 1)

q
o
en�1 =

o
qn =

q
o
en�2

o
en�1 =(

o
qn�1

o
qn)

z(i) = �z(i+ 1)
p
êi=q̂i; i < n� 2

�(z) = 
n�2=kzk2

z(n� 1)2 + z(n)2 =

o
en�2
o
qn�1

 
1 +

o
en�1
o
qn

!

=
en�2qn�1

(qn�1 + sn�1)2

�
1 +

en�1qn
(qn + sn)2

�
:

30



Thus the new entries,
o
q and

o
e, are not needed explicitly and the variable

s = sn�1 = �� (1 + en�1=(qn � � )) suÆces.
As in Case 4 we sum the z(i)2; i 6= n � 2, until the sum settles down to

1% or exceeds 9=16 whichever comes �rst. In the latter case we use 1
4
� as a

default shift. Otherwise, using our latest estimate of kzk2,

� = �
�
1 �

p
kzk2 � 1

�
� 
n�2

�
1�

p
kzk2 � 1

�
=kzk2:

Recall that sn�1 < 0 and the virtue of the approximations used above lies in
the use of 
n�2 and 
n�2 < dn�2 = dmin.
Case 5 costs approximately 5 divisions (3 for the loop).

Case 6. dmin 6= dn nor dn�1 nor dn�2.
This is the typical situation in early stages. Too much caution can provoke

very slow convergence, too little caution provokes too many failures. Our
escape is to increase the fraction of dmin used if Case 6 occurred at the
previous step. This information is available free of charge.

if (Case 6 last step) then

f =
1

4
+

3

4
f

else if (Case 6 just failed)

f =
1

12
else

f =
1

4
end if

� = f � dmin

Let us consider a few instances of Case 6. If dmin is much too large so that
the selection � = 1

4dmin causes failure, and not a late failure, then � is reset
to 1

4� , i. e. dmin=16. If that succeeds we use � = 1
12 (new dmin) the next

time. On the other hand if dmin is close to �min and �min � maxj ej then
improvement with dmin=4 will be modest because the shift is too cautious.
However the next iteration uses (1=2) (new dmin) and, after that, if Case 6
persists, (2=3)(new dmin) and then (7=9)(new dmin). At some stage either
Case 6 no longer holds or a failure occurs and � is reduced.
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The treatment of Case 6 is the weak point of this implementation. If the
program is given a qd-array that has almost converged (small e's) to eigenval-
ues in non-monotonic order then the calculation will reorder the eigenvalues
slowly. The smaller the e's the slower is the reordering. Fortunately these
cases seem to be rare.

6.3.4 One Eigenvalue Found in Eigtest (n0 = n0in � 1)

We note that the values dn and dmin refer to the eigenvalue accepted in
Eigtest and de
ated. Thus we are in the position of `no eigenvalues found'
Section 6.3.3 but with less information. Essentially dmin  dmin1, dn  
dn�1 , etc. We could try to imitate the strategy in Cases 2 and 3 but with
no natural candidate for gap2. Instead we use a more powerful but more
expensive choice that we call re�ned Rayleigh quotient and describe, in de-
tail, in Section 7. Strictly speaking this is not an O(1) formula for � but, in
extensive tests, it cost no more than 6 divisions (the minimum is 4).

Cases 7 and 8.

if (dmin1 = dn�1 and dmin2 = dn�2) then

compute � (Rayleigh quotient) and krk
gap =

1

2
dmin2 � �

if (gap > 0 and gap2 > krk2) then
� = max

�
�� krk2=gap; 1

3
dmin1

�
else

� = max

�
�� krk; 1

3
dmin1

�
end if

end if

These choices correspond to formulae (8) and (7) at the beginning of Sec-
tion 6.3.2.
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Case 9, non-asymptotic case.

� =

8<
:

1
2
dmin1; if dmin1 = dn�1;

1
4 dmin1; otherwise:

6.3.5 Two Eigenvalues Found in Eigtest (n0 = n0in � 2)

In this situation dn; dn�1; dmin1 all refer to de
ated quantities. However the
re�ned Rayleigh quotient option is available. For gap we use the Gersgorin
disk for the current �n�1 provided that en�1 < qn�1=2.

