On computing Givens rotations reliably and efficiently

D. Bindel* J. Demmel® W. Kahan? O. Marques?
January 31, 2001

Abstract

We consider the efficient and accurate computation of Givens rotations. When f and g are positive
real numbers, this simply amounts to computing the values of ¢ = f/+/f2 + g2, s = g/+/ % + g3, and

r = y/ f2+ ¢%. This apparently trivial computation merits closer consideration for the following three
reasons. First, while the definitions of ¢, s and r seem obvious in the case of two nonnegative arguments f
and g, there is enough freedom of choice when one or more of f and g are negative, zero or complex that
LAPACK auxiliary routines SLARTG, CLARTG, SLARGV and CLARGYV can compute rather different
values of ¢, s and r for mathematically identical values of f and g. To eliminate this unnecessary
ambiguity, the BLAS Technical Forum chose a single consistent definition of Givens rotations that we
will justify here. Second, computing accurate values of ¢, s and r as efficiently as possible and reliably
despite over/underflow is surprisingly complicated. For complex Givens rotations, the most efficient
formulas require only one real square root and one real divide (as well as several much cheaper additions
and multiplications), but a reliable implementation using only working precision has a number of cases.
On a Sun Ultra-10, the new implementation is 25% faster than the previous LAPACK implementation
in the most common case, and nearly 4 times faster than the corresponding vendor, reference or ATLAS
routines. It is also more reliable; all previous codes occasionally suffer from large inaccuracies due to
over /underflow. For real Givens rotations there are also improvements in speed and accuracy, though
not as striking. Third, the design process that led to this reliable implementation is quite systematic,
and could be applied to the design of similarly reliable subroutines.

1 Introduction

Givens rotations are widely used in numerical linear algebra. Given f and g, a Givens rotation is a 2-by-2
unitary matrix R(c,s) such that

oo (1= 5 212

The fact that R(c, s) is unitary implies
c s ¢ —s |
-5 ¢ 5 ¢ |

cc+s8s —cs+cs
—S8Cc+Sc cc+ ss

R(c,s) - (R(c,)"

*Computer Science Division University of California, Berkeley, CA 94720 (dbindel@cs.berkeley.edu). This material is
based upon work supported under a National Science Foundation Graduate Research Fellowship.

fComputer Science Division and Mathematics Dept., University of California, Berkeley, CA 94720
(demmel@cs.berkeley.edu). This material is based in part upon work supported by the Advanced Research Projects
Agency contract No. DAAH04-95-1-0077 (via subcontract No. ORA4466.02 with the University of Tennessee), the Department
of Energy grant No. DE-FG03-94ER25219, and contract No. W-31-109-Eng-38 (via subcontract Nos. 20552402 and 941322401
with Argonne National Laboratory), the National Science Foundation grants ASC-9313958 and ASC-9813361, and NSF
Infrastructure Grant Nos. CDA-8722788 and CDA-9401156.

fComputer Science Division and Mathematics Dept., University of California, Berkeley, CA 94720
(wkahan@cs.berkeley.edu).

§NERSC, Lawrence Berkeley National Lab, (osni@nersc.gov).

e +1s]* s(e—c)
sc—e) e+ s/

From this we see that
lc? +]s*=1 and c—¢=0, ie. c is real (2)

When f and g are real and positive, the widely accepted convention is to let

¢ = [INP+g?
s = gNIP+g?
ro= VPt

However, the negatives of ¢, s and r also satisfy conditions (1) and (2). And when f = g = 0, any ¢
and s satisfying (2) also satisfy (1). So ¢, s and r are not determined uniquely. This slight ambiguity has
led to a surprising diversity of inconsistent definitions in the literature and in software. For example, the
LAPACK [1] routines SLARTG, CLARTG, SLARGV and CLARGYV, the Level 1 BLAS routines SROTG
and CROTG [6], as well as Algorithm 5.1.5 in [5] can get significantly different answers for mathematically
identical inputs.

To avoid this unnecessary diversity, the BLAS (Basic Linear Algebra Subroutines) Technical Forum, in
its design of the new BLAS standard [3], chose to pick a single definition of Givens rotations. Section 2
below presents and justifies the design.

The BLAS Technical Forum is also providing reference implementations of the new standard. In the
case of computing Givens rotation and a few other kernel routines, intermediate over /underflows in straight-
forward implementations can make the output inaccurate (or stop execution or even cause an infinite loop
while attempting to scale the data into a desired range) even though the true mathematical answer might
be unexceptional. To compute ¢, s and r as efficiently as possible and reliably despite over/underflow is
surprisingly complicated, particularly for complex f and g.

Square root and division are by far the most expensive real floating point operations on current machines,
and it is easy to see that one real square root and one real division (or perhaps a single reciprocal-square-
root operation) are necessary to compute ¢, s and r. With a little algebraic manipulation, we also show
that a single square root and division are also sufficient (along with several much cheaper additions and
multiplications) to compute ¢, s and r in the complex case. In contrast, the algorithm in the CROTG
routine in the Fortran reference BLAS uses at least 5 square roots and 9 divisions, and perhaps 13 divisions,
depending on the implementation of the complex absolute value function cabs.

However, these formulas for ¢, s and r that use just one square root and one division are susceptible
to over/underflow, if we must store all intermediate results in the same precision as f and g. Define
Il = max(|re f|,|im f|). We systematically identify the values of f and g for which these formulas are
reliable (i.e. guaranteed not to underflow in such a way that unnecessarily loses relative precision, nor
to overflow) by generating a set of simultaneous linear inequalities in log|| f|| and log|/g||, which define a
(nonconvex) 2D polygonal region S (for Safe) in (log || f||,log]lg|]) space in which the formulas may be used.
This is the most common situation, which we call Case 1 in the algorithm. In this case, the new algorithm
runs 25% faster than LAPACK’s CLARTG routine, and nearly 4 times faster than the CROTG routine in
the vendor BLAS on a Sun Ultra-10, ATLAS BLAS, or Fortran reference BLAS.

If (log || f|,log|lg]|) lies outside S, there are two possibilities: scaling f and ¢g by a constant to fit inside
S, or using different formulas. Scaling may be interpreted geometrically as shifting S parallel to the diagonal
line log|| f]| = log|lg|| in (log || f||,log|lgl|) space. The region covered by shifted images of S (S’s “shadow”)
is the region in which scaling is possible. In part of this shadow (case 4 in the algorithm), we do scale f and
g to lie inside S and then use the previous formula.

The remaining region of (log || f||,1og ||g||) space, including space outside S’s shadow, consists of regions
where log || f|| and log||g|| differ so much that |f|?> + |g|? rounds either to |f|? (Case 2 in the algorithm) or
lg|? (Case 3). Replacing |f]? + |g|? by either | f|? or |g|? simplifies the algorithm, and different formulas are
used.

In addition to the above 4 cases, there are 2 other simpler ones, when f and/or g is zero.

There are three different ways to deal with these multiple cases. The first way is to have tests and
branches depending on || f|| and ||g|| so that only the appropriate formula is used. This is the most portable
method, using only working precision (the precision of the input/output arguments) and is the one explored
in most detail in this paper.

The second method is to use exception handling, i.e. assume that f and ¢ fall in the most common case
(Case 1), use the corresponding formula, and only if a floating point exception is raised (overflow, underflow,
or invalid) is an alternative formula used [4]). If sufficiently fast exception handling is available, this method
may be fastest.

