New Complex Parallel Eigenvalue and Eigenvector
Routines

Mark R. Fahey
Computational Migration Group
Computer Sciences Corporation

U.S. Army Engineer Research and Development Center
Major Shared Resource Center
Vicksburg, MS 39180

Two new codes for computing the eigenvalues and eigenvectors of a complex Hessenberg matrix are
presented. The first computes the Schur decomposition of a complex Hessenberg matrix, while the
second computes the eigenvectors of a complex upper triangular matrix. These subprograms have
been developed to fill a void in the ScaLAPACK library. Now, the capability exists to compute
the eigenvalues and eigenvectors of dense complex matrices using a parallel QR algorithm.

The parallel complex Schur decomposition routine was developed based on the parallel real
Schur decomposition routine provided in ScaLAPACK. The real code was appropriately modified
to make it work with complex arithmetic and implement a complex multiple bulge QR algorithm.
This also required the development of new auxiliary routines that perform essential operations
in the complex Schur decomposition, and that will provide additional linear algebra computation
capability to the ScaLAPACK community.

A parallel eigenvector calculation routine was also developed. This routine can take the output
from the parallel Schur decomposition subprogram and compute the eigenvectors for the original
complex Hessenberg matrix.

Categories and Subject Descriptors: D.1.3 [Programming Techniques|: Concurrent Program-
ming—distributed programming, parallel programming; G.1.3 [Numerical Analysis]: Numerical
Linear Algebra—eigenvalues and eigenvectors

General Terms: Parallel programming

Additional Key Words and Phrases: Parallel QR algorithm, Schur decomposition, ScaLAPACK,
complex matrices, eigenvalue, eigenvector

1. INTRODUCTION

In this work, two new parallel codes for computing the eigenvalues and eigenvec-
tors of a complex Hessenberg matrix are discussed. The first computes the Schur
decomposition of a complex Hessenberg matrix, while the second computes the left
and/or right eigenvectors of a complex upper triangular matrix.

The conversion of the ScaLAPACK [Blackford et al. 1997] code PDLAHQR to a
complex implementation is presented. PDLAHQR computes the Schur decomposition
of a real matrix in parallel using a multiple bulge QR algorithm. Therefore, this
new implementation, called PZLAHQR, computes the Schur decomposition of a com-
plex matrix in parallel using a multiple bulge strategy. In addition, a parallel code
was developed to compute the left and/or right eigenvectors of an upper triangu-
lar matrix. This code is denoted as PZTREVC. Since the output from PZLAHQR is

New Complex Parallel Eigenvalue and Eigenvector Routines . 3

standard Schur form, PZLAHQR and PZTREVC can be used in conjunction with ex-
isting ScaLAPACK routines to compute eigenvalues and eigenvectors of a general
complex matrix in parallel. The names of these new codes follow the ScaLAPACK
convention.

The work by Henry, Watkins, and Dongarra [Henry et al. 1997] is the primary
reference on the parallel nonsymmetric QR algorithm design. Their paper includes
many details that will not be repeated here and should be used in addition to this
work.

In Section 2, both the sequential single bulge and and multiple bulge QR al-
gorithms are reviewed. In Section 3, highlights of the parallel nonsymmetric QR
algorithm are presented from [Henry et al. 1997]. The conversion of the real parallel
nonsymmetric QR algorithm to complex arithmetic is discussed in Section 4. In
Section 5, a parallel complex eigenvector calculation routine is presented. Scalabil-
ity results for PZLAHQR and PZTREVC are shown in Section 6. Concluding remarks
are given in Section 7. Appendix A contains a list of all the codes discussed with a
short description for each.

2. SEQUENTIAL QR ALGORITHM REVIEW

The implicit shifted QR algorithm has been a successful serial method for comput-
ing the Schur decomposition

H=QTQ"

where H is a Hessenberg matrix, () is an unitary matrix, and 7T is an upper tri-
angular matrix. The initial matrix H is assumed to be Hessenberg for simplicity
since the reduction to Hessenberg form is a well understood problem and has been
shown to parallelize well [Berry et al. 1994; Dongarra and Van de Geijn 1992].

