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Elementary plane rotations are one of the building blocks of numerical linear algebra
and are employed in reducing matrices to condensed form for eigenvalue computations
and during the QR algorithm.  Unfortunately, their implementation in standard packages
such as EISPACK, the BLAS and LAPACK lack the continuity of their mathematical
formulation, which makes results from software that use them sensitive to perturbations.
Test cases illustrating this problem will be presented, and reparations to the standard
software proposed.

1.0 Introduction

Unitary transformations are frequently used in numerical linear algebra software to
reduce dense matrices to bidiagonal, tridiagonal, or Hessenberg form as a preliminary
step towards finding the eigenvalues or singular values.  Elementary plane rotation
matrices (also called Givens rotations) are used to selectively reduce values to zero,
such as when reducing a band matrix to tridiagonal form, or during the QR algorithm
when attempting to deflate a tridiagonal matrix.  The mathematical properties of rota-
tions were studied by Wilkinson [9] and are generally not questioned.

However, Wilkinson based his analysis on an equation for computing a rotation matrix
that is different from those in common use in the BLAS [7] and LAPACK [2].  While
the classical formula is continuous in the angle of rotation, the BLAS and LAPACK
algorithms have lines of discontinuity that can lead to abrupt changes in the direction of
computed eigenvectors.  This makes comparing results difficult and proving backward
stability impossible.  It is easy to restore continuity in the generation of Givens rotations
even while scaling to avoid overflow and underflow, and we show how in this report.

Model implementations of the software described in this report have been written and
tested with the LAPACK test programs on CRAY PVP and CRAY T3E systems, and are
freely available [1].  Current users of LAPACK may observe a rescaling of some of their
eigenvectors (usually by -1) with the revised software.
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2.0 Givens rotations -- theory and practice

In the real case, a Givens rotation is a rank-2 correction to the identity of the form1

where and for some angleθ.  Premultiplication of a vectorx
by G(i,j,θ) amounts to a clockwise rotation ofθ radians in the(i, j) plane.  If

, the vectory can be described by

We can force  to be zero by choosingθ to be the angle described by the vec-

tor  in the(i, j) plane, which leads to the formulas

These are the formulas used by Wilkinson for his error analysis of plane rotations.  Note

that  is always positive by this definition.  In practice,r, like any

square root of a sum of squares, must be computed with scaling to avoid underflow
when both  and  are less than the square root of underflow, or when one of  or

is greater than the square root of overflow.

1. This notation is consistent with LAPACK, as well as Wilkinson [9] or Higham [6].  Some
other authors define Givens rotations using the transpose of G.
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Since a Givens rotation only modifies two elements of a vector, its action can be
described by the 2-by-2 linear transformation

Stewart [8] observed that the values ofc ands could be reconstructed from a single
stored numberz if a sign were introduced in the value ofr, an idea used in the Level 1
BLAS subroutine SROTG [7].  Givenf andg, SROTG computes

The value ofz from Stewart’s compact representation is also computed and returned by
SROTG, but it is not of interest here.

In LAPACK, the auxiliary routine SLARTG is used instead of SROTG when generating
a Givens rotation.  The Cray Scientific Library (libsci) implementation of SLARTG was
based on an early LAPACK release and is identical to SROTG in its computation ofc, s,
andr.

Algorithm 1 (BLAS-like SLARTG): Given f and g, compute c, s, and r satisfying (2.1).

if (g = 0) then
c = 1;  s = 0;  r = f

else if (f = 0) then
c = 0;  s = 1;  r = g

else if ( ) then
 t = g / f

u =
c = 1 / u

         s = t*c
         r = f*u
 else

t = f / g

u =
s = 1 / u

         c = t*s
         r = g*u
 end if
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Note that the value of the scalaru is between 1 and , which avoids underflow or
overflow in the computation of the sum of squares.  There is still a slight risk of over-
flow when computingr as the product off or g timesu if f or g is scaled near overflow,
but all algorithms for computing Givens rotations run this risk.

Consider what happens to the value ofr in Algorithm 1.  When , r takes the sign

of f, and when , r takes the sign ofg.  The magnitude ofr is always .
In quadrants of thef-g plane wheref andg have the same sign,r is continuous, but r

changes sign when crossing the line .  This line of discontinuity is illustrated in
Figure 1.  Similarly discontinuities are found inc ands if plotted as functions off andg.

