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1.0

Elementary plane rotations are one of thiding blocks of numerical linear algebra

and are emplged in reducing matrices to condensed form for eiglele computations
and during the QR algorithm. Unfortunatetyeir implementation in standard packages
such as EISRCK, the BLAS and LARCK lack the continuity of their mathematical
formulation, which mads results from softare that use them sengéito perturbations.
Test cases illustrating this problem will be presented, and reparations to the standard
software proposed.

Introduction

Unitary transformations are frequently used in numerical linear algebraaseftw

reduce dense matrices to bidiagonal, tridiagonal, or Hesgefdver as a preliminary

step tevards finding the eigemalues or singularalues. Elementary plane rotation
matrices (also called @&ns rotations) are used to sebeslly reduce alues to zero,

such as when reducing a band matrix to tridiagonal form, or during the QR algorithm
when attempting to deflate a tridiagonal matrix. The mathematical properties of rota-
tions were studied by Winson [9] and are generally not questioned.

However, Wilkinson based his analysis on an equation for computing a rotation matrix
that is diferent from those in common use in the BLAS [7] and A&K [2]. While

the classical formula is continuous in the angle of rotation, the BLAS andCKP
algorithms hage lines of discontinuity that can lead to abrupt changes in the direction of
computed eigerectors. This mads comparing results #ifult and preing backvard
stability impossible. It is easy to restore continuity in the generatiorveh&rotations
even while scaling tovaid overflow and underflar, and we shw how in this report.

Model implementations of the softne described in this reportueabeen written and
tested with the LARCK test programs on CRAPVP and CRX T3E systems, and are
freely available [1]. Current users of LAMCK may obserg a rescaling of some of their
eigervectors (usually by -1) with thevised softvare.
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2.0 Givens rotations -- theory and practice

In the real case, a @ins rotation is a rank-2 correction to the identity of the form

G(i,],8) =

wherec = cog(0) ands = sin(0) for some angl®. Premultiplication of aectorx
by G(i,j,8) amounts to a clockwise rotation@®fadians in théi, j) plane. If
y = G(i, j, 8) x, the ectory can be described by

j
£, ]

CX; + SX;,

O k
O

Yie = O—sx +cx;, Kk
O
O k

Xk’
We can forcey; to be zero by choosirjto be the angle described by trezv

tor I:Xi XJT in the(i, j) plane, which leads to the formulas
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These are the formulas used bilkiison for his error analysis of plane rotations. Note

thatr = y; = A/xiz + sz is always positie by this definition. In practice, like ary
square root of a sum of squares, must be computed with scalwngidaiaderflov
when bothx; andx; are less than the square root of undetfr when one ok; or X;
is greater than the square root eédlow.

L This notation is consistent with LAK, as well as Wkinson [9] or Higham [6]. Some
other authors define @ns rotations using the transpose of G.
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Givens rotations -- theory and practice

Since a Giens rotation only modifies twelements of aector its action can be
described by the 2-by-2 linear transformation

BINRES
-sc||g 0

Stewart [8] obsered that the &lues ofc ands could be reconstructed from a single
stored numbez if a sign were introduced in thaluae ofr, an idea used in the L&l 1
BLAS subroutine SRTG [7]. Givenf andg, SROTG computes

o =3 san(f). [fl>[g
0 sgn(g), |fl<ldl

O

C:Df/r, r0
O 1, r=0
g

S:Dg/r, rz0
O o, r=0

The \alue ofz from Stevart’s compact representation is also computed and returned by
SROTG, hut it is not of interest here.

In LAPACK, the auxiliary routine SLARG is used instead of ®R'G when generating
a Givens rotation. The Cray Scientific Library (libsci) implementation of SLERas
based on an early LACK release and is identical to SRG in its computation aof, s,
andr.