The Schur decomposition is computed by iteratively applying orthogonal similar-
ity transformations to the Hessenberg matrix H until it becomes upper triangular.
This process, known as the QR algorithm, performs QR iterations implicitly by
chasing bulges down the subdiagonals of the upper Hessenberg matrix H [Golub
and Van Loan 1996; Watkins 1991]. Each iteration begins by choosing shifts that
accelerate convergence and using them to form a bulge. The bulge is then chased
down the subdiagonals to complete the iteration.

2.1 Single Bulge

The Francis double implicit shifted QR algorithm has long been the standard serial
version for real matrices. One step of the Francis QR algorithm is presented in
Figure 1.

The Householder matrices in Figure 1 are unitary transforms of the form:

P, =1— ool (1)

where 7 € C and 1 < || < 2 and v € C" [Lehoucq 1994].

The Francis QR step begins each iteration by choosing two shifts and using
them to form a bulge of degree 2. The bulge is then chased from top to bottom to
complete the iteration. The shifts are usually taken to be the eigenvalues of the 2x 2
submatrix at the lower right; this is commonly referred to as the Wilkinson shift
strategy. One could also use some larger number, say M, of shifts by computing

4 . M. Fahey

Francis QR Step
e=eig(H(n—1:n,n—1:n))
Let z = (H —e(1)In) * (H — e(2)I)
Let Py € C**™ be a Householder matrix
such that Ppx is a multiplie of e
H «+ P()HP()
fori=1,...,n—2
Compute P; so that P; H has zero
(i + 2,4) and (i + 3,%) entries
Update H < P;H;P;
Update Q +— QF;
endfor

Fig. 1. Sequential Single Bulge Francis QR Step

the eigenvalues of the lower right hand submatrix or order M. This leads to the
multiple bulge QR algorithm discussed in the next section.

2.2 Multiple Bulge QR Algorithm

To chase multiple bulges simultaneously, the double-shift strategy is inadequate
because the shifts for the next iteration cannot be calculated until the current
bulge has been chased to the bottom of the matrix. A strategy proposed in [Bai
and Demmel 1989] is to compute the eigenvalues of the lower M x M submatrix as
the shifts. There are then enough shifts to chase M/2 bulges before new shifts are
needed. In [Watkins and Elsner 1991], it was proved that this results in quadratic
convergence like the double-shift QR algorithm. Each cycle of computing M shifts
and chasing M /2 bulges is referred to as a super-iteration. One super-iteration of
the general sequential multiple bulge algorithm is presented in Figure 2.

Multiple Bulge QR Super-Iteration
e=eig(Hn—m+1:n,n—m+1:n))
for k=0,....,n—6+4+2m

for j =m,m—2,m—4,...,2
i=k—2j+4
ifi <0 then P, =1
ifi=0

Let 2 = (H —e(j — 1)In) x (H —e(j)In)er
Let P; € C"X™ be a Householder matrix
such that P;x is a multiple of ey
ifl<i<n-—-2
Compute P; so that P;H has zero (i + 2,14)
and (% + 3,1) entries
ifi>n—2then P, =1
endfor
endfor

Fig. 2. Sequential Multiple Bulge QR Super-Iteration

New Complex Parallel Eigenvalue and Eigenvector Routines . 5

In Figure 2, the ¢ index is similar in function to the ¢ index in the algorithm
shown in Figure 1. Since there are M/2 bulges, some start-up and wrap-up costs
exist (see [Henry et al. 1997] for more details).

3. PARALLEL QR ALGORITHM

A parallel nonsymmetric QR algorithm for real matrices was implemented in the
code PDLAHQR as part of ScaLAPACK. The algorithm used in PDLAHQR is similar
to the LAPACK routine DLAHQR. However, unlike DLAHQR, instead of sending one
double-shift through the largest unreduced submatrix, this algorithm sends multi-
ple double-shifts. This allows all bulges to carry out up-to-date shifts and spaces
them apart so that there can be parallelism across several processor row/columns.
Another critical difference is that this algorithm applies multiple double-shifts in
a block fashion, as opposed to DLAHQR, which applies one double-shift at a time.
Note that the LAPACK code xHSEQR is a multiple shift, single bulge QR algorithm
implementation.