The third method assumes that a floating point format with a wider exponent range is available to store
intermediate results. In this case we may use our main new formula (Case 1) without fear of over /underflow,
greatly simplifying the algorithm (the cases of f and/or g being zero remain). For example, IEEE double
precision (with an 11-bit exponent) can be used when inputs f and g are IEEE single precision numbers
(with 8-bit exponents). On a Sun Ultra-10, this mixed-precision algorithm is nearly exactly as fast in Case 1
of the single precision algorithm described above, and usually rather faster in Cases 2 through 4. On an Intel
machine double extended floating point (with 15-bit exponents) can be used for single or double precision
inputs, and this would be the algorithm of choice. However, with double precision inputs on a machine like
a Sun Ultra-10 without double-extended arithmetic, or when double precision is much slower than single
precision, our new algorithm with 4 cases is the best we know.

In addition to the new algorithm being significantly faster than previous routines, it is more accurate. All
earlier routines have inputs that exhibit large relative errors, whereas ours is always nearly fully accurate.

The rest of this paper is organized as follows. Section 2 presents and justifies the proposed definition of
Givens rotations. Section 3 details the differences between the proposed definition and existing LAPACK
and Level 1 BLAS code. Section 4 describes our assumptions about floating point arithmetic. Section 5
presents the algorithm in the complex case, for the simple cases when f = 0 or ¢ = 0. Section 6 presents the
algorithm in the most common complex case, assuming that neither overflow nor underflow occur (Case 1).
Section 7 shows alternate formulas for complex Givens rotations when f and g differ greatly in magnitude
(Cases 2 and 3). Section 8 describes scaling when f and g are comparable in magnitude but both very large
or very small (Case 4). Section 9 compares the accuracy of our new complex Givens routine and several
alternatives; only ours is accurate in all cases. Section 10 discusses the performance of our complex Givens
routine. Sections 11, 12 and 13 discuss algorithms, accuracy and timing for real Givens rotations, which are
rather easier. Section 14 draws conclusions. The actual software is included in an appendix.

2 Defining Givens rotations

We will use the following function, defined for a complex variable x, in what follows:

. z/lx| ifx#0
s1gn(x):{1/|| ifxiO

sign(z) is clearly a continuous function away from x = 0. When z is real the definition simplies to

. [-1 ifz<oO
sign(#) =1 1 a0

As stated in the introduction, we need extra requirements besides (1) and (2) in order to determine ¢
and s (and hence r) uniquely. For when at least one of f and g are nonzero, the most that we can deduce
from the first component of R(c, s)[f, g]T = [r,0]T in (1) is that

o_ I
TR +I9P

s = ¢e“sign(f) g

9
[FI2 + [g]?
r = ewsign(f) LfI* + [g]?

for i = v/—1 and some real §. From the fact that ¢ must be real we deduce that if f # 0 then

I 1
VI +IgP
s = dsign(f) —m—o (3)

1+ 19l

ro = sign(f)VIf]* + gl

and if f =0 and g # 0 then

c 0
s = e 4)
r e?g

As stated before, when f = g =0, ¢ and s can be chosen arbitrarily, as long as they satisfy (2).
The extra requirements initially chosen by the BLAS Technical Forum to help resolve the choice of +
sign in (3) and @ in (4) are as follows.

R1 The definitions for real and complex data should be consistent, so that real data passed to the complex
algorithm should result in the same answers (modulo roundoff) as from the real algorithm.

R2 Current LAPACK subroutines that use Givens rotations should continue to work correctly with the new
definition.

The current LAPACK subroutines SLARTG and CLARTG (which compute a single real and complex
Givens rotation, resp.) do not satisfy requirement 1. Furthermore, the LAPACK subroutines SLARGV
and CLARGYV for computing multiple Givens rotations do not compute the same answers as SLARTG and
CLARTG, resp. The differences are described in section 3 below. So some change in practice is needed to
have consistent definitions. (Indeed, this was the original motivation for the BLAS Technical Forum not
simply adopting the LAPACK definitions unchanged.)

However, R1 and R2 do not immediately resolve the choice of sign in (1). To proceed we add requirement

R3 The mapping from (f, g) to (¢, s,r) should be continuous whenever possible.

Continuity of ¢ and s as functions of f and ¢ is not possible everywhere, because as real f and g approach
(0,0) along the real line g = f-tana, ¢ = £ cosa and +s = sinq, so ¢ and s must be discontinuous at (0, 0).

But consider ¢, s,r as functions of (f,g) = (¢!¥, 1) as « increases from 0 to 27, i.e. f traverses the unit
circle in the complex plane. At a =0, (f,g) = (1,1) and consider the common convention (¢, s) = (%, \/LE)

As « increases, |c| = |s| remains equal to % Since c is real, continuity implies c stays fixed at ¢ = % for

all o, and hence s = €'*/v/2 and r = ¢'*\/2 are continuous as desired. Thus requirement R3 implies that ¢
must be nonnegative. Together with (3), this implies that when f # 0 we have

£
VI +1gl?

_ . g
» = el
v = siga()VITP TP

Formulas (5) obviously define f, g and r continuously away from f = 0. When g = 0, they simplify to ¢ = 1,
s =0and r = f. This is attractive because R(1,0) is the identity matrix, so using it to multiply an arbitrary
pair of vectors requires no work,

When f =0 but g # 0 we reexamine (4) in the light of requirement R3. Since ¢ and s are not continuous
at f = 0, because sign(f) can change arbitrarily in a small complex neighborhood of 0, we cannot hope
to define # by a continuity argument that includes complex f. Instead, we ask just that ¢, s, and r be

(5)

continuous functions of real f > 0 and complex g # 0, i.e. they should be continuous as f approaches zero
from the right. This limit is easily seen to be

c = 0
s = sign(g) (6)
ro= g

which we take as the definition for f =0 and complex g # 0.
Finally we consider the case f = g = 0. This is impossible to define by continuity, since f and g can
approach 0 from any direction, so instead we add requirement

R4 Given a choice of ¢ and s, choose those requiring the least work.

Since R(c, s) is typically used to multiply a pair of vectors, and R(1,0) = I requires no work to do this, we
set c=1and s =0 when f =g =0.

In summary, the algorithm for complex or real f and g is as follows.
Algorithm 1: Computing Givens Rotations

if ¢ =0 (includes the case f = g = 0)

c=1
5s=0
r=J
elseif f = 0 (¢ must be nonzero)
c=0
s = sign(g)
r=lgl

else (f and g both nonzero)
c=[fI/VIf1? + g2
s = sign(f)g/V/|f* + g/?

r = sign(f)V/[f]* +[g/?

endif

When f and g are real, the algorithm can be slightly simplified by replacing g by g.

2.1 Exceptional cases

When this algorithm is run in IEEE floating point arithmetic [2] it is possible that some inputs might be
NaNs (Not-a-Number symbols) or co. In this section we discuss the values ¢, s and r should have in these
cases; we insist that the routine must terminate and return some output values in all cases.

We say that a complex number is a NaN if at least one of its real and imaginary parts is a NaN. We say
that a complex number is infinite if at least one of its real and imaginary parts is infinite, and neither is a
NaN.

First suppose at least one NaN occurs as input. The semantics of NaN are that any binary or unary
arithmetic operation on a NaN returns a NaN, so that by extension our routine ought to return NaNs as
well. But we see that our definition above will not necessarily do this, since if ¢ = 0 an implementation
might reasonably still return ¢ = 1 and s = 0, since these require no arithmetic operations to compute.
Rather than specify exactly what should happen when an input is NaN, we insist only that at least r be a
NaN, and perhaps ¢ and s as well, at the implementor’s discretion. We permit this discretion because NaNs
are (hopefully!) very rare in most computations, and insisting on testing for this case might slow down the
code too much in common cases.