Case 10, asymptotic case.

if (dmin2 = dn�2 and 2en�1 < qn�1) then

compute � (Rayleigh quotient) and krk
gap = �n�1 � �n�2 � �

if (gap > 0 and gap2 > krk2) then
� = max

�
� � krk2=gap; 1

3
dmin2

�
else

� = max

�
�� krk; 1

3
dmin2

�
end if

end if

These choices correspond to formulae (8) and (7) at the beginning of Sec-
tion 6.3.2.

Case 11, non-asymptotic case. � = 1
4 dmin2.

6.3.6 More Than Two Eigenvalues Found in Eigtest

Set � = 0.

6.4 Failure Loop

If � > �min(UL) then dj < 0 for some j < n in the dqds transform.
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The occurrence of NaN (Not a Number)
Suppose that q̂i > 0 for i < j, but q̂j = 0. Then

dj = �ej < 0

temp = qj+1=q̂j = +1
êj = ej � temp = +1

dj+1 = dj � temp� � = �1
q̂j+1 = dj+1 + ej+1 = �1
temp = qj+2=q̂j+1 = �0
êj+1 = ej+1 � temp = �0
dj+2 = dj+1 � temp� � = (�1) � (�0)� � = NaN:

Thus division by 0 for j < n � 2 causes all variables after dj+2 to be NaN,
including dmin. Our response is to set � = 0. The test is as follows

if (dmin 6= dmin) then f go to safedqdg end if:

In IEEE arithmetic NaN is the only value not equal to itself. The payo� for
having NaNs is that our inner loop in dqds is free of tests.

Convergence Masked by Negative dn
Sometimes all values of d are positive except the last which is so small

that we have convergence, in particular � + qn is evaluated as �. In such a
case it is a pity to invoke another dqds transform just because dn = qn < 0.

if (dmin < 0 and dmin1 > 0 and ên�1 is negligible

and jq̂nj is negligible) then
q̂n  � 0

dmin � jdminj
end if

Note that with the ping-pong implementation (Z �! Ẑ, Ẑ �! Z) q̂ and
ê here, will become q and e at the next invocation of Eigtest and will force
de
ation.

Late failure
If dmin1 > 0 but dmin = dn < 0 then we have `late failure'. This was

introduced by Rutishauser in [10] and specialized to our case in [3]. There
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it is shown that � + dmin is an extremely accurate lower bound on �min so
this is our next shift and is guaranteed to succeed.

Early failure
When dmin1 < 0 then we set �  �=4 and try again. This is a somewhat

panicky reaction because in many cases � is less than 0.1% too big. However
there are cases when � is much too large and we want a rapid descent of �
to 0. We allow two successive early failures before we set � = 0 to ensure
success.

Here is the pseudo-code for this segment

repeat

call Dqds(�; dmin)

it = it+ 1

if (dmin 6= dmin) then

� = 0

else if (dmin < 0) then

if (two times here) then

� = 0

else if (dmin1 > 0) then

� = � + dmin

else

� =
1

4
�

end if

end if

until dmin � 0

6.5 Check for a Split

In the context of a ping-pong implementation (Z ! ZZ; ZZ ! Z) we only
check for splits after `pong' steps ZZ ! Z. This is because it is only e-values
that are marked with ��, not ee-values. Recall that it is only after a call to
Spltck that the top index i0 can increase. See Section 3.
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The code only invokes this check if old emin < 104 "2 old qmax or if emin < "2�
and so a split is likely to be found. The test must also update emin and qmax

in case a split is found.