This is the approach taken in [Henry et al. 1997] where M shifts are obtained
from the lower M x M submatrix, where M is a fairly large even number (say 40),
and used to form S = M/2 bulges of degree two and chase them one after the other
down the subdiagonal in parallel.

Details of this approach are discussed by Henry, Watkins, and Dongarra [Henry
et al. 1997]; their key observations pertaining to parallelization are as follows:

—The most critical difference between serial and parallel implementations of the
QR algorithm is that the number of bulges must be chosen to keep the processors
busy. The bulges must be separated by at least a block, and remain synchronized,
to ensure that each row/column of processors remains busy. Usually the block
size must be large; otherwise there will be too much boundary communication.

—The overall logic can be kept similar to the well-tested QR algorithm. The super-
iteration can be implemented to complete before new shifts are determined and
another super-iteration is begun. Information about the “current” unreduced
submatrix must remain global to all nodes.

—The Householder transforms are of size 3, which means they are specified by
sending 3 data items. The latency associated with sending many such small
messages would be ruinous, so the information from several (e.g., 30) Householder
transformations is bundled in each message.

—If many bulges are being chased simultaneously, there may be several bulges per
row or column of processors. In that case, latency can be reduced further by
combining the information from all bulges in a given row or column into a single
message.

This concludes a brief review of a parallel multiple bulge QR algorithm and the
solver PDLAHQR based on this approach. In what follows, a complex version of the
multiple bulge nonsymmetric QR algorithm is developed.

4. CONVERSION OF PDLAHQR TO PZLAHQR

The original need to develop a parallel complex Schur decomposition routine arose
during the migration of a researcher’s code from a scalar to parallel platform. The

6 . M. Fahey

most time-consuming computational task in this code was computing the full eigen-
decomposition of a dense complex matrix. Without the time or resources to develop
an entire parallel code from start to finish, the decision was made to convert the
existing ScaLAPACK code PDLAHQR to a complex implementation. This would have
the drawback of not developing a parallel code based on the multiple single-shift
strategy usually associated with complex QR algorithms. Counterparts to the aux-
iliary codes developed with PDLAHQR had to be developed, as well as developing
a serial complex double-shift QR algorithm counterpart ZLAHQR2 to the LAPACK
code DLAHQR. LAPACK already has a routine named ZLAHQR that employs a single-
shift strategy.

In the following subsections, new auxiliary routines needed in the development of
PZLAHQR are discussed as well as PZLAHQR itself. For a full list of all codes associated
with the routines presented here, see Appendix A.

4.1 Sequential Complex Double-Shift QR Algorithm

The first step in developing the parallel complex nonsymmetric Schur decomposition
routine was to implement a serial complex double-shift QR algorithm (ZLAHQR2).
This was done by converting the LAPACK single-shift routine ZLAHQR to a double-
shift algorithm. This required minimal, but subtle changes.

Two of the more important modifications to implement this double-shift strategy
are as follows:

(1) At the beginning of the QR step, if two consecutive small subdiagonals are
found, update a subdiagonal element by the factor of 1 — 7 (see Equation 1)
instead of waiting until the end of the QR step. This is similar to the real code,
where the update factor is —1.

(2) Since the double-shift strategy only reduces the Hessenberg matrix to quasi-
triangular form with 2 x 2 blocks on the diagonal, these blocks must be further
reduced to triangular form. Then, if necessary, the reduction transformation
(rotator matrix) must be applied to the appropriate matrix rows and columns.

The double-shift strategy produces eigenvalues that appear one at a time or in
pairs. For real matrices, it is important that any QR algorithm implementation
couples a complex eigenvalue with its complex conjugate, which is also an eigen-
value. In fact, most QR algorithm implementations take great care to produce
complex conjugate eigenvalues whose real components are equal and whose imag-
inary components are equal in magnitude to full precision. However, for ZLAHQR2
and PZLAHQR to be presented later, each pair of eigenvalues it finds will not neces-
sarily be a complex conjugate pair. In fact, even if a complex matrix has complex
conjugate eigenvalues, this code does not pair them up and consequently does not
ensure that the real components are identical or that the imaginary components
have the same magnitude.