To illustrate the challenges of correct portable coding with NaNs, consider computing max(a, b), which
we will need to compute || f|| and ||g||. If max implemented (in hardware or software) as “if (@ > b) then a else
b” then max(0, NaN) returns NaN but max(NaN,0) returns 0. On the other hand, the equally reasonable
implementation “if (a < b) then b else a” instead returns 0 and NaN, respectively. Thus an implementation
might mistakenly decide g = 0 because ||g|| = 0 and then return ¢ =1, s = 0 and r = f, missing the NaN in
g. Our model implementation will work with any implementation of max.

Next suppose at least one co or —oo occurs as input, but no NaNs. In this case it is reasonable to return
the limiting values of the definition if they exist, or NaNs otherwise. For example one might return ¢ = 0,
s=landr=cif f=0andg=o0c0o+i-0butc=0,s= NaN andr = if f =0 and g = oo+ - 00 since
s = sign(g) = g/g cannot be well-defined while r = |g| can be. Or one could simply return NaNs even if a
limit existed, for example returning ¢ = 0, s = NaN and r = NaN whenever f = 0 and ||g|| = co. Again
to avoid overspecifying rare cases and thereby possibly slowing down the common cases, we leave it to the
implementor’s discretion which approach to take. But we insist that at least r either be infinite or a NaN.

The assiduous reader will have noted that Algorithm 1 leaves ambiguous how the sign of zero is treated
(IEEE arithmetic includes both +0 and —0). Different implementations are free to return +0 or —0 whenever
a zero is to be delivered. There seems to be little to be gained by insisting, for example, that r = —0 when
f =—-0and g = —0, which is what would actually be computed if R(1,+0) were multiplied by the vector
[0, —0]T.

3 Differences from current LAPACK and BLAS codes

Here is a short summary of the differences between Algorithm 1 and the algorithms in LAPACK 3.0 [1] and
earlier versions, and in the Level 1 BLAS [6]. The LAPACK algorithms in question are SLARTG, CLARTG,
SLARGYV and CLARGYV, and the Level 1 BLAS routines are SROTG and CROTG. All the LAPACK release
3.0 test code passed as well with the new Givens rotations as with the old ones (indeed, one test failure in the
old code disappeared with the new rotations), so the new definition of Givens rotations satisfies requirement
R2.

SLARTG When f = 0 and g # 0, Algorithm 1 returns s = sign(g) whereas SLARTG returns s = 1.
The comment in SLARTG about “saving work” does not mean the LAPACK bidiagonal SVD routine
SBDSQR assumes s = 1. When |f| < |g| and f < 0 (so both f and g are nonzero), SLARTG returns
the negatives of the values of ¢, s and r returned by Algorithm 1.

CLARTG Algorithm 1 is mathematically identical to CLARTG. But it is not numerically identical, see
section 9 below.

SLARGYV When f =g =0, SLARGV returns ¢ = 0 and s = 1 instead of c =1 and s = 0. When f # 0
and g = 0, SLARGYV returns ¢ = sign(f) instead of ¢ = 1. When f = 0 and g # 0, SLARGV returns
s = 1 instead of s = sign(g). When f # 0 and g # 0, SLARGYV returns sign(c) = sign(f), instead of
c>0.

CLARGYV When f =g =0, CLARGV return ¢ =0 and s = 1 instead of c =1 and s =0. When f =0
and g # 0, CLARGYV returns s = 1 instead of s = sign(g).

SROTG SROTG overwrites f by r and ¢g by a quantity z from which one can reconstruct both s and ¢
(z=sif|f| > |g|, 2 =1/cif |g] > |f] and ¢ # 0, and z = 1 otherwise). Besides this difference, r is
assigned the sign of ¢ as long as either f or g is nonzero, rather that the sign of f (or 1).

CROTG CROTG overwrites f by r, but does not compute a quantity like z. CROTG sets c=0and s =1
if f =0, rather than s = sign(g) if g # 0 and ¢ = 1,5 = 0 if both f = g =0. When both f and g are
nonzero, it matches Algorithm 1 mathematically, but not numerically.

4 Assumptions about floating point arithmetic

In LAPACK, we have the routines SLAMCH and DLAMCH available, which return various machine con-
stants that we will need. In particular, we assume that ¢ = machine epsilon is available, which is a power of
the machine radix. On machines with IEEE floating point arithmetic [2], it is either 2724 in single or 2753
in double. Also, we use SAFMIN, which is intended to be the smallest normalized power of the radix whose
reciprocal can be computed without overflow. On IEEE machines this should be the underflow threshold,

27126 in single and 271922 in double. However, on machines where complex division is implemented in the

compiler by the fastest but risky algorithm

a—l—ib_ ac—i—bd_H,bc—ad
c+id 2+ d2 c2 4 d?

the exponent range is effectively halved, since ¢ + d? can over/underflow even though the true quotient is
near 1. On these machines SAFMIN may be set to v/SAFMIN to indicate this. As a result, our scaling algorithms
make no assumptions about the proximity of SAFMIN to the actual underflow threshold, and indeed any tiny
value rather less than ¢ will lead to correct code, though the closer SAFMIN is to the underflow threshold the
fewer scaling steps are needed in extreme cases.

Our algorithms also work correctly and accurately whether or not underflow is gradual. This is important
on the processors where default “fast mode” replaces all underflowed quantities by zero. This means that
the effective underflow threshold is SAFMIN/e, since underflow in x can cause a relative error in SAFMIN/e +x
of at most ¢, the same as roundoff.

In our scaling algorithms we will use the quantity z = (¢/SAFMIN)'/ rounded to the nearest power of the
radix. Thus we use z~ 4 = SAFMIN/¢ as the effective underflow threshold, and z* = £/SAFMIN as the overflow
threshold. Note that we may safely add and subtract many quantities bounded in magnitude by z* without
incurring overflow. We repeat that the algorithms work correctly, if more slowly, if a conservative estimate
of SAFMIN is used (i.e. one that is too large). The powers of z used by the software are computed on the
first call, and then saved and reused for later calls. The values of z and its powers for IEEE machines with
SAFMIN equal to the underflow threshold are as follows.

1/4

Single Precision Double Precision
SAFMIN | 27126~ 1.10738 | 271022 2.10 308
£ 2724 ~6-1078 2793 x1.10716
P 225 ~ 3. 107 2242 ~ 7.107
24 2100 ~1- 1030 2968 ~9. 10291
2’71 2725 ~3. 1078 27242 ~1- 10773
2,74 27100 ~ 7. 10731 27968 ~4- 107292

When inputs include +o0o0 and NaN, we assume the semantics of IEEE arithmetic [2] are used.
In later discussion we denote the actual overflow threshold by OV, the underflow threshold by UN, and
the smallest positive number by m, which is 2-£-UN on a machine with gradual underflow, and UN otherwise.

5 Complex Algorithm when f =0 or g =0

In what follows we use the convention of capitalizing all variable names, so that C, S and R are the data to
be computed from F and G. We use the notation re(F) and im(F) to mean the real and imaginary parts of
F, and |Jw|| = max(|re w|, |imw]) for any complex number w. We begin by eliminating the easy cases where
at least one of F and G is zero. Variables F, G, S and R are complex, and the rest are real.