7 Rayleigh Quotient Residual Bounds

We present some new eigenvalue bounds that exploit the Cholesky factoriza-
tion and so we begin with more generality than needed for dqds. Let u be
any unit vector and consider one step of inverse iteration using any symmet-
ric matrix A. We invoke a speci�c A later. We employ a slightly unusual
normalization. Write

Av = u
; v
t
u = 1:

Then

�(v) =
v
tAv

kvk2 =



kvk2
and so

r = r(v) =
(Av � v�)

kvk ;

=
u


kvk �
v


kvk3 ;

=



kvk3
�
ukvk2 � v

�
:

krk =



kvk3
�kvk4 + kvk2 � 2kvk2�1=2 ; ( because v

t
u = 1)

=



kvk2
�kvk2 � 1

�1=2
= �

�kvk2 � 1
�1=2

:

Invoke the lower bound (8) from Section 6.3.2. The eigenvalue � closest to �
satis�es

� � �� krk
2

gap

= �

�
1� (kvk2 � 1)�

gap

�
: (14)

The closer kvk is to 1 the better is the bound. Now apply (14) to the case
when

A = BtB; u = (0; : : : ; 0; 1)t; and dmin = dn:
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Here

B = bidiag

� p
e1

p
e2 :

p
en�2

p
en�1p

q1
p
q2 : :

p
qn�1

p
qn

�
:

The condition dmin = dn (= qn) suggests that the last entry in v, v(n) =
u
t
v = 1, is dominant. Solving

BtBv = u


shows that 
 = qn = dn and v(j) = �pej=qj � v(j + 1), j = n � 1; : : : ; 2; 1.
Denote v(1 : n� 1) by x to �nd

kvk2 = 1 + kxk2;

= 1 +
n�1X
j=1

 
n�1Y
i=j

ei
qi

!
:

and
� =

qn
1 + kxk2 ;

so that

� � �

�
1 � kxk2�

gap

�
:

Our idea is to use this formula provided that

x2n�1 =
en�1
qn�1

� 1

2

and to calculate kxk2 correct to 1% More precisely

j = n� 1

prod =
ej
qj

sum = prod

repeat

j = j � 1

oldprod = prod

prod = prod �
�
ej
qj

�
sum = sum+ prod

until (100 �max(prod; oldprod) < sum)

sum = 1:05 � sum
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Note that we continue until two successive terms are less than sum=100 and
then we increase our estimate of kxk2 by 5%. We measured the number of
times through the loop for our test matrices and the largest value was 3. To
estimate gap we use the default procedure in Sections 6.3.4 and 6.3.5;

gap =

8<
:

3
4
dmin2� �; one eigenvalue found

�n�1 � �n�2 � �; two eigenvalues found:

Finally

if (gap > 0 and gap2 > �2 � kxk2) then
use (8) for � (�� krk2=gap)

else

use (7) for � (�� krk)
end if

8 The 2� 2 Case

There is a special subroutine SLAS2 in the BLAS for the accurate compu-
tation of the singular values of a 2 � 2 bidiagonal matrix. To invoke it here
would require the extraction of

p
q1,
p
q2,
p
e1 and the subsequent squaring

of the output. There has to be a better way. There is also a subroutine
SLAE2 for calculating the eigenvalues of a 2 � 2 real symmetric matrix but
its use would not guarantee high relative accuracy.

Our response is to tackle the case on its own merits. We seek the eigen-
values of �

q1 + e1
p
q2e1p

q2e1 q2

�
:

We may arrange that q1 � q2. Rutishauser's formulae for the eigenvalues,
see [8, Chapter 9], are

q1 + e1 + t
p
q2e1; q2 � t

p
q2e1

where t � 0 is the smaller root of the quadratic

t2 + 2

�
Æp
q2e1

�
t� 1 = 0
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and

Æ =
(q1 � q2) + e1

2
� e1

2
:

A standard formula for t is

t =

p
q2e1

Æ +
p
Æ2 + q2e1

and the larger root r may be written as

r = q1 + e1 +
q2e1
�

: (15)

In order to avoid large intermediate quantities � is computed from

� =

�
Æ[1 +

p
1 + (q2e1=Æ)=Æ]; if q2(e1=Æ) < Æ;

Æ +
p
Æ(Æ + q2e1=Æ); otherwise :

Note that e1=Æ < 2 and � >
p
q2e1. So the third term in (15) satis�es

q2e1
�
� pq2e1 � pq1e1 � 1

2
(q1 + e1)

and is below the mean of the �rst two terms. The smaller root comes from
dividing the product q1q2 by the larger root r.