The LAPACK testing suite was used to experimentally test this new serial double-
shift code. The results were then compared to those resulting from testing the LA-
PACK single-shift code ZLAHQR. The testing suite performs 12 tests on 21 different
matrix types for the input parameters. Each of the 12 tests computes a residual
value that should be of order one. For a threshhold of 10 or larger, both codes
pass all tests. It is noteworthy that the computed residuals for a few tests, which

New Complex Parallel Eigenvalue and Eigenvector Routines . 7

check orthogonality of the computed unitary matrices, are found to be larger than
5 for both codes. The development of this routine was necessary as a model for
the parallel complex Schur decomposition code to be written. All the modifications
necessary to transition the QR algorithm from a single-shift to a double-shift as
well as those to move from a real to a complex double-shift would be utilized in the
development of the new parallel code.

4.2 2 x 2 Schur Decomposition

In the previous section, it was noted that the 2 x 2 blocks that are formed along
the diagonal must be further reduced to upper triangular form, i.e.,

MR

A routine to compute this decomposition was developed and is denoted as ZLANV2.
This routine is needed by ZLAHQR2 and also by PZLAHQR, which is discussed below.
For both codes, the rotator matrix (composed of cosine ¢ and sine s values) is then
applied to the corresponding rows and columns of the matrix where the reduced
2 x 2 block is located. For ZLAHQR2, one can use the LAPACK routine ZROT to
perform this application. However, for PZLAHQR, there is no code to apply a rotator
to distributed matirx. Therefore, the application of this rotator to a distributed
matrix is addressed next.

4.3 Parallel Application of Rotator Matrix

The efficient application of a 2 x 2 rotator in parallel to two rows (or columns) of
a distributed matrix requires some careful attention. The ScalLAPACK approach
involves a 2-D block-cyclic distribution of the matrix over a 2-D process grid. The
rows to be acted on by the rotator may reside on different process rows as well
as being distributed column-wise. Although each processor will have the rotator
matrix, each processor will not have all the necessary matrix information. To
efficiently address this issue, a work array for every process is required. Each
process, if needed, will receive a copy of the remote information it needs to update
its locally owned row(s). Then each process can apply the rotator to its row(s) and
work array in serial using ZROT. At this point, the matrix rows have been updated
and no further communication is needed. This process has been implemented in
the PBLAS-like routine PZROT. Since this code uses dynamic memory allocation for
the work array, the routine is coded in C following the LAPACK and ScaLAPACK
convention.

4.4 Parallel Complex QR Algorithm

With the aforementioned support routines and several auxiliary routines (listed in
Appendix A) in place, all that remained was the implementation of PZLAHQR itself.
To achieve this, the real code PDLAHQR was converted to a complex implementation.
The two most important modifications were as follows:

(1) Similar to the sequential version, at the beginning of the QR step if two consec-
utive small subdiagonals are found, update a subdiagonal element by a factor
of 1 — 7 (see Equation 1.) This is in comparison to PDLAHQR where the update

8 . M. Fahey

factor is always —1. In one particular location in the code, this meant intro-
ducing a coupled send and receive so that an up-to-date copy of 7 can be used
on the appropriate process.

(2) When 2 x 2 blocks are formed along the diagonal, they must be transformed to
standard Schur form, which requires the use of ZLANV2. Then the corresponding
rows and columns must be updated by PZROT.

Asin PDLAHQR, PZLAHQR calls its serial counterpart ZLAHQR to compute eigenvalues
of submatrices. The double-shift ZLAHQR2 or the LAPACK single-shift ZLAHQR
subprogram may be used to do this task in PZLAHQR.

5. EIGENVECTOR CALCULATION

PZLAHQR computes the Schur form of a complex Hessenberg matrix. Although the
eigenvalues are on the diagonal of the upper triangular matrix, the Schur decom-
position does not produce the eigenvectors. Thus, additional calculations must be
performed to compute the eigenvectors of the upper triangular matrix produced by
PZLAHQR. The eigenvector matrix can then be postmultiplied by the unitary matrix
obtained in the Schur decomposition to give the eigenvectors of the original Hes-
senberg matrix. Another parallel routine was developed, PZTREVC, that computes
some or all left and/or right eigenvectors of a complex upper triangular matrix, i.e.,

Txr =Mz and/or yHIT = Mz

where T' is upper triangular, and y are right and left eigenvectors, respectively,
and A is an eigenvalue. Together, PZLAHQR and PZTREVC can be used to compute the
eigenvalues and eigenvectors of a complex Hessenberg matrix. Since ScaLAPACK
already has a routine to reduce a nonsymmetric complex matrix to Hessenberg
form, one can now compute the eigendecomposition of a complex nonsymmetric
matrix in parallel.