Algorithm 1 (BLAS-like SLARTG): Given fand g, compute c, s, and r satisfying (2.1).
if (g = 0) then
c=1;,s=0; r=f
else if f = 0) then
c=0;,s=1;r=g
else if (f| >|g|) then

t=g/f
u:A/l+t2
c=1/u
s=t*c
r="f*u
else
t=f/g
u:A/1+t2
s=1/u
c=t*s
r=g*u
end if
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Note that the alue of the scalar is between 1 and/2, which aroids underflov or
overflow in the computation of the sum of squares. There is still a slight riskeof o
flow when computing as the product dfor g timesu if f or g is scaled neanerflow,
but all algorithms for computing @ns rotations run this risk.

Consider what happens to thaue ofr in Algorithm 1. Wherf| >|g|, r takes the sign

of f, and wher f| < |g|, r takes the sign of. The magnitude afis alvays « 2+,

In quadrants of theg plane wherd andg have the same sigm,is continuous, it r
changes sign when crossing the ljnee —f . This line of discontinuity is illustrated in
Figure 1. Similarly discontinuities are founddiandsiif plotted as functions dfandg.

FIGURE 1. Value ofr as a function of andg from libsci (BLAS-like) SLARTG
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In the LARACK version of SLAR'G (from the most recentvision, LAPACK 3), a dif-
ferent algorithm is used which results ineing more often posit than ngative. This
version is complicated by some itevatiscaling to woid overflow or destructie under-

flow in the computation of/ 2+ g2 , which we will not shav. The rest of the algorithm
is outlined in Algorithm 2.

Algorithm 2 (LAPACK SLARTG):

if (g = 0) then
c=1;,s=0; r=f
else if = 0) then
c=0;,s=1,r=g
else
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fl =f
91=9
{scalef; andg; to avoid overflow/underflav}

c="f/r

s=q/r

if (|f| >|gf AND f<0)then
c=-c
s=-s
r=-r

end if

end if

In this version, r is positie except when f| >|g| and f <0, which consists of one-
fourth of thef- g plane bounded by = - f andg =f forg < 0, and wherf = 0 and

g<0. The ngative g axis is thus a line of discontinuitgs are the boundaries of the
region wherer < 0, as shwn in Figure 2. This is a peculiar form of plane rotation and
its differences from the standard BLAS mayééé&een inadertent, particularly since
other uses of plane rotations in LABK, such as the subroutine SLARGV to generate
multiple plane rotations, folle the BLAS comention.

FIGURE 2.
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Still another algorithm is used by Bind#lal.to generate Gens rotations in their justi-
fication of the proposed neBLAS standard [4]. Despite the authors’ stated require-
ment that “the mapping froif,g) to (c,s,r) should be continuous where possible”,
their proposed algorithm carriesay the discontinuity of its predecessors. The mathe-

matical description of this proposedrsion, which ignores the scaling A]III:Z + 92 , IS
reproduced in Algorithm 3. The model implementation in [4] implements the scaling of
f andg in an iteratie fashion as in the LAWCK SLARTG.

Algorithm 3 (BLAS Technical erum \ersion):
if (g = 0) then
c=1;,s=0; r=f
else if f = 0) then
c=0; s=sgr(g); r = |d

else
o= Al
If2+gz
s = sgn(f)g
If2+g2
r = sgn(f)y/f°+g’
end if

This wersion eliminateg = f andg = - f as lines of discontinuifyout it creates a ne
line of discontinuity on thg axis, as shan in Figure 3.

FIGURE 3. Value ofr as a function of andg from BLAS Technical Brum SLARTG
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3.0