From Rutishauser's formulae the smaller root is

q2 � t
p
q2e1 =

p
q2(
p
q2 � t

p
e1)

and 0 � t < 1. Thus if e1 � (macheps)2q2 then the eigenvalues are q1 and q2
to working precision and there is no need to compute �. The only subtraction
in the whole calculation is q1 � q2 � 0.

High relative accuracy follows from the fact that our algorithm can be
interpreted as one step of the dqds algorithm with shift s = the smaller root
and dqds enjoys high relative accuracy in the nonnegative case, see [3]. More
precisely q̂1 = �, q̂2 = 0, and the larger root is

r = q̂1 + ê1 + s = ((q1 � s) + e1) + e1
q2
q̂1

+ s:
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Pseudocode for the 2� 2 Case

if (q1 < q2) then swap (q1; q2) end if

if (e1 > macheps2q2) then

t = ((q1 � q2) + e1)=2

s = q2(e1=t)

if (s � t) then

s = q2e1=(t(1 +
p
1 + s=t))

else

s = q2e1=(t+
p
t(t+ s))

end if

t = q1 + (s+ e1)

q2 = q2(q1=t)

q1 = t

end if

root1 = q1(+�)

root2 = q2(+�)

9 Ping-pong Implementation

Rutishauser realized that in the context of a continued fraction it is some-
what unnatural to give di�erent names, q and e, to the variables and so he
introduced

Z = (q1; e1; q2; e2; : : : ; en�1; qn; en)

instead. This format acknowledges the `locality' in qd algorithms. The next
step is to allocate two arrays, say Z and ZZ to the algorithm. So that dqds
maps Z to ZZ or vice versa.

There are two bene�ts that accrue from doubling the storage.

1. The ping-pong implementation alternates the mappings Z ! ZZ and
ZZ ! Z and wastes no time simply moving variables from one location
to another.

2. In case of failure, when the shift � exceeds �min, it is trivial to try again
with a new shift. The old array was not altered.
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We have gone one more step in this direction. In order to improve `local-
ity' even more we use one array Z of length 4n, de�ned as follows

Z = (q1; qq1; e1; ee1; q2; qq2; e2; ee2; : : : ; qn; qqn; en; een)

where the last two values en and een are treated as zero. This notation is
hard on humans but nice for computers. The association is

q(j) = Z(4j � 3); e(j) = Z(4j � 1)

qq(j) = Z(4j � 2); ee(j) = Z(4j):

To distinguish between ping and pong we use the integer variable pp; pp = 0
for ping, and pp = 1 for pong. Here is the dqds transform in Z notation
without the code for dmin and emin.

d = Z(1 + pp) � �

for j = 1; n� 1

Z(4j � pp � 2) = d+ Z(4j + pp � 1)

temp = Z(4j + pp + 1)=Z(4j � pp � 2)

Z(4j � pp) = Z(4j + pp � 1) � temp

d = d � temp� �

end for

Z(4n � pp � 2) = d

In order to avoid unnecessary index calculations the loop is written out twice,
one for pp = 0, the other for pp = 1. The calculation moves through Z with
a local range of 6 indices at most. The reader is referred back to Section 1.1
that justi�es the use of this fast dqds code when safemin � qmax � emin.

The LAPACK convention that the user supply q's and e's as separate
arrays prevents the use of Rutishauser's sensible idea of a single qd array
and neutralizes our extension to permit the whole algorithm to operate on
a single array Z of length 4n. Our approach would not confer an advantage
until 4n exceeds the cache size.

We have experimented with writing separate subroutines for ping and
pong, thus removing the variable pp from the code. On some platforms the
di�erence in speed is noticeable but not enough to persuade us to use it.

A test in the inner loop, (if d � 0) return ,is needed for arithmetic units
that do not conform to IEEE754. See Section 13 for more details.
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10 Prologue

Cautious programming requires that we check that the input is proper,
namely

1. initial index � �nal index

2. 0 � Z(i), all i.

If either condition fails calculation is halted immediately with err set to an
appropriate value.