Algorithm 2: Computing Givens Rotations when f =0 or g =0

ifG=0
... includes the case F = G = 0
c=1
S=0
R=F
elseif F = 0
... G must be nonzero
cC=0

scale G by powers of 2% so that 272 < |G| < 22
D1 = sqrt(re(G)**2+im(G)**2)
R =D1
D1 = 1/D1
S = conj(G)*D1
unscale R by powers of z*4
else
... both F and G are nonzero
. use algorithm described below
endif

We note that even though F = 0 # G is an “easy” case we need to scale G to avoid over/underflow when

computing re (G) **2+im (G) *x*2.

5.1 Exceptional cases

Now we discuss exception handling. It noticeably speeds up the code to implement the tests G=0 and F=0 by
precomputing SG = ||G|| and SF = ||F||, which will be used later, and then testing whether SG=0 and SF=0.
But as described in section 2.1, either of these tests might succeed even though the real or imaginary part

of F or G is a NaN. Therefore the logic of the algorithm must change slightly as shown below.
Algorithm 2E: Computing Givens Rotations when f =0 or g = 0, with exception handling

SCALEG = |G|
SCALEF = ||F||
if SCALEG = 0
. includes the case F = G = 0
c=1
S=0
... In case G is a NalN, make sure R is too
R = F+G
else if SCALEF = 0
... G must be nonzero
c=20
scale G by powers of 2% so that 272 < |G| < 22
... limit number of scaling steps in case G infinite or NaN
D1 = sqrt(re(G)**2+im(G)**2)
R = D1
D1 = 1/D1
S = conj(G)*D1
unscale R by powers of z*4
... In case F is a NaN, make sure R is too

R=R+F
else
... both F and G are nonzero
. use algorithm described below
endif

The test SCALEG=0 can succeed if one part of G is 0 and the other is a NaN, which is why we must return
R = F+G instead of R = F to make sure the input NaN propagates to the output R Note that outputs C=1
and S=0 even if there are NaNs and infinities on input.

Similarly, the branch where SCALEF = 0 can be taken when G is a NaN or infinity. This means that a loop
to scale G (and SCALEG) into range might not terminate if written without an upper bound on the maximum
number of steps it can take. This maximum is essentially max([log, OV], —|log, m|). The timing depends
strongly on implementation details of scaling (use of unrolling, loop structure, etc.). The algorithm we used
could probably be improved by tuning to a particular compiler and architecture. C will always be zero, but
S will be a NaN if G is either infinite or a NaN, and R will be infinite precisely if G is infinite.

6 Complex algorithm when f and g are nonzero

Now assume F' and G are both nonzero. We can compute C, S and R with the following code fragment,
which employs only one division and one square root. The last column shows the algebraically exact quan-
tity computed by each line of code. We assume that real*complex multiplications are performed by two
real multiplications (the Fortran implementation does this explicitly rather than relying on the compiler).
Variables F, G, R and S are complex, and the rest are real.

Algorithm 3: Fast Complex Givens Rotations when f and g are “well scaled”

1. F2 :=re(F)**2 + im(F)**2 |f]?

2. G2 = re(@)**2 + im(G)**2 |g|?

3. FG2 :=F2+ G2 If1? + g]?

4. D1 := 1/sqrt(F2*FG2) VIR + 1 Plel? = 1/ (FIVIF2 +191?)

5. C = F2xD1 \FI/ V112 + 19l

6. FG2 := FG2xD1 VI 1912/ = \/1+|9|2/\f|2

7. R := FXFG2 Tyt laP/171? = sign(N)VIFP + ol

8. S :=FxD1 TW

9. S := conj(G)*S FilvrETE
Now recall z = (¢/SAFMIN)'/%, so that z* is an effective overflow threshold and z~* is an effective

underflow threshold. The region where the above algorithm can be run reliably is described by the following
inequalities, which are numbered to correspond to lines in the above algorithm. All logarithms are to the
base 2.

1. We assume || f|| < 22 to prevent overflow in computation of F2
2. We assume ||g|| < 2? to prevent overflow in computation of G2
3. This line is safe given previous assumptions.

4a. We assume z 2 < || f|| to prevent underflow of F2 and consequent division by zero in the computation
of D1

4b. We assume ||f|| < z to prevent overflow from the |f|* term in F2*¥FG2 in the computation of D1
4c. We assume || f||[|g]| < 22 to prevent overflow from the | f|?|g|? term in F2*¥FG2 in the computation of D1

Either 4d. z=! < ||f||
or de. 272 < | fIlllgl
to prevent underflow of F2*FG2 and consequent division by zero in the computation of D1

5. This line is safe given previous assumptions. If C underflows, it is deserved.

6. lgll/|If]l < 2* to prevent overflow of FG2 since /1 + |g2/|f]2 = O(|g|/|f]) if |g|/|f] is large.

7. This line is safe given previous assumptions, returning |R| roughly between 2! and 22. If the smaller
component of R underflows, it is deserved.

ov

>\>(4a) A
4 @

< (@b) 4 (1)

@
V

log [|G||/logz

|
Lo LY S Lo
|
>\< |
_1 :
L LN
- |
-}
_3 :
= == i - -
-4 (@d)
|
UN = = : - -
m uUN -4 -3 -2 -1 0 1 2 3 4 ov
log ||F]|| / log z

Figure 1: Inequalities describing the region of no unnecessary over/underflow. UN and OV are the
over/underflow thresholds; m is the smallest representable positive number.

8. This line is safe given previous assumptions, returning |S| roughly between z~=2 and 1. The smaller
component of S may underflow, but this error is very small compared to the other component of S.

9. This line is safe given previous assumptions. If S underflows, it is deserved.

Note that all the inequalities in the above list describe half planes in
(log |1 f11, log llg) space. For example inequality 6 becomes
log |lg]l — log |I£l] < 41og 2.

The region described by all inequalities is shown in figure 1. Each inequality is described by a thin line
marked by arrows indicating the side on which the inequality holds. The heavy line borders the safe region
S satisfying all the inequalities, where the above algorithm can be safely used.

It remains to say how to decide whether a point lies in S. The boundary of S is complicated, so the
time to test for membership in S can be nontrivial. Accordingly, we use the simplest tests that are likely to
succeed first, and only then do we use more expensive tests. In particular, the easiest tests are threshold
comparisons with || f|| and ||g||. So we test for membership in the subset of S labeled (1) in Figure 2 by the
following algorithm:

if || <z and || f]| > 2~" and ||g|| < 2 then
f,g is in Region (1)
endif

10

This is called Case 1 in the software.

Region (1) contains all data where || f|| and ||g|| are not terribly far from 1 in magnitude (between
2zl = 2%25 ~ 10*7 and in single between 2! = 27242 ~ 107 in double), which we expect to be most
arguments, especially in double.

The complement of Region (1) in S is shown bounded by dashed lines in Figure 2. It is harder to test
for, because its boundaries require doing threshold tests on the product || f]| - ||g||, which could overflow. So
we will not test for membership in this region explicitly in the case, but do something else instead.

6.1 Exceptional cases

Again we consider the consequence of NaNs and infinities. It is easy to see that if either F or G is infinite,
then the above test for membership in Region (1) cannot succeed. So if suffices to consider NaNs.

Any test like A>B evaluates to false, when either A or B is a NaN, so Case 1 occurs with NaN inputs only
when | f]| and ||g|| are not NaNs, which can occur as described in section 2.1. By examining Algorithm 3 we
see that a NaN in F or G leads to FG2 and then all of C, S and R being NaNs.