The eigenvalues of T are t11,t22,...,tnn, which are assumed to be distinct.
To find a (right) eigenvector associated with ¢;;, the homogeneous equation (T' —
t;;I)v = 0 must be solved. With the partition

where T1; € C**? and v; € C?, the equation (T — t;;)v = 0 becomes

Tllvl +T12’U2 =0

Toovy = 0
The submatrices 777 and T, are upper triangular and T, is nonsingular because
its main diagonal entries are nonzero. Thus, the subvector v, must be 0. The

equations then reduce to Ty1v1 = 0. Since the (4,4) entry of Ty is zero, this latest
homogeneous equation can be written

0.0 0) [w] = o]

where 7' is the leading (i — 1,7 — 1) submatrix of Ty; (and T), r is the leading
i — 1 subvector of column i of 771, and ¢ is the first ¢ — 1 elements of v. Let w be

New Complex Parallel Eigenvalue and Eigenvector Routines . 9

any nonzero number, say 1, then back substitution can be used to solve for v and
consequently yield an eigenvector. The eigenvector associated with ¢;; is

-1

r
1 ith

element

The right eigenvectors are computed via backward substitution using the PBLAS. A
similar technique is used to compute the left eigenvectors using forward substitution
routines from the PBLAS.

Note that this algorithm may give inaccurate results if the eigenvectors are ill-
conditioned. Furthermore, in the calculation of —Tflr, overflow may occur. This
can be controlled by the use of scaling. The LAPACK developers implemented a
routine named ZLATRS that controls the scaling of elements in the solution of a
triangular linear system. ZLATRS estimates a bound for the solution vector. If the
estimate is less than the overflow threshold,! then scaling is not necessary and the
BLAS routine ZTRSV is used to compute the solution. Otherwise, an in-lined solver
is used that checks for possible overflow, scaling the solution vector as necessary.

The LAPACK code ZTREVC uses ZLATRS to compute the left and/or right eigen-
vectors of complex upper triangular matrices. For PZTREVC, a corresponding paral-
lel solver, PZLATRS, was implemented to control scaling in the computation of the
eigenvectors.

6. NUMERICAL RESULTS

In this section, timings are presented to show the scalability of PZLAHQR and
PZTREVC. The numerical tests were carried out on an SGI Origin 2000, IBM SP2,
and IBM Power3 SMP at the U.S. Army Engineer Research and Development
Center (ERDC) Major Shared Resource Center (MSRC). See Table 1 for more
information on each machine.

Table 1. Parallel computing platforms at the ERDC MSRC used to test PZLAHQR and PZTREVC.

Processor Mflops/s per Processors Number Peak
Machine Speed (MHz) processor Per node Nodes Gflops/s
SGI Origin 2000 195 390 2 64 49.9
IBM SP2 135 540 1 255 137.7
IBM Power3 SMP 222 888 8@ 64 454.6

@Current hardware limitation of a maximum of four MPI processes per node.

All routines are implemented in Fortran 77, except for PZROT, which is coded
in C. All routines were compiled using optimization flags -03, -03 -qarch=pwr2

IThe overflow threshold is one divided by the safe minimum as computed by the LAPACK routine
PDLAMCH.

10 . M. Fahey

-qtune=pwr2 -gmaxmem=-1,and -03 -qarch=pwr3 -qtune=pwr3 -gmaxmem=-1for
the SGI Origin 2000, the IBM SP2, and the IBM Power3 SMP, respectively. For
runs on the IBM Power3 SMP, the environment variable MP_SHARED _MEMORY was
set to YES. All tests were run during normal operation hours in a nondedicated
environment.