FIGURE 1. Value ofr as a function off andg from libsci (BLAS-like) SLARTG

In the LAPACK version of SLARTG (from the most recent revision, LAPACK 3), a dif-
ferent algorithm is used which results inr being more often positive than negative.  This
version is complicated by some iterative scaling to avoid overflow or destructive under-

flow in the computation of , which we will not show.  The rest of the algorithm
is outlined in Algorithm 2.

Algorithm 2 (LAPACK SLARTG):

if (g = 0) then
c = 1;  s = 0;  r = f

else if (f = 0) then
c = 0;  s = 1;  r = g
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f1 = f

 g1 = g

      {scalef1 andg1 to avoid overflow/underflow}

r =

c = f1 / r

s = g1 / r

      if (   AND f < 0 ) then
c = -c

  s =-s
            r =-r
      end if
end if

In this version, r is positive except when  and , which consists of one-
fourth of thef-g plane bounded byg = -f  andg = f  for g < 0, and whenf = 0 and

.  The negativeg axis is thus a line of discontinuity, as are the boundaries of the
region wherer < 0, as shown in Figure 2.  This is a peculiar form of plane rotation and
its differences from the standard BLAS may have been inadvertent, particularly since
other uses of plane rotations in LAPACK, such as the subroutine SLARGV to generate
multiple plane rotations, follow the BLAS convention.

FIGURE 2. Value ofr as a function off andg from LAPACK 3.0 SLARTG
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Still another algorithm is used by Bindelet al. to generate Givens rotations in their justi-
fication of the proposed new BLAS standard [4].  Despite the authors’ stated require-
ment that “the mapping from(f,g) to (c,s,r) should be continuous whenever possible”,
their proposed algorithm carries over the discontinuity of its predecessors.  The mathe-

matical description of this proposed version, which ignores the scaling of , is
reproduced in Algorithm 3.  The model implementation in [4] implements the scaling of
f andg in an iterative fashion as in the LAPACK SLARTG.

Algorithm 3 (BLAS Technical Forum version):

if (g = 0) then
c = 1;  s = 0;  r = f

else if (f = 0) then
c = 0;  s =sgn(g);

else

end if

This version eliminatesg = f andg = -f as lines of discontinuity, but it creates a new
line of discontinuity on theg axis, as shown in Figure 3.

FIGURE 3. Value ofr as a function off andg from BLAS Technical Forum SLARTG
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3.0 Effects of discontinuity

In each of Algorithms 1, 2, and 3, there were lines of discontinuity in thef-g plane,
along which the sign of the computed value ofr (as well as the signs ofc ands) could be
sensitive to perturbations in the values off or g.  A change of sign ofc, s, andr in the
computed Givens rotation matrix is equivalent to a multiplication by the negative of the
2-by-2 identity matrix:

In the symmetric eigenvalue problem, Givens rotations are applied to both sides of a
symmetric tridiagonal matrix during  the QR algorithm.  Suppose that a matrixA is trid-
iagonal with a bulge inA(3, 1) (and, by symmetry, A(1, 3)) after application of the first
step of the QR algorithm.  The bulge-chasing step generates a rotation matrix to annihi-
lateA(3, 1) usingA(2, 1), that is, and  in the previous algo-
rithms.  It is easy to see that if the first rotation matrix of the bulge-chasing step returns
the negative of c and s, then this sign change will propagate down the matrix, negating
all the offdiagonal elements and all the bulges before they are annihilated in turn.  The
sign of the diagonal elements of the tridiagonal matrix will be the same whetherc ands

or -c and-s are used.  Since both the offdiagonal element and the bulge it

must annihilate at  are negated, the same rotations will be generated at each
step except perhaps for the sign ofc ands.

The tests for convergence of the QR algorithm are similarly impervious to the sign of
the offdiagonal elements.  In IMTQL2 from EISPACK, the test to determine if offdiago-
nal elements are small enough for the matrix to be split was

where  and , while in SSTEQR from LAPACK, the
convergence test is

Since both of these tests depend only on the magnitudes of the offdiagonal elements, the
eigenvalues are generally computed identically regardless of which algorithm is used to
generate the rotation matrices.2

2. There are some differences in the computed eigenvalues in the repeated eigenvalue case that
can be traced to the algorithm for computing Givens rotations.  In this case the differences

arise from the sensitivity of the computation , which is scaled differently in
Algorithms 1 and 2.  There is no statistical basis for preferring one scaling method over the
other.
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However, the eigenvectors do depend on the sign of the generated Givens rotations
because they are computed by multiplying the saved rotations together.  In fact, every
variation in the QR algorithm, from the convergence criteria to the order of calculations,
can lead to a different sequence of rotations and slightly different computed eigenvec-
tors.  Due to the lack of uniformity in algorithms for generating Givens rotations, the
most common difference between the eigenvectors of two competing methods is in the
sign of the nonzero elements of the vectors.  This is to be expected, but users of numeri-
cal software packages are still sometimes surprised by it.  We will illustrate this diffi-
culty with an example run on a CRAY C90 comparing driver routines for the symmetric
eigenvalue problem from five different packages:

• netlib EISPACK -- the version of EISPACK found at www.netlib.org

• libsci EISPACK -- the version of EISPACK from the Cray Scientific Library

• netlib LAPACK -- the latest netlib version of LAPACK (LAPACK 3.0)

• libsci LAPACK -- the version of LAPACK from the Cray Scientific Library

• new LAPACK -- libsci with my LAPACK 3.0 supplement

In EISPACK the symmetric eigenvalue driver routine is called RS and in LAPACK it is
called SSYEV.  Differences between netlib LAPACK and libsci are described in [3]; the
LAPACK 3.0 supplement to libsci is described in [1].

Example 1:  Sign changes due to the choice of library

Let .  Using the “new LAPACK” algorithm, we compute

All fiv e packages compute the same set of well-separated eigenvalues, but the scaling of
the columns of the matrix of eigenvectors is different in every case, as shown in Table 1:

Table 1 Scaling of columns ofX from Example 1

Method Eigenvectors

netlib RS  x1  x2  x3

libsci RS  x1 -x2  x3

netlib SSYEV  x1 -x2 -x3

libsci SSYEV -x1 -x2  x3

new SSYEV  x1  x2  x3

A
1 2 3

2 3 4

4 5 6

=

Λ diag 1.51– 5.74 2–×10– 11.6, ,( )= , X
0.683 0.620– 0.386–

0.386 0.755 0.531–

0.621– 0.213– 0.754–

=
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A separate problem -- one that is at least partly correctable -- is the variability of the
signs of components of the computed eigenvectors within the same algorithm due to
perturbations in the input data.  Any implementation of the QR algorithm using a dis-
continuous algorithm for generating Givens rotations (unfortunately including all the
standard libraries) is sensitive to this type of perturbation.  To illustrate, we consider
another example, for which we use only the netlib LAPACK version of SSYEV on a
CRAY C90:

Example 2:  Sign changes due to perturbations

Let .  Using the netlib LAPACK version of SSYEV, we compute

Now we will introduce perturbations on the order of  into selected entries
of the matrixA and observe the effect on the sign of the computed eigenvectors while
still using the netlib LAPACK version of SSYEV.  The eigenvalues and the magnitudes
of the entries of the eigenvectors remain approximately the same under the perturbation.
Since our test code stores only the lower triangle of the symmetric matrix A to interface
with the LAPACK routines, we indicate only the element of the lower triangle that was
perturbed in each test, but in effect the corresponding element of the upper triangle was
perturbed as well.  The sign changes, shown in Table 2, are due solely to the discontinu-
ity in the algorithm for computing Givens rotations.

4.0 Continuous algorithms for generating plane rotations

In order to restore continuity to the algorithm for generating Givens rotations, we must
bring together the formulas forr when   and .  There are different ways
this can be done, but the most natural is to return to the original formulas found in
Wilkinson [9]:

Table 2 Scaling of columns ofX from Example 2

Perturbation Eigenvectors

A(2,1) +δ  x1  x2 x3

A(3,2) +δ -x1 -x2 x3

A(2,1) -δ -x1 -x2 x3

A(3,2) -δ  x1  x2 x3

A
1 1– 0

1– 1 1–

0 1– 1

=

Λ diag 0.414– 1.00 2.41, ,( ),= X
0.500 0.707– 0.500–

0.707 0.000 0.707

0.500 0.707 0.500–

=

δ 0.0001˙=

f g> f g≤
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With these formulas,r is always positive, andc ands are just the cosine and sine of the
angle between the positive f axis and the line from the origin to the point(f, g) in thef-g
plane.  Of course, we still need to scale the sum of squares in the computation ofr.
Doing so leads to Algorithm 4.