7 Complex algorithm when f and ¢ differ greatly in magnitude

When |g|? < ¢|f]?, then |f|?> + |g|? rounds to |f|?, and the formulas for ¢, s and r may be greatly simplified
and very accurately approximated by

c ~ 1

. J f-g
s & s1gn<f>ﬁ=ﬁ (7)
r o~ f

This region is closely approximated by the regions ||g|| < £'/2||f|| marked (2) in Figure 2, and is called
Case 2 in the software.

When instead |f|? < e|g|?, then | f]? + |g|? rounds to |g|?, and the formulas for ¢, s and 7 may be greatly
simplified and very accurately approximated by

. Ifl_ 1P
lgl |f]-1gl
g f-g
~ sign(f)-—=— = 8
s~ sl = g ®)
o _[lgl?

This region is closely approximated by the region ||f|| < £'/2||g|| marked (3) in Figure 2, and is called
Case 3 in the software.

An important difference between the formulas in (7) and (8) versus the formula (5) is that (7) and (8)
are independently homogeneous in f and g. In other words, we can scale f and g independently instead of
by the same scalar in order to evaluate them safely. Thus the “shadow” of the region in which the above
formulas are safe covers all (f, ¢g) pairs. In contrast in formula (5) f and g must be scaled by the same value.

Here are the algorithms implementing (7) and (8) without scaling. Note that (7) does not even require
a square root.

11

Algorithm 4: Computing complex Givens rotations when |g|| < /|| f||, using formulas (7),
without scaling

if [l6]| < v/Z- [[Fl| then
c=1
R=F
D1 = 1/(re(F)**2 + im(F)**2)
S =F x conj(G)
S=Sx*D1

endif

Algorithm 5: Computing complex Givens rotations when |f|| < +/2|lgl|, using formulas (8),
without scaling

if |F[| < v - ||G]| then
F2 = re(F)**2 + im(F)**2
G2 = re(G)**2 + im(G)**2
FG2 = F2 * G2
D1 = 1/sqrt(FG2)

C = F2 x D1

S =F *x conj(@

S =S *x D1

D1 = D1 * G2

R =D1=xF
endif

We may now apply the same analysis as in the last section to these formulas, deducing linear inequalities
in log || f|| and log||g|| which must be satisfied in order to guarantee safe and accurate execution. We simply
summarize the results here. In both cases, we get regions with boundaries that, like S, are sets of line
segments that may be vertical, horizontal or diagonal. We again wish to restrict ourselves to tests on || f||
and ||g|| alone, rather than their product (which might overflow). This means that we identify a smaller safe
region (like region (1) within S in Figure 2) where membership can be easily tested. This safe region for
Algorithm 4 is the set satisfying

22| fI<2* and 272 < g <22 9)
This safe region for Algorithm 5 is the smaller set satisfying
Z | fl <2 and 27 < lgf < (10)
This leads to the following algorithms, which incorporate scaling.

Algorithm 6: Computing complex Givens rotations when ||g|| < /|| f||, using formulas (7), with
scaling

it 6]l < vZ - | then
c=1
R=F
scale F by powers of 24 s0 272 < ||F|| < 22
scale G by powers of 2% s0 272 < |G| < 22
D1 = 1/(re(F)**2 + im(F)**2)
S =F x conj(G)

S=SxD1
unscale S by powers of z** to undo scaling of F and G
end if

12

Algorithm 7: Computing complex Givens rotations when || f|| < 1/2|lg||, using formulas (8), with
scaling

i 7]l < vZ - /6] then
scale F by powers of 22 s0 27! < ||F|| < 2z
scale G by powers of 22 s0 27! < |G| < 2
F2 = re(F)**2 + im(F)**2
G2 = re(G)**2 + im(G)**2
FG2 = F2 * G2
D1 = 1/sqrt(FG2)

C = F2 x D1

S =F *x conj(®

S =S *x D1

D1 = D1 * G2

R =D1=xF

unscale C and R by powers of z*2 to undo scaling of F and G
endif

Note in Algorithm 7 that the value of S is uneffected by independent scaling of F and G.

7.1 Exceptional cases

First consider Case 2, i.e. Algorithm 6. It is possible for either F or G to be NaNs (since ||F|| and ||G|| may not
be) but if neither is a NaN then only F can be infinite (since the test is ||G|| < v/ - [|F||, not [|G]| < v/ - [|F]]).
Care must be taken as before to assure termination of the scaling of F and G even when they are NaNs or
infinite.

In Case 2 C=1 independently of whether inputs are infinite or NaNs. S is a NaN if either F or G is a NaN
or infinite. If we simply get R=F then R is a NaN (or infinite) precisely when F is a NaN (or infinite); in other
words R might not be a NaN if G is. So in our model implementation we can and do ensure that R is a NaN
if either F or G is a NaN by instead computing R = F + S*G after computing S.

Next consider Case 3, i.e. Algorithm 7. Analogous comments about the possible values of the inputs as
above apply, and again care must be taken to assure termination of the scaling. In Case 3, if either input is
a NaN, all three outputs will be NaNs. If G is infinite and F is finite, then S and R will be NaNs.

8 Complex algorithm: Scaling in Regions 4a and 4b

For any point (f, g) that does not lie in regions (1), (2) or (3) of Figure 2 we can use the following algorithm:
1. Scale (f, g) to a point (scale - f, scale - g) that does lie in S.
2. Apply Algorithm 3 to (scale - f, scale - g), yielding ¢, s, 7.
3. Unscale to get r = #/scale.

This scaling in Figure 2 corresponds to shifting f, g parallel to the diagonal line f = g by log scale until
it lies in S. Tt is geometrically apparent that the set of points scalable in regions (4a) and (4b)of Figure 2
lie in the set of all diagonal translates of S, i.e. the “shadow” of S, and can be scaled to lie in S. Indeed, all
points in region (2) and many (but not all) points in region (3) can be scaled to lie in S, but in regions (2)
and (3) cheaper formulas discussed in the last section are available.

First suppose that (f,g) lies in region (4a). Let s = max(||f]|, ||g||). Then if s > 22, we can scale f and g
down by z72. Eventually (f,g) will lie in the union of the two arrow-shaped regions A1 and A2 in Figure 3.
Then, if s still exceeds z, i.e. (f,g) is in Al, we multiply f and g by 27!, putting it into A2. Thus, we
guarantee that the scaled f and g are in A2, where it is safe to use Algorithm 3.

Next suppose that (f, g) lies in region (4b). Now let s = || f||. Then if s < 272, we can scale f and g up
by z2. Eventually (f,g) will like in the union of the two parallelograms B1 and B2 in Figure 4. Then, if s

13

is still less than 271, i.e. (f,g) is in B1, we multiply f and g by z, putting it into B2. Thus, we guarantee
that the scaled f and g are in B2, where it is safe to use Algorithm 3.
These considerations lead to the following algorithm

Algorithm 8: Computing complex Givens rotations when (f,g) is in region (4a) or (4b), with
scaling.

... this code is only executed if f and g are in region (4a) or (4b)
if |F|| >1
scale F and G down by powers of z~2 until max(||F||,||G[|) < =z
if max(||F||, ||G|) > z, scale F and G down by z~*

2

else
scale F and G up by powers of 2% until ||F|| > 272
if |F|| < 271, scale F and G up by 2

endif

compute the Givens rotation using Algorithm 3

undo the scaling of R caused by scaling of F and G

We call the overall algorithm new CLARTG, to distinguish from old CLARTG, which is part of the
LAPACK 3.0 release. The entire source code in included in the Appendix. It contains 248 noncomment
lines, as opposed to 20 in the reference CROTG implementation.