6.1 Fixed Problem Size Scalability of PZLAHQR

The timing results were performed using a modified version of the ScaLAPACK
testing software for PDLAHQR to call PZLAHQR instead. All timing results are for the
computation of the standard Schur form of a Hessenberg matrix with random en-
tries.2 A two dimensional block-cyclic data decomposition was used with a blocking
factor of 100. Only square processor grids were used, but this is not a requirement.
Any type of rectangular processor grid may be used. Note that the amount of data
is O(N?), and the run-time on a single processor is O(N3).

In Tables 2, 3, and 4 the execution time in seconds for computing the complete
Schur decomposition on an SGI Origin 2000, an IBM Power3 SMP, and an IBM
SP2, respectively, is reported. The first line in the tables reports the timings for
ZHSEQR from the LAPACK library. ZHSEQR is the sequential multiple single-shift
QR algorithm for complex Hessenberg matrices. The remaining lines show the
timings for PZLAHQR for various square processor grids.

Table 2. Execution time in seconds to compute a complex Schur decomposition on an SGI Origin
2000.

Execution time in seconds - SGI Origin 2000
Proc. grid Matrix Order
mp X np 500 1000 1500 2000 2500 3000
1 64 521 1740
1x1 66 552 1849
2 X2 23 155 568 1229 2417 4097
3 x3 16 91 287 707 1278 2312
4 x4 14 60 180 383 793 1123

Table 3. Execution time in seconds to compute a complex Schur decomposition on an IBM
Power3 SMP.

Execution time in seconds - IBM Power3 SMP
Proc. grid Matrix Order
mp X np 500 1000 1500 2000 2500 3000
1 40 321 1108 2568
1x1 39 318 1106 2577
2 X 2 14 106 340 764 1574 2514
3 X3 9 58 198 428 813 1399
4x4 8 36 106 238 436 700

2See ScaLAPACK installation guide [Choi et al. 1995].

New Complex Parallel Eigenvalue and Eigenvector Routines . 11

Table 4. Execution time in seconds to compute a complex Schur decomposition on an IBM SP2.

Execution time in seconds - IBM SP2

Proc. grid Matrix Order
mp X np 500 1000 1500 2000 2500 3000

1 54 670 1500 3514

1x1 54 448 1502 3471
2x2 21 154 521 1387 2546 4279
3 x3 13 83 269 632 1417 1957
4 x4 12 52 154 339 862 1088

The results in Tables 2, 3, and 4 show that for fixed N, PZLAHQR scales well as
the number of processors increases.

In addition, there are some timings that are missing from the tables for sequential
runs. The missing data are due to memory limitations. The code written to test
PZLAHQR creates one large array for which all matrix and vector storage is used.
For the sequential cases, this array must be so large that it would require 64-bit
addressing to access the entire array. The Basic Linear Algebra Communication
Subprograms (BLACS) are built with MPT as the underlying communication inter-
face on the machines tested. Only the SGI Origin 2000 currently supports 64-bit
compilation of MPI programs. Thus, it would have only been possible to do the
larger sequential tests on the Origin 2000 if the code had been recompiled with
64-bit addressing.

6.2 Scaled Problem Size Scalability of PZLAHQR

Next, the scalability of PZLAHQR is further investigated by calculating speedup and
efficiency ratings based on the computed aggregate megaflop rate as the problem
size and the number of processors increase. Assume that the flop count to compute
the Schur decomposition is 18 N3, where N is the order of the matrix [Blackford

et al. 1997].
Let efficiency with respect to megaflop rate be defined as
M,
Ep=—2F
" PM,

where M), is the megaflop rate on P processors and M, is the serial megaflop rate.
The speedup with respect to megaflop rate

Sr =PEr

is the factor by which execution time is reduced on P processors.

In Table 5, the time in seconds to compute the Schur decomposition for increasing
larger problems and larger processor grids is shown. Notice that the efficiency
ratings are much higher for the processor grids that are evenly divisible by four in
Table 5. In fact, the megaflop rate per processor for the processor grids divisible by
four stays approximately constant around 47. The IBM Power3 SMP currently has
amaximum of 4 MPI processes per node, and intranode messages are communicated
significantly faster than internode messages. For processor grids not evenly divisible
by four, the batch system must be set to either use less MPI processes per node
to balance the number of processes across nodes or to use four MPI processes per

12 . M. Fahey

Table 5. Speedups and efficiencies based on the megaflop rate for the IBM Power3 SMP.