Algorithm 4:  A continuous algorithm for generating real plane rotations

if (g = 0) then
c = sgn( f)

     s =0
     r = |f|
else if (f = 0) then

c =  0
s =  sgn(g)
r = |g|

else if then
t = g / f

u =
c = 1 / u

     s = t∗ c
     r = f∗ u
else

t = f / g

u =
 s = 1 / u

     c = t∗ s
     r = g∗ u
end if

In the most general form of a complex plane rotation, we have a choice of makingc real,
s real, orr real.  There is a certain elegance to makingr real because then the formulas
are very much like those of the real plane rotation.  However, for performance reasons it
is much more beneficial to choose eitherc ors to be real because this reduces the cost of
applying the rotation to a larger matrix.  In LAPACK, c is chosen to be real, and we
would like the algorithm that generates a complex plane rotation to computec, s, andr
identically to the real case iff andg are real.  This requirement leads to the following set
of constraints for the complex plane rotation, wherec is real andf, g, s, andr are com-
plex.  We include a definition of sgn(x) that generalizes the sign function to complex
numbers.

c s

s– c

f

g

r
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,= c2 s2+ 1=

r f 2 g2+=
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s g r⁄=

f g>( )

f( )sgn 1 t2+
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The leading sign term in each ofr, c, ands could be either positive or negative and still
satisfy the constraint equation.  We have made it the sign of the real part off in order to
forcer to be positive whenf andg are both real, for consistency with the real algorithm.
A straightforward implementation of these equations with some basic scaling of the sum
of squares is shown in Algorithm 5.

Algorithm 5:  A continuous algorithm for generating complex plane rotations

if (g = 0) then
c = sgn( f)

     s =0
     r = f*c
else if (f = 0) then

c =  0
s =
r = |g|

else
f1 =

g1 =

     if ( ) then

fs = f / f1

f2 =

gs = g / f1

g2 =

u =

          c = 1 / u

          s =

          r = f∗ u
     else

fs = f / g1

f2 =

c s

s– c

f

g

r
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x( )sgn
x x⁄ ,

1,î
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gs = g / g1

g2 =

u =

f1 =

fs = f / f1
c = f1 / u

          s =

          r = fs∗ u

 end if
end if

There is slightly more risk of overflow in this algorithm than in the real case because the
pseudo-normf1 =  could overflow if the real and imaginary parts
were both greater than half the overflow threshold.  A more complete scaling strategy is
described in Bindelet al. [4].

5.0 A note about Jacobi rotations

Jacobi rotations [5] have the same form as Givens rotations but the method used to gen-
erate them must satisfy a different set of constraints.  In a Jacobi eigenvalue method we
seek a cosine-sine pair (c,s) that diagonalizes a symmetric 2-by-2 input matrix, that is,

which implies

If , then the matrix is already diagonal and we can set (c, s) = (1, 0).  Otherwise

we solve a quadratic equation in the tangent  by setting

Then

which has as its roots .  Choosingt to be the smaller of these two roots

minimizes the difference between B and A and ensures that , which is important

Re gs( )2 Im gs( )2+
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for the convergence of the iterative Jacobi algorithm.  Oncet has been determined in this
way, the formulas forc ands follow from trigonometry:

These equations forc ands are the same as those of Algorithm 1 when .  How-
ever, they are not the same as the equations of Algorithm 4, our recommended alterna-
tive, and practitioners who require Jacobi rotations should be aware of this difference.

6.0 Conclusions

In this paper, we have presented continuous algorithms for generating a real or complex
plane rotation, one of the building blocks of numerical linear algebra.  Previous imple-
mentations in the BLAS, EISPACK, and LAPACK have failed to be continuous.  An
algorithm that is not continuous is not backward stable, and hence its output can be sen-
sitive to perturbations in the input values.  We have observed this sensitivity as abrupt
sign changes in the computed eigenvectors when solving the symmetric eigenvalue
problem, even when the eigenvalues are well-separated.

It is surprising that so many people have quoted Wilkinson’s proof of the backward sta-
bility of Givens plane rotations, which assumes continuity, while overlooking the dis-
continuity present in almost every implementation.  In hindsight, one can say that more
rigorous testing of the backward stability of this basic building block might have
detected its shortcomings sooner.  No lesser authorities than Wilkinson and Fox sug-
gested this approach in their 1975 forward to the NAG Fortran Library Manual:

“With regard to sensitivity and accuracy [the NAG Fortran Library] achieves
rather less, but this is a problem so far not well treated even by numerical ana-
lysts.  Information is provided in a fairly economical way for the solution of
linear equations, in which the so-called “iterative refinement” involving a little
double precision arithmetic gives valuable information on the sensitivity and a
more accurate answer when this is meaningful.  For many other problems, the
user can only obtain this sort of information by his own efforts, for example, by
deliberately introducing small perturbations and observing their effects on his
solutions.  This whole area is one in which one hopes for continual improve-
ments in the library routines when better ways to implement them are discov-
ered.”3
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