8.1 Exceptional cases

FEither input may be a NaN, and they may be simultaneously infinite. In any of these cases, all three outputs
will be NaNs. As before, care must be taken in scaling.

9 Accuracy results for complex Givens rotations

The algorithm was run for 46* = 4477456 values of f and g, where the real and imaginary part of f and g
independently took on 46 different values ranging from 0 to the overflow threshold. with intermediate values
chosen just above and just below the threshold values determining all the edges and corners in Figures 1
through 4, and thus barely satisfying (or not satisfying) all possible branches in the algorithm. The correct
answer inputs was computed using a straightforward implementation of Algorithm 1 using double precision
arithmetic, in which no overflow nor underflow is possible for the arguments tested. The maximum errors
in 7, ¢ and s were computed as follows, Here ry was computed in single using the new algorithm and r; was
computed straightforwardly in double precision; the subscripted ¢ and s variables have analogous meanings.
In the absence of gradual underflow, the error metric for finitely representable r is

|rs — 74|/ max(g|rq|, SAFMIN) (11)
and with gradual underflow it is
|rs — rq|/ max(e|rq|, SAFMIN % 2 % £) (12)

with the maximum taken over all nonzero test cases for which the true does not overflow. (On this subset,
the mathematical definitions of ¢, s and r used in CLARTG and CROTG agree). Note that SAFMIN * 2 % ¢
is the smallest denormalized number. Analogous metrics were computed for ss and c;.

The routines were first tested on a Sun Ultra-10 using {77 with the -fast -O5 flags, which means gradual
underflow is not used, i.e. results less than SAFMIN are replaced by 0. Therefore we expect the measure (11)

14

log ||G|| / log z

ov

|
4 |
|
|
3 |
®) 1
2 — = —
F ‘\
\ |
1 l
| |
ol Lo Lo N
AN |
(D)
-1) |
|
-2 ! @)
// !
4b |
-3 (!
|
-4 @) !
7’ |
UN [.7 |
M UN -4 -3 -2 -1 0 1 2 3 4
log ||F|| / log z

Figure 2: Cases in the code when f # 0 and g # 0

log [|G|| / log z

ov

,,,,,,,,,,,

‘AL

A2

log ||F|| / log z

ov

Figure 3: Scaling when (f, g) is in Region (4a).

15

ov

ov

,,,,,,,,,,,

log |G|l /logz
A B2

B1

log ||F|| / log z

Figure 4: Scaling when (f, g) is in Region (4b).

to be at least 1, and hopefully just a little bigger than 1, meaning that the error |rs — rq4| is either just more
than machine epsilon ¢ times the true result, or a small multiple of the underflow threshold, which is the
inherent uncertainty in the arithmetic.

The routines were also tested without any optimization flags, which means gradual underflow is used, so
we expect the more stringent measure (12) to be close to 1.

The results are as follows:

Without Gradual Underflow

Routine Max error in ry | Max error in s; | Max error in ¢,
New CLARTG 3.04 2.96 2.56
Old CLARTG 70588 70588 70292
Reference CROTG NaN NaN NaN
Modified Reference CROTG 3.59 3.41 3.22
ATLAS CROTG NaN NaN NaN
Limited ATLAS CROTG 2.88 2-107 3.11
Vendor CROTG NaN NaN NaN
Limited Vendor CROTG 3.59 2-107 3.22
With Gradual Underflow
Routine Max error in ry | Max error in s; | Max error in ¢,
New CLARTG 3.04 2.96 3.04
Old CLARTG 4.60 4.27 4913930
Reference CROTG NaN NaN NaN
Modified Reference CROTG 7.106 7.106 7106

Here is why the old CLARTG fails to be accurate. First consider the situation without gradual underflow.
When |g]| is just above 272, and |f] is just below, the algorithm will decide that scaling is unnecessary. As
a result |f|? may have a nonnegligible relative error from underflow, which creates a nonnegligible relative
error in 7, s and ¢. Now consider the situation with gradual underflow. The above error does not occur, but
a different one occurs. When 1 > |g| > |f]|, and f is denormalized, then the algorithm will not scale. As
a result |f| suffers a large loss of relative accuracy when it is rounded to the nearest denormalized number,
and then ¢ = |f|/|g| has the same large loss of accuracy.

Here is why the reference BLAS CROTG can fail, even though it tries to scale to avoid over/underflow.
The scale factor |f| + |g| computed internally can overflow even when |r| = \/|f|> + |g|?> does not. Now

16

consider the situation without gradual underflow. The sine is computed as s = (\fT\) @)/ If12+191?),
where the multiplication is done first. All three quantities in parentheses are quite accurate, but the entries
of f/|f| are both less than one, causing the multiplication to underflow to 0, when the true s exceeds
.4. This can be repaired by inserting parentheses s = (‘;—‘) - ((9)/(W/IfI2+1g]?)) so the division is done
first. Excluding these cases where |f| + |g| overflows, and inserting parentheses, we get the errors on the
line “Modified Reference CROTG”. Now consider the situation with gradual underflow. Then rounding
intermediate quantities to the nearest denormalized number can cause large relative errors, such as s and ¢
both equaling 1 instead of 1/v/2.

The ATLAS and vendor version of CROTG were only run with the full optimizations suggested by their
authors, which means gradual underflow was not enabled. They also return NaNs for large arguments even
when the true answer should have been representable. We did not modify these routines, but instead ran
them on the limited subset of examples where | f| + |g| was less than overflow. They still occasionally had
large errors from underflow causing s to have large relative errors, even when the true value of s is quite
large.

In summary, our systematic procedure produced a provably reliable implementation whereas there are
errors in all previous implementations that yield inaccurate results without warning, or fail unnecessarily
due to overflow. The latter only occurs when the true r is close to overflow, and so it is hard to complain
very much, but the former problem deserves to be corrected.

10 Timing results for complex Givens rotations

For complex Givens rotations, we compared the new algorithm described above, the old CLARTG from
LAPACK, and CROTG from the reference BLAS. Timings were done on a Sun Ultra-10 using the {77
compiler with optimization flags -fast -O5. Each routine was called 103 times for arguments throughout the
f,g plane (see Figure 2) and the average time taken for each argument (f, g); the range of timings for (f, g)
was typically only a few percent. 29 cases were tried in all, exercising all paths in the new CLARTG code.
The input data is shown in a table below.

We note that the timing results for optimized code are not entirely predictable from the source code.
For example, small changes in the way scaling is implemented can make large differences in the timings. If
proper behavior in the presence of infinity or NaN inputs were not an issue (finite termination and propagating
infinities and NaNs ot the output) then scaling and some other parts of the code could be simplified and
probably accelerated.

The timing results are in the Figures 5 and 6. Six algorithms are compared:

1. New CLARTG is the algorithm presented in this report, using tests and branches to select the correct
case.

2. OLD CLARTG is the algorithm in LAPACK 3.0
3. Ref CROTG is the reference BLAS

ATLAS CROTG is the ATLAS BLAS

Vendor CROTG is Sun’s vendor BLAS

A

Simplied new CLARTG in double precision (see below)

Figure 5 shows absolute times in microseconds, and Figure 6 shows times relative to new CLARTG. The
vertical tick marks delimit the cases in the code, as described in the table below.

The most common case is Case 1, at the left of the plots. We see that the new CLARTG is about 25%
faster than old CLARTG, and nearly 4 times faster than any version of CROTG.