Effects of discontinuity

In each of Algorithms 1, 2, and 3, there were lines of discontinuity ifidh@ane,
along which the sign of the computeglue ofr (as well as the signs ofands) could be
sensitve to perturbations in thealues off org. A change of sign af, s, andr in the
computed Giens rotation matrix is equalent to a multiplication by the gative of the
2-by-2 identity matrix:

pie R

In the symmetric eigerlue problem, Giens rotations are applied to both sides of a
symmetric tridiagonal matrix during the QR algorithm. Suppose that a Matritid-
iagonal with a hige inA(3, 1) (and, by symmetnA(1, 3)) after application of the first
step of the QR algorithm. Theilge-chasing step generates a rotation matrix to annihi-
late A(3, 1) usingA(2, 1), thatis,f = A(2,1)andg = A(3,1) in the preious algo-
rithms. It is easy to see that if the first rotation matrix of thgeachasing step returns
the ngative of ¢ and s, then this sign change will pragagiovn the matrix, ngating

all the ofdiagonal elements and all thaelges before theare annihilated in turn. The
sign of the diagonal elements of the tridiagonal matrix will be the same whethds

or- c and- sare used. Since both thddigonal elemenfA(i + 1, i) and the hige it

must annihilate atA(i + 2,i) are ngated, the same rotations will be generated at each
step ecept perhaps for the sign ofinds.

The tests for corergence of the QR algorithm are similarly impervious to the sign of

the ofdiagonal elements. In IMTQL2 from EISEK, the test to determine iffofiago-
nal elements are small enough for the matrix to be spBt w

|E@)| <e(ID(i —1) +[D(i)])

whereE(i) = A(i +1,i) andD(i) = A(i, i), while in SSTEQR from LARCK, the
convergence test is

|E() < eD(i = 1)IJID(0)

Since both of these tests depend only on the magnitudes ofdtzgohal elements, the
eigervalues are generally computed identicallyarelless of which algorithm is used to
generate the rotation matrices.

There are some difrences in the computed eigatues in the repeated eigalue case that
can be traced to the algorithm for computinge®s rotations. In this case thefeliénces

arise from the sensifity of the computatior = « £2+ 92 , Which is scaled di¢rently in
Algorithms 1 and 2. There is no statistical basis for preferring one scaling metratie
other
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However, the eigemectors do depend on the sign of the generatednSirotations
because theare computed by multiplying theve rotations togethein fact, erery
variation in the QR algorithm, from the a@mence criteria to the order of calculations,
can lead to a dérent sequence of rotations and slightlyet#nt computed eigeac-
tors. Due to the lack of uniformity in algorithms for generatinge@s rotations, the
most common diérence between the eigemetors of tvo competing methods is in the
sign of the nonzero elements of thextors. This is to bexpected, bt users of numeri-
cal software packages are still sometimes surprised by & wi illustrate this difi-

culty with an @ample run on a CRAC90 comparing dvier routines for the symmetric
eigervalue problem from fig different packages:

* netlib EISRACK -- the \ersion of EISRCK found at wwwnetlib.org

¢ libsci EISRACK -- the \ersion of EISRCK from the Cray Scientific Library

¢ netlib LAPACK -- the latest netlibersion of LARACK (LAPACK 3.0)

¢ libsci LAPACK -- the \ersion of LARACK from the Cray Scientific Library

* new LAPACK -- libsci with my LARACK 3.0 supplement

In EISFACK the symmetric eigealue driver routine is called RS and in LARK it is

called SSYEYV Differences between netlib LAEK and libsci are described in [3]; the
LAPACK 3.0 supplement to libsci is described in [1].

Example 1. Sign changes due to the choice of library

123
Let A = |2 3 4|. Using the “ne&v LAPACK” algorithm, we compute

456

0.683 —0.620-0.38
A = diag(-1.51, -5.74x10 %, 11.6), X =|0.386 0.755 -0.53

—0.621-0.213-0.75

All fiv e packages compute the same set of well-separatedaiges) it the scaling of
the columns of the matrix of eigesctors is diferent in @ery case, as shm in Table 1:

Table 1 Scaling of columns aX from Example 1
Method Eigervectors
netlib RS x1 X2 x3
libsci RS x1 -x2 x3
netlib SSYEV x1 -x2 -x3
libsci SSYEV -x1 -x2 X3
new SSYEV x1 X2 x3
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A separate problem -- one that is at least partly correctable -- iariability of the
signs of components of the computed eigetors within the same algorithm due to
perturbations in the input data. YAimplementation of the QR algorithm using a dis-
continuous algorithm for generatingu@ns rotations (unfortunately including all the
standard libraries) is sensiito this type of perturbation.oTllustrate, we consider
another gample, for which we use only the netlib LA€K version of SSYEV on a
CRAY C90:

Example 2: Sign changes due to perturbations

1-10
Let A= |_1 1 —1|- Using the netlib LARCK version of SSYEVwe compute
0-11

0.500-0.707-0.50
A = diag(-0.4141.00 2.41), X = 10.707 0.000 0.707

0.500 0.707 -0.50

Now we will introduce perturbations on the orderdof= 0.0001 into selected entries

of the matrixA and obsere the efflect on the sign of the computed eigectors while

still using the netlib LARCK version of SSYEV The eigemalues and the magnitudes
of the entries of the eigeectors remain approximately the same under the perturbation.
Since our test code stores only theédo triangle of the symmetric matrix A to intace

with the LARACK routines, we indicate only the element of thedotriangle that as
perturbed in each testytin efect the corresponding element of the upper triangle w
perturbed as well. The sign changesysh Table 2, are due solely to the discontinu-
ity in the algorithm for computing @&ns rotations.

Table 2 Scaling of columns oX from Example 2
Perturbation Eigervectors
A(2,1) +o x1 X2 x3
A(3,2) +d -x1 -X2 x3
A(2,1) -4 -x1 - X2 X3
A(3,2) -d x1 X2 x3

4.0 Continuous algorithms for generating plane rotations

In order to restore continuity to the algorithm for generating@ rotations, we must
bring together the formulas fowhen|f| >|gl and|f| <|g|. There are diérent vays

this can be doneubthe most natural is to return to the original formulas found in
Wilkinson [9]:
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_‘
nw o 1l
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N

=g/r

With these formulag, is alvays positve, andc ands are just the cosine and sine of the
angle between the posi#if axis and the line from the origin to the pdifitg) in thef-g

plane. Of course, we still need to scale the sum of squares in the computation of
Doing so leads to Algorithm 4.

Algorithm 4: A continuous algorithm for generating real plane rotations

if (g = 0) then
¢ = sgn(f)
s=0

r=|f
else if = 0) then

c=0
s= sgng)
r=1d

else if (|f| >|g|) then
t=g/f
u= sgn(f)A/1+t2
c=1/u
s=tt
r=fCu

else
t=f/g
u= sgn(g)A/1+t2
s=1/u
c=ts
r=gtu

end if

In the most general form of a complglane rotation, we va a choice of makingreal,
sreal, orr real. There is a certain gence to making real because then the formulas
are \ery much lile those of the real plane rotation. viwer, for performance reasons it

is much more beneficial to choose eitber sto be real because this reduces the cost of
applying the rotation to a lger matrix. In LARCK, cis chosen to be real, and we
would like the algorithm that generates a compgikane rotation to computg s, andr
identically to the real casefiindg are real. This requirement leads to the foifm set

of constraints for the complglane rotation, whereis real and, g, s, andr are com-

plex. We include a definition of sgxi(that generalizes the sign function to comple
numbers.
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o= e

=D(/|x|, XxZ0
sgn(X)—E 1 x=0
r = sgn(Re(f))sgn(f)] > +|g?
o 1f|
c = f/r = sgn(Re(f))
JIFZ + gl
s=g/f = sgn(Re(f))M

NI +g?

The leading sign term in eachmt, ands could be either posite or ngative and still
satisfy the constraint equation.eWae made it the sign of the real partf @f order to
forcer to be positre whenf andg are both real, for consistgnwith the real algorithm.

A straightforvard implementation of these equations with some basic scaling of the sum
of squares is shwen in Algorithm 5.