However there is more work to do. The top subroutine expects to receive
the data in Rutishauser's Z format, q(1); e(1); q(2); e(2); : : : and it must be
rearranged for the ping-pong implementation described in Section 9. This is
easily done by moving items from last to �rst, i. e.

for k = 2 � n; 2; �1
Z(2 � k) 0

Z(2 � k � 1) Z(k)

Z(2 � k � 2) 0

Z(2 � k � 3) Z(k � 1)

end for

At the same time we compute the sum of the data which happens to be the
trace of LU . At this time diagonal arrays are easily detected.

Note that if the trace is 0 then all the eigenvalues are 0 and the program
can terminate immediatelywith no calculation. Finally, if trace > 0 then it is
sensible to scale Z by 2m so that trace �2m is close to (over
ow threshold)1=2.
This device makes better use of the exponent range of the number represen-
tation but care must be taken to avoid over
ow in intermediate quantities
created in choosing shifts.

11 Epilogue

At the start of Epilogue

Z = (q1; qq1; e1; ee1; q2; qq2; e2; ee2; : : :)
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but all the e's are negligible. The eigenvalues are in the q's.
Move all q's to the front: Z(k)  Z(4k � 3), k = 1; n. Then we sort the
q's, if necessary, into monotone decreasing order and, at the same time, we
note the positions of any breaks in monotonicity in the q's. This knowledge
is relevant if a standard sort routine is eventually replaced by a merge-sort
routine.

m = 0

for k = 1; n

if (Z(k � 1) < Z(k)) then

m = m+ 1

Z(3 � n+m) = k

end if

end for

Finally any scaling done in Prologue is undone and the sum of the eigenvalues
is computed and stored in Z(2n + 1) for comparison with the trace that is
stored in Z(2n + 2). The value of m is stored in Z(3n).

12 Absolute or Relative Accuracy?

The attraction of the dqds algorithm is that it can compute all the eigenvalues
of a positive array with high relative accuracy with either small or no penalty
in time compared with, say, the root free QR algorithm. That is �ne, but
suppose that the user is satis�ed with absolute accuracy and wants speed.
How much faster will our algorithm perform if the acceptance tests in Eigtest
are relaxed? In addition we ask whether our algorithm can be modi�ed nicely
to allow either choice, relative or absolute, by the user? More precisely we
do not want a parameter `absrel' passed down into the low level code. The
diÆculty is that for relative accuracy the test for convergence is qn < ��
and � is changing at each step whereas for absolute accuracy we demand
qn < �kZk.

An ingenious solution was proposed by I.S. Dhillon. Create an extra
parameter eigtest and update it in the code in exactly the same way as �.
However eigtest is initialized to 0 for relative accuracy and to maxi(qi + ei)
for absolute accuracy. With this mechanism eigtest gradually rises from
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maxi(qi + ei) to maxi(qi + ei) + �max < 2�max. Any quantity less than
" eigtest is set to zero.

We found only a 10% or 15% speed up when using absolute accuracy
instead of relative. This was deemed insuÆcient improvement to warrant
inclusion.

13 Non-IEEE Platforms

If the computer system does not permit 
oating point exceptions such as
`divide by zero' or `0 �1' then it is necessary to make a test (d < 0) inside the
inner loop of dqds. Such a test prevents the eÆcient pipelined implementa-
tion of the code and causes a signi�cant degradation of performance on some
machines. The reader is referred back to Section 1.1 where a two division
version of dqd is presented. To make the code safe it is necessary to insert
an extra test immediately after q̂(i) = d + e(i),

if (d < 0) return:

To permit our code to run on any platform we pass a logical parameter ieee
to the dqds subroutine. If ieee is true then dqds (1 /div) is used, otherwise
the 2 division plus test version described here.

This slowdown in dqds (2�) raises a subtle point. The dqd transform
(� = 0) cannot fail and there is no need for the test (d < 0). Now it
happens that each iteration after which an eigenvalue is detected usually
employs a tiny or zero value of � . This suggests an alternative strategy for
the subroutine Eigtest. Instead of looking for negligible en�1 (de
ation) the
program should check for convergence (qn negligible) and when this occurs
the next iteration invokes dqd, not dqds, to make en�1 negligible. On average
25% of the iterations would use dqd with a resulting reduction in execution
time. We have not implemented this strategy in order to keep the IEEE and
non-IEEE versions as close as possible to each other.