To get an absolute speed limit, we also ran a version of the algorithm that only works in Case 1; i.e. it
omits all tests for scaling of f and ¢ and simply applies the algorithm appropriate for Case 1. This ultimate
version ran in about .243 microseconds, about 68% of the time of the new CLARTG. This is the price of
reliability.

17

Alternatively, on a system with fast exception handling, one could run this algorithm and then check
if an underflow, overflow, or division-by-zero exception occurred, and only recompute in this rare case [4].
This experiment was performed by Doug Priest [7] and we report his results here. On a Sun Enterprise 450
server with a 296 MhZ clock, exception handling can be used to (1) save and then clear the floating point
exceptions on entry to CLARTG, (2) run Case 1 without any argument checking, (3) check exception flags
to see if any division-by-zero, overflow, underflow, or invalid operations occurred, (4) use the other cases if
there were exceptions, and (5) restore the exception flag on exit. This way arguments falling into the most
common usual Case 1 run 25% faster than new CLARTG. Priest notes that it is essential to use in-line
assembler to access the exception flags rather than library routines (such as ieee_flags()) which can take 30
to 150 cycles.

Here is a description of the algorithm called “simplified new CLARTG in double precision.” It avoids all
need to scale and is fastest overall on the above architecture for IEEE single precision inputs: After testing
for the cases f = 0 or g = 0, use Algorithm 3 in IEEE double precision. The three extra exponent bits
eliminate over/underflow. On this machine, this algorithm takes about .365 microseconds for all nonzero
inputs f and g, nearly exactly the same as Case 1 entirely in single. This algorithm is attractive for single
precision on this machine, since it is not only fast, but much simpler. Of course it would not work if the
input data were in double, since a wider format is not available on this architecture.

Input data for timing complex Givens rotations
Case | Case in code f g
1 1 (0.11E401 , 0.22E+01) | (0.33E4+01 , 0.44E+01)
2 2 (0.37TE408 , 0.74E+08) | (0.33E401, 0.44E+401)
3 2 (0.12E416 , 0.25E+16) | (0.11E4+09 , 0.15E409)
4 2 (0.42E423 , 0.83E+23) | (0.37E+16 , 0.50E+16)
5 2 (0.14E+31, 0.28E+31) | (0.12E+24, 0.17E+24)
6 2 (0.14E+31, 0.28E+31) | (0.33E+01 , 0.44E+01)
7 2 (0.14E+31, 0.28E+31) | (0.26E-29, 0.35E-29)
8 2 (0.14E431, 0.28E+31) | (0.26E-29, 0.35E-29)
9 2 (0.29E-22 , 0.58E-22) (0.26E-29 , 0.35E-29)
10 2 (0.98E-15, 0.20B-14) | (0.87E-22, 0.12E-21)
11 2 (0.33E-08 , 0.66E-08) (0.29E-14 , 0.39E-14)
12 3 (0.11E401 , 0.22E+01) | (0.11E4+09 , 0.15E409)
13 3 (0.37E408 , 0.74E+08) | (0.37E+16 , 0.50E+16)
14 3 (0.12E4+16 , 0.25E+16) | (0.12E+24, 0.17TE+24)
15 3 (0.42E423 , 0.83E+23) | (0.42E+31, 0.56E+31)
16 3 (0.11E+01, 0.22E+01) | (0.42E+31, 0.56E+31)
17 3 (0.87E-30, 0.17E-29) | (0.42E+431, 0.56E+31)
18 3 (0.87E-30, 0.17E-29) | (0.33E401 , 0.44E+01)
19 3 (0.87E-30, 0.17E-29) (0.87E-22 , 0.12E-21)
20 3 (0.29E-22 , 0.58E-22) (0.29E-14 , 0.39E-14)
21 3 (0.98E-15, 0.20E-14) (0.98E-07 , 0.13E-06)
22 4 (0.37E408 , 0.74E+08) | (0.11E4+09 , 0.15E409)
23 4 (0.12E4+16 , 0.25E+16) | (0.37E+16 , 0.50E+16)
24 4 (0.42E423 , 0.83E+23) | (0.12E+24, 0.17TE+24)
25 4 (0.14E+31, 0.28E+31) | (0.42E+31, 0.56E+31)
26 4 (0.33E-08 , 0.66E-08) (0.98E-08 , 0.13E-07)
27 4 (0.98E-15, 0.20B-14) | (0.29E-14 , 0.39E-14)
28 4 (0.20B-22 , 0.58B-22) | (0.87B-22,0.12E-21)
29 4 (0.87TE-30, 0.17TE-29) (0.26E-29 , 0.35E-29)

18

Time to compute complex Givens rotations

25 T T T T T T
+ New CLARTG
O Old CLARTG
x ATLAS X
Vendor x
vV Reference
2H ¢ Double .
15 .
8
8 | YYYYYY oYY YYYYYY o YYYVYYYYYYYYY
@ ¥ v 4
n X
o
S
=
1, -]
+
+ +
+ e} . + + Jr ot
05} Q0.0 ge® . .t e.o0 Q4+ LH® 0 At ® 0
+ + 6 Q O ® o o O
Q$<><><><> <><><>$<><><><><><><><><><><><><><><><><><>
O | | | | | | |
12 11 12 21 22 29

Case

Figure 5: Time to compute complex Givens rotations.

11 Computing real Givens rotations

When both f and g are nonzero, the following algorithm minimizes the amount of work:

Algorithm 9: Real Givens rotations when f and g are nonzero, without scaling

FG2 = F**2 + Gx*2

R = sqrt(FG2)
RR = 1/R
C = abs(F)*RR
S = G*RR
if F < 0 then

S =-S5

R = -R
endif

We may now apply the same kind of analysis that we applied to Algorithm 3. We just summarize the
results here.

19

Time to compute complex Givens rotations, relative to new CLARTG

6
. r + New CLARTG
oL % O Old CLARTG
x ATLAS
X Vendor
41 ¥4 v Reference
& Double
¥ vy g X v
3t X |
9 ¥ Y x V4 \%
Y
: - g ¢ ¥ Y ¥ Y g
O 4 ¥ ¥
\4
g 2 ¥y x .
c
S
2 ¥
E 151)
e -
212p 00 o 1
E 1*$$;++$ﬁiﬂ%+fi+@+++++++ﬂfﬂ+‘f‘+f++%+7
kS O o0 2o o © o oo ©
1087 O o @) o O - .
& ¢
OO o ¢ o 90 O 0
o &
061 © v “]
O o o ¢
¢
0.4 — s ‘
1 2 11 12 2122 29
Case

Figure 6: Relative Time to compute complex Givens rotations.

Algorithm 10: Real Givens rotations when f and g are nonzero, with scaling

scale = max(abs(F) , abs(G))
if scale > 22 then

scale F, G and scale down by powers of 22 until scale < 22
elseif scale < 22 then

scale F, G and scale up by powers of z2 until scale > 22

endif
FG2 = F*x*2 + G*x2
R = sqrt(FG2)
RR = 1/R
C = abs(F)*RR
S = G*RR
if F < 0 then

S =-S5

R = -R
endif

unscale R if necessary

This algorithm does one division and one square root. In contrast, the SROTG routine in the Fortran
Reference BLAS does 1 square root and 4 divisions to compute the same quantities. It contains 95 noncom-
ment lines of code, as opposed to 22 lines for the reference BLAS SROTG (20 lines excluding 2 described
below), and is contained in the appendix.

20

12

The accuracy of a variety of routines were measured in a way entirely analogous to the way described in
section 9. The results are shown in the tables below.