Speedups and efficiencies for IBM Power3 SMP

Proc. grid IBM Power3 SMP

mp X np N Time Mflops/s Spg Ep
1x1 2000 2577 55.9 1.0 1.00
2x2 4000 5975 192.8 3.5 0.86
3 x3 6000 | 13550 286.9 51 0.57
4 x4 8000 | 12526 735.8 13.2 0.82
5%X5 10000 | 23712 759.1 13.6 0.54
6 X6 12000 | 18078 1720.4 30.8 0.85
8 x 8 16000 | 24471 3012.9 53.9 0.84

node with one node using less than four MPI processes. For example, with a 3 x 3
processor grid, an efficiency of 0.73 is obtained if the machine is set to use three
MPT processes on three nodes instead of a four-four-one setup on three nodes that
had an efficiency of 0.57 (as shown in Table 5). Thus, the variable efficiencies are
a by-product of the hardware, not the code.

The data in Table 5 are also displayed in Figure 3 and clearly shows linear
scalability for processor grids divisible by four.

6.3 Fixed Problem Size Scalability of PZTREVC

Similar to the PZLAHQR tests, PZTREVC was tested using a modified version of the
ScaLAPACK testing software for PDLAHQR. All timing results are for the compu-
tation of left and right eigenvectors of an upper triangular matrix with random
entries. A blocking factor of 100 was used for the 2D block-cyclic data decomposi-
tion. As before, only square processor test grids were used, but this is not necessary.
In Table 6, the execution time in seconds for computing right and left eigenvectors
on an SGI Origin 2000 are presented. The timings are shown for various processor
grids.

Table 6. Execution time in seconds to compute the left and right eigenvectors of a complex upper
triangular matrix using PZTREVC on an SGI Origin 2000.

Execution time in seconds
Proc. grid Matrix Order
mp X np 500 1000 1500

1x1 5 27

2 X 2 4 19 56
3 X3 5 18 45
4 x4 4 17 38

Larger problem sizes were tested, but these required the use of PZLATRS to control
scaling (see section 5.) When solving the triangular system for matrices of order
greater than 1500, some entries of the right-hand sides (eigenvectors) become very
large and overflow. With PZLATRS, scaling was used to control overflow, but the
timings were significantly longer than would have been observed if PZTRSV had been
used to solve the system. Thus, timings are not reported for matrix orders larger
than 1500 where use of PZLATRS is necessary.

New Complex Parallel Eigenvalue and Eigenvector Routines . 13

25 x10* Schur decomposition of complex Hessenberg matrix
. T T

5x5

&)

Time in seconds

05

0 1 1 1 1 1 1
2000 4000 6000 8000 10000 12000 14000 16000
Matrix Order

Fig. 3. Time in seconds to compute Schur decomposition of a complex Hessenberg matrix on an
IBM Power3 SMP using increasing larger processor grids as the order of the matrix increases.

7. CONCLUDING REMARKS

A new parallel complex Schur decomposition routine PZLAHQR has been imple-
mented based on the ScaLAPACK code PDLAHQR. Results were shown for PZLAHQR
and showed that this routine scales nicely with the number of processors. Several
auxiliary subroutines were developed to support this routine that will be useful
outside the scope of PZLAHQR.

In addition, a parallel eigenvector calculation routine PZTREVC was developed for
complex upper triangular matrices. Also, a new version of PZLATRS was developed
that uses scaling to control potential overflow. However, PZLATRS requires further
work to improve its scalability.

These codes are proposed additions to a future release of the ScaLAPACK li-
brary.?

3To obtain a copy of the codes, please send e-mail to Mark R. Fahey at mfahey@wes.hpc.mil.