14 Fatal Errors

If the program terminates satisfactorily the value of err is 0. On exit, a
positive value of err signals premature termination caused by a fatal error.
The �rst two cases concern invalid data. Table 1 below gives the meaning
attached to positive values. Recall the nin is the length of the q-array.
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err Subroutine Meaning

1 prologue nin < 1
2 prologue bad data: e(i) � 0 or q(i) � 0, for some i.
3 geteigs a split was marked by a positive value in e

4 geteigs current block of Z not diagonalized
after 10n iterations (in inner while loop)

5 geteigs termination criterion of outer while loop
not met. Program created more than nin
unreduced blocks.

Discussion of Table 1.

2. The program is intended to run on positive data, q(i) > 0, i = 1; nin,
e(i) > 0, i = 1; nin � 1. However zero values of e indicate that Z is a
direct sum of unreduced subarrays and the program deals with this case
naturally. We do not allow zero values of q because such data does not
come from the LU factorization of a positive de�nite tridiagonal matrix.

The values 3 and 5 should never occur. They indicate violations of
the logic of the code.

3. The program inspects the e-array for negligible values. Any such value
is overwritten by �(current value of �, the accumulated shifts). When
the time comes to process a segment that was split o� at an earlier stage
the code searches from the bottom for the �rst nonpositive e-value and
sets � to its negation. This value should never be negative.

4. We have set a maximumvalue, called big, on the number of dqds trans-
formations allowed to diagonalize an unreduced section. We have set
big to 10n for an array of length n. This is equivalent to 5n QR itera-
tions except that our shift strategy is more powerful than the Wilkinson
shift for tridiagonals. The code terminate with err = 4 if convergence
occurred but was not detected by Eigtest.

5. The outer while loop is over the unreduced subarrays of Z. With nin
entries in q the maximal number of subarrays is nin. So whila should
never attain the value nin+ 1.
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15 Timings and Comparisons

As mentioned in Section 1 the code may be used to compute singular values
of a bidiagonal matrix B as well as the eigenvalues of a symmetric tridiagonal
matrix T.

Here are the codes used in the comparisons.
DBDSQR 1.0 (the original LAPACK 1.0 code for singular values). This

is based on the Demmel-Kahan (1991) algorithm which uses a neatly coded
bidiagonal QR transformation with 0 shift to compute the small singular
values to high relative accuracy. When the singular values less than kBk=103
have been found the program switches to the standard shift strategy for the
sake of eÆciency.

DSTERF (the Pal-Walker-Kahan version of root free QR). This is LA-
PACK's current program for computing eigenvalues of T. In general the small
eigenvalues are not computed to high relative accuracy because they are not
determined to high relative accuracy by the entries in T.

DLASQ1 2.0 (the LAPACK 2.0 routine for singular values of B). This is
the �rst implementation of dqds. Work on the code was begun in Berkeley in
1992 and was completed independently by K.Vince Fernando in 1994. The
code does not assume IEEE arithmetic. The program was delivered without
enough documentation to understand the reasons for the various features and
it turned out to be signi�cantly slower than DSTERF (=PWK) for �nding
eigenvalues. This presents the user with a trade-o� between high relative ac-
curacy (when the data warrants it) and speed whereas the original promise
of the dqds algorithm (see [3]) was that it might dominate PWK on both
counts. The new code is sometimes faster and sometimes slower than PWK
but the timings are close except on the SUN Ultra 30.

We now mention a few results from extensive tests on the new version.

Arithmetic E�ort. On all cases in our challenging collection of test matrices

# divisions < 3n2;

where n is the order of the matrix. It is more informative to give an operation
count rather than the number of iterations. The coeÆcient 3 was a pleasant
surprise.
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Rejection rate. (shift exceeds �min) This varies between 0 and 6% but is
usually under 2% except for the nastiest test matrices. Recall that the shift
strategy must balance the (obvious) cost of a rejected transform and the
(subtle) cost of shifts that are too cautious. Clearly there is room for further
study of this feature.