Algorithm 5: A continuous algorithm for generating compfdane rotations

if (g = 0) then
¢ = sgn(f)
s=0
r=f*c

else if = 0) then
c=0
s= sgn(q)
r=1d

else

fy = IRe(f)[ +[Im(f)|

01 = [Re(9)| +[Im(g)|
if (f,>g,) then

fo=f/1,

— 2 2
f2_ Re(fs) + Im(fs)
gS:g/fl

g = Re(gy)” + Im(gy)”

u= sgn(Re(1))./1+ 0,/ ,
c=1/u
S :gsfs(C/fZ)
r=1u
else
fS:f/gl
— 2 2
fZ_ Re(fs) +|m(fs)
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0s=0/9
g = Re(gy)” +1m(gy)’

u = sgn(Re(f)) Lg,.,/f,+9,
f1 =[]

fs=1/f;

c=f/u

s =f(g/u)

r={u

end if
end if

There is slightly more risk ofverflow in this algorithm than in the real case because the
pseudo-norni; = |[Re(f)| +[Im(f)| could cerflow if the real and imaginary parts

were both greater than half theeoflow threshold. A more complete scaling stggtés
described in Bindedt al. [4].

5.0 A note about Jacobi rotations

Jacobi rotations [5] ha the same form as &ins rotations it the method used to gen-
erate them must satisfy afdifent set of constraints. In a Jacobi eigdue method we
seek a cosine-sine pair (c,s) that diagonalizes a symmetric 2-by-2 input matrix, that is,

T
By O _ |c s| |[AuAwf|c s
0 By, s c| |Ayy Aypl|-S C
which implies
_,2 2
0 = (c"=s")Ap+cs(Ap— Ay)

If A;, = 0, then the matrix is already diagonal and we carcset£ (1, 0). Otherwise
we sole a quadratic equation in the tangent tan(B8) by setting

Ar— A
=2 "1 t=s/c
Then
t?+21t-1=0

which has as its roots= —t + /1 + 1°. Choosing to be the smaller of thesedwoots

minimizes the dfierence between B and A and ensures [Bjat g which is important

12 of 14 Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem



Conclusions

6.0

for the corergence of the iterate Jacobi algorithm. Onddias been determined in this
way, the formulas foc ands follow from trigonometry:

c=1/J1+t°
S = {c

These equations farands are the same as those of Algorithm 1 whir» |g| . How-
ever, they are not the same as the equations of Algorithm 4, our recommended alterna-
tive, and practitioners who require Jacobi rotations shoulevaseaf this diference.

Conclusions

In this paperwe hae presented continuous algorithms for generating a real or comple
plane rotation, one of theidding blocks of numerical linear algebra. Woeis imple-
mentations in the BLAS, EI®¥K, and LAFACK have failed to be continuous. An
algorithm that is not continuous is not baekd stable, and hence its output can be sen-
sitive to perturbations in the inpualues. V& hare obsered this sensiity as abrupt

sign changes in the computed eiggstors when solving the symmetric eigaine
problem, gen when the eigemalues are well-separated.

It is surprising that so mgpeople hae quoted Wkinson’s proof of the backard sta-
bility of Givens plane rotations, which assumes continuihjle overlooking the dis-
continuity present in almostvery implementation. In hindsight, one can say that more
rigorous testing of the baclard stability of this basicdilding block might hae

detected its shortcomings soan&lo lesser authorities thaniinson and Bx sug-
gested this approach in their 1975 fard/to the MG Fortran Library Manual:

“With regard to sensitity and accuragc[the NAG Fortran Library] achiees
rather less, Wt this is a problem s@f not well treatedven by numerical ana-
lysts. Information is prnaded in a &irly economical &y for the solution of
linear equations, in which the so-called “itevatiefinement” imolving a little
double precision arithmetic\gs \aluable information on the sensity and a
more accurate answer when this is meaningfok. nrary other problems, the
user can only obtain this sort of information by hisieforts, for <ample, by
deliberately introducing small perturbations and observing theictsfon his
solutions. This whole area is one in which one hopes for continualviepro
ments3 in the library routines when betteays to implement them are diseo
ered!
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