14 . M. Fahey

ACKNOWLEDGMENTS

The author thanks Greg Henry for his advice early in this project. The author also
thanks Dan Duffy and William Ward for their comments. Parallel runs were done
on the SGI Origin 2000, IBM SP2, and IBM Power3 SMP at the U.S. Army En-
gineer Research and Development Center (ERDC) Major Shared Resource Center
(MSRC). This work was supported in part by a grant of computer time from the
DoD High Performance Computing Modernization Program at the ERDC MSRC,
Vicksburg, MS.

APPENDIX
A. LIST OF CODES

A list of all the codes developed from this work is given below with short descriptions
for each. Codes that begin with a P are parallel implementations. First, PZLAHQR
and its auxiliary routines are listed, then PZTREVC and its auxiliary routines.

—PZLAHQR routine used to find the Schur decomposition and/or eigenvalues of a

matrix already in Hessenberg form

—PZLACONSB looks for two consecutive small subdiagonal elements checking the
effect of starting a double shift QR iteration to see if this would make a sub-
diagonal negligible

—PZLASMSUB looks for a small subdiagonal element from the bottom of the matrix
that it can safely set to zero

—PZLAWIL computes a transform given elements of Hessenberg matrix

—PZROT applies a plane rotation

—ZLAHQR2 auxiliary routine to compute the Schur decomposition and/or eigen-
values of a matrix in Hessenberg form using a double-shift QR algorithm

—ZLAMSH sends multiple shifts through a small matrix to see how consecutive
small subdiagonal elements are modified by subsequent shifts in an effort to
maximize the number of bulges

—ZLANV2 computes the Schur factorization of a complex 2 x 2 matrix

—PZTREVC computes some or all of the left and/or right eigenvectors of a complex
upper triangular matrix
—PZLATRS solves a triangular system with scaling to prevent overflow

REFERENCES

Bal, Z. AND DEMMEL, D. 1989. On a block implementation of Hessenberg multishift QR it-
eration. Int. J. High Speed Comput. 1,97-112. Also Argonne National Laboratory Technical
Report ANL-MCS-TM-127, 1989.

BERRY, M. W., DONGARRA, J. J., AND KiM, Y. 1994. A highly parallel algorithm for the
reduction of a nonsymmetric matrix to block upper-Hessenberg form. Computer Sciences
Dept. Technical Report CS-94-221 (Feb.), University of Tennessee, Knoxville, TN. LA-
PACK Working Note #68.

BLACKFORD, L. S., CHol, J., CLEARY, A., D’AzEVEDO, E., DEMMEL, J., DHILLON, I., DON-
GARRA, J., HAMMARLING, S., HENRY, G., PETITET, A., STANLEY, K., WALKER, D., AND
WHALEY, R. C. 1997. ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA.

CHOI, J., DEMMEL, J., DHILLON, I., DONGARRA, J., OSTROUCHOV, S., PETITET, A., STAN-
LEY, K., WALKER, D., AND WHALEY, R. C. 1995. Installation guide for ScaLAPACK.

New Complex Parallel Eigenvalue and Eigenvector Routines . 15

Computer Sciences Dept. Technical Report CS-95-280 (March), University of Tennessee,
Knoxville, TN. LAPACK Working Note #93.

DONGARRA, J. J. AND VAN DE GEIIN, R. 1992. Reduction to condensed form on distributed
memory architectures. Parallel Computing 18, 973-982.

GoLuB, G. H. AND VAN LoaN, C. F. 1996. Matriz Computations (Third ed.). The Johns
Hopkins University Press, Baltimore, MD.

HENRY, G., WATKINS, D., AND DONGARRA, J. 1997. A parallel implementation of the non-
symmetric QR algorithm for distributed memory architectures. Computer Sciences Dept.
Technical Report CS-97-352 (March), University of Tennessee, Knoxville, TN. LAPACK
Working Note #121.

LEHOUCQ, R. 1994. The computation of elementary unitary matrices. Computer Sciences
Dept. Technical Report CS-94-233, University of Tennessee, Knoxville, TN. LAPACK
Working Note #72.

WATKINS, D. S. 1991. Fundamentals of Matriz Computations. John Wiley and Sons, New
York, NY.

WATKINS, D. S. AND ELSNER, L. 1991. Convergence of algorithms of decomposition type
for the eigenvalue problem. Lin. Alg. Appl. 143, 19-47.