IEEE platforms. There is a signi�cant performance payo� for using IEEE
arithmetic, in particular in�nity and NaN arithmetic (see details below). The
IEEE mode permits the code to remove a test from the inner loop of the dqds
transform, see Section 13.

Notation. Henceforth IEEE and non-IEEE refer to the LAPACK 3.0 DLASQ1
subroutine (it supersedes DLASQ1 2.0). The average speedups are as follows
in Table 1, for 3 machines: an HP712, IBM RS6000, and SUN Ultra 30 (the
results on the HP712 and IBM RS6000 were obtained with the LAPACK 3.0
code, June 30, 1999, while on the SUN Ultra 30 with the LAPACK 3.0 code,
modi�ed on December 14, 1999).

Warning
There are machines (SGI, for example) which provide an IEEE option only
by slowing down every arithmetic operation and thus negating the goal of
the IEEE 
oating point standard. On such machines the non-IEEE version
of the new code should be chosen.

HP712 IBM RS6000 SUN Ultra 30

non-IEEE / IEEE 1.70 1.80 1.28
DLASQ1 2.0 / IEEE 2.97 3.16 2.64
DSTERF / IEEE 0.92 1.02 0.65

Table 1: IEEE

Performance Comparisons.
Here are the results on 9 test matrices, which are described below, for the
same machines used in Table 1.
Here is the how the tables are organized. There are 6 rows:

Row (1) matrix dimension
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Row (2) Runtime(IEEE) in seconds

Row (3) Runtime(non-IEEE) / Runtime(IEEE). This measures the bene�t of
IEEE arithmetic. High relative accuracy is attained.

Row (4) Runtime(DLASQ1 2.0) / Runtime(IEEE). The ratios measure advan-
tages of the new code for IEEE machines.

Row (4*) Runtime(DLASQ1 2.0) / Runtime(non-IEEE). The ratios measure the
relative eÆciency of the two versions of dqds which ignore the advan-
tages of IEEE arithmetic.

Row (5) Runtime(DBDSQR 1.0) / Runtime(IEEE). The ratios measure im-
provement over the Demmel-Kahan (QR) algorithm.

Row (6) Runtime(DSTERF) / Runtime(IEEE). This row shows that there is lit-
tle or no time penalty (except on SUNs) for computing the eigenvalues
to high relative accuracy.

There are 10 columns, the last nine for the 9 test matrices, and the �rst for
the Average over all these. All runs are double precision.

HP712
From Table 2, we see that IEEE speeds up the code 27% to 83%, 70% on
average. The speed up over DLASQ1 2.0 is 1.40x to 7.48x, average 2.97x.
The speedup over the DBDSQR 1.0 averages 4.88x. The code is sometimes
faster and sometimes slower than DSTERF, 8% slower on average, but faster
if Matrix #4 is omitted.

IBM RS6000
From Table 3, we see that IEEE speeds up the code 57% to 102%, 80% on
average. The speed up over DLASQ1 2.0 is 1.34x to 8.52x, average 3.16x.
The speedup over DBDSQR 1.0 averages 5.37x. The code is sometimes faster
and sometimes slower than DSTERF, 2% faster on average, 8% if Matrix #4
is omitted.

SUN Ultra 30
From Table 4, we see that IEEE speeds up 34%, 28% on average. The speed
up over DLASQ1 2.0 is 1.15x to 7.82x, average 2.64x. The speedup over
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Avg #1 #2 #3 #4 #5 #6 #7 #8 #9

(1) 330 494 496 500 966 1687 2000 2000 2053
(2) 0.08 0.21 0.25 0.01 0.77 2.59 3.92 3.72 2.95
(3) 1.70 1.61 1.78 1.83 1.27 1.73 1.77 1.75 1.76 1.82
(4) 2.97 1.40 7.48 1.78 4.18 1.57 1.60 1.40 1.52 5.82
(4*) 1.78 0.87 4.20 0.97 3.29 0.91 0.90 0.80 0.86 3.20
(5) 4.88 3.36 4.51 8.82 3.00 4.66 4.72 5.10 4.62 5.14
(6) 0.92 0.66 1.01 1.21 0.27 0.99 0.99 1.09 1.01 1.09

Table 2: HP712

Avg #1 #2 #3 #4 #5 #6 #7 #8 #9

(1) 330 494 496 500 966 1687 2000 2000 2053
(2) 0.08 0.20 0.24 0.01 0.73 2.68 4.36 3.88 2.85
(3) 1.80 1.68 1.92 1.95 1.57 1.89 1.85 1.56 1.79 2.02
(4) 3.16 1.48 8.52 1.95 5.29 1.82 1.69 1.34 1.59 4.73
(4*) 1.74 0.88 4.44 1.00 3.37 0.96 0.91 0.86 0.89 2.34
(5) 5.37 3.68 4.90 9.55 5.43 5.17 4.76 4.78 4.66 5.44
(6) 1.02 0.69 1.23 1.24 0.57 1.21 1.11 0.97 1.12 1.10

Table 3: IBM RS6000

DBDSQR 1.0 averages 2.75x. The code is 35% slower than DSTERF on
average, 31% if Matrix #4 is omitted.

Avg #1 #2 #3 #4 #5 #6 #7 #8 #9
(1) 330 494 496 500 966 1687 2000 2000 2053
(2) 0.04 0.08 0.06 0.004 0.40 1.40 1.94 2.04 1.57
(3) 1.28 1.23 1.34 1.29 1.20 1.26 1.28 1.33 1.27 1.28
(4) 2.64 1.23 7.82 1.35 4.61 1.25 1.27 1.15 1.19 3.91
(4*) 2.06 1.00 5.85 1.04 3.86 0.99 0.99 0.86 0.94 3.04
(5) 2.75 2.11 3.29 3.74 2.24 2.54 2.51 3.03 2.46 2.81
(6) 0.65 0.51 0.89 0.72 0.34 0.66 0.64 0.77 0.65 0.71

Table 4: SUN Ultra 30
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Descriptions of test matrices: all except #7 and #8 have clusters of close
values.

#1 
330. This is a glued Wilkinson matrix-type bidiagonal B. Start with an
11 by 11 bidiagonal with diag = (1,11,21,31,41,51,41,31,21,11,1) and 10
o�-diagonal 1's. 30 copies of this are joined together by an o�-diagonal
entry 
 = 10�4.
The next 2 matrices were produced by Dr. I. S. Dhillon, IBM, Almaden.

#2 inder 494. The eigenvalues are selected in geometric progression from
macheps to 1.0 but with a random sign. The leftmost eigenvalue was
approximately -0.86 so the matrix was translated by 0.86 to make its
smallest eigenvalue macheps. Consequently there is a concentration at
0.86.

#3 inder 496. A tight cluster of 247 eigenvalues at macheps, another tight
cluster of 248 at 2.0, and a singleton at 1.0.

#4 lapack 500. A random bidiagonal matrix with each entry of the form
ex where x is chosen uniformly from the interval [2 ln(ulp); �2 ln(ulp)].
For double precision ulp � 2 � 10�16.

Three symmetric tridiagonal matrices supplied by George Fann of the
Paci�c Northwest Laboratories (Washington). They arise from re-
duction to tridiagonal form of matrices generated in the modeling of
molecules using Moller Plesset theory. The �rst two arrived positive
de�nite and the third was made so by a suitable translation. Their
chief feature is the presence of large clusters of eigenvalues agreeing to
more than three decimals.

#5 fann 966, #6 fann 1687, #9 fann 2053

#7 tridiagonal [1 2 1] matrix.

#8 bidiagonal from random normal(0,1) dense matrix (a "random" exam-
ple).

Additional experiments.
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Additional tests were performed on the SUN Ultra 30, using matrices de�ned
in the same way as #4 above. We looked at the smallest eigenvalues of
the matrices to see the e�ects of under
ow, as shown in Tables 5, 6 and
7. We have paid a modest performance penalty in order to guard against
unnecessary under
ows, see Section 1.2, and these examples show the reward.
DLASQ1 2.0 does not deliver high relative accuracy in the small eigenvalues
in these admittedly extreme cases.
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