First consider the results in the absence of of gradual underflow. All three versions of SROTG use a scale
factor |f| 4 |g| which can overflow even when r does not. Eliminating these extreme values of f and g from
the tests yields the results in the lines labeled “Limited.”

With gradual underflow, letting f and g both equal the smallest positive denormalized number m yields
s = ¢ = 1 instead of 1/v/2, a very large relative error. This is because r = m is the best machine
approximation to the true result v/2m, after which f = m and ¢ = m are divided by m to get ¢ and s,
respectively. Slightly larger f and g yield slightly smaller (but still quite large) relative errors in s and ec.

Accuracy results for real Givens rotations

Without Gradual Underflow

Routine Max error in ry | Max error in s; | Max error in c;
New SLARTG 1.45 1.81 1.81
Old SLARTG 1.45 1.81 1.81
Reference SROTG NaN NaN NaN
Limited Reference SROTG 1.51 1.95 1.95
ATLAS SROTG NaN NaN NaN
Limited ATLAS SROTG 1.68 1.55 1.55
Vendor SROTG NaN NaN NaN
Limited Vendor SROTG 1.68 1.55 1.55

With Gradual Underflow

Routine Max error in r, | Max error in sg | Max error in ¢g4
New SLARTG 1.45 1.81 1.81
Old SLARTG 1.45 1.81 1.81
Reference SROTG NaN NaN NaN
Limited Reference SROTG 1.51 7108 7106

13 Timing results for real Givens rotations

Six routines to compute real Givens rotations were tested in a way entirely analogous to the manner described
in section 10. The test arguments and timing results are shown in the table and figures below.

All three versions of SROTG (reference, ATLAS, and Sun’s vendor version) originally computed more
than just s, ¢ and r: they compute a single scalar z from which one can reconstruct both s and c. It is
defined by
s i |f] > |g]

1/c if |f| <|gland c#0
1 otherwise

z =

The three cases can be distinguished by examining the value of z and then s and ¢ reconstructed. This
permits, for example, the QR factors of a matrix A to overwrite A when Givens rotations are used to
compute @, as is the case with Householder transformations. This capability is not used in LAPACK, so
neither version of SLARTG computes z. To make the timing comparisons fairer, we therefore removed the
two lines of code computing z from the reference SROTG when doing the timing tests below. We did not
however modify ATLAS or the Sun performance library in anyway, so those routines do more work than
necessary.

Input data for timing real Givens rotations
Case f g

1] 0.11E401 0.33E+01

2 | 0.12E+16 0.37TE+16

3 | 0.14E+31 0.42E+31

4| 0.98E-15 0.29E-14

51 0.87E-30 0.26E-29

21

Time to compute real Givens rotations

0.6 T 1 T T T
X X X X
0.55 i
+ New SLARTG
O Old SLARTG
05 x ATLAS i
Vendor
v Reference
& Double
0.45 : : -
12}
©
c
o
o
L 04r —
(=]
8
=
0.35 —
A~ +
03t \% v/ v v \vd]
+
i
0.25 —
o & o O v
I
02 | | | | |
1 2 3 4 5

Case

Figure 7: Time to compute real Givens rotations.

We see from figures 7 and 8 that in the most common case (Case 1, where no scaling is needed), the
new SLARTG is about 18% faster than the old SLARTG, and 1.35 to 2.62 times faster than any version of
SROTG.

To get an absolute speed limit, we also ran a version of the algorithm that only works in Case 1; i.e. it
omits all tests for scaling of f and ¢ and simply applies the algorithm appropriate for data that is not too
large or too small. This ultimate version ran in about .161 microseconds, about 72% of the time of the new
SLARTG. This is the price of reliability.

Experiments by Doug Priest using exception handling to avoid branching showed an 8% improvement in
the most common case, when no scaling was needed.

Finally, the double precision version of SLARTG simply tests for the cases f = 0 and g = 0, and then
runs Algorithm 9 in double precision without any scaling. It is nearly as fast as the new SLARTG in the
most common case, when no scaling is needed, and faster when scaling is needed.

14 Conclusions

We have justified the specification of Givens rotations put forth in the recent BLAS Technical Forum stan-
dard. We have shown how to implement the new specification in a way that is both faster than previous
implementations, and more reliable. We used a systematic design process for such kernels that could be used
whenever accuracy, reliability against over/underflow, and efficiency are simultaneously desired. A side effect
of our approach is that the algorithms can be much longer than before when they must be implemented in the
same precision as the arguments, but if fast arithmetic with wider range is available to avoid over /underflow,
the algorithm becomes very simple, just as reliable, and at least as fast.

22

Time to compute real Givens rotations, relative to new SLARTG

3 T T T T T
+ New SLARTG
x O Old SLARTG
25 x ATLAS 4
Vendor
« Vv Reference
M & Double
o 2f —
2 X
g X
0
=
(0]
c
8
= 15F : : .
£
Q v
[}
£
= 12F —
S) v
o
= 11F \%4 -
& ¢
1F + + & + + -
v
0.9 o -
6
0.8F : : .
&
O
07 | | | | |
1 2 3 4 5
Case
Figure 8: Relative Time to compute real Givens rotations.
References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammar-
ling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide (third edition). SIAM,
Philadelphia, 1999.

[2] ANSI/IEEE, New York. IEEE Standard for Binary Floating Point Arithmetic, Std 754-1985 edition,
1985.

[3] S. Blackford, G. Corliss, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Heroux, C. Hu,
W. Kahan, L. Kaufman, B. Kearfott, F. Krogh, X. Li, Z. Maany, A. Petitet, R. Pozo, K. Remington,
W. Walster, C. Whaley, and J. Wolff v. Gudenberg. Document for the Basic Linear Algebra Subprograms
(BLAS) Standard: BLAS Technical Forum. www.netlib.org/cgi-bin/checkout /blast/blast.pl, 1999.

[4] J. Demmel and X. Li. Faster numerical algorithms via exception handling. IEEE Trans. Comp.,
43(8):983-992, 1994. LAPACK Working Note 59.

[5] G. Golub and C. Van Loan. Matriz Computations. Johns Hopkins University Press, Baltimore, MD, 3rd
edition, 1996.

[6] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Subprograms for Fortran usage.
ACM Trans. Math. Soft., 5:308 323, 1979.

[7] D. Priest. private communication, 2000.

23

A SLARTG

* X X X X X x

* ¥ ¥ ¥

* X

*

* X X X X X X X X X *

SUBROUTINE SLARTG(F, G, CS, SN, R)

—-— LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
Jan 17, 2001

. Scalar Arguments ..
REAL Cs, F, G, R, SN

Purpose

SLARTG generate a plane rotation so that

[¢cs sv 1 . [F]1 = [R] where CS**2 + SN**2 = 1.
[G] [o0]
This is a slower, more accurate version of the BLAS1 routine SROTG,
with the following other differences:
F and G are unchanged on return.
If F=0 and G=0, then CS=1, SN=0, and R=0.
If F .ne. 0 and G=0, then CS=1, SN=0, and R=F.
If F=0 and G .ne. O, then CS=0, SN=sign(G), and R=abs(G).
If F .ne. 0 and (G .ne. 0), then
CS = abs(F)/sqrt(F**2 + G*x*2)
SN = sign(F)*G/sqrt (F*x2 + G**2)
R sign(F) *sqrt (F**2 + G**2)

If a NaN occurs in the input, then R and possibly also
CS and SN will be a NaN.

If an infinity occurs in the input, then R and possibly also
CS and SN will be infinite or NaNs.

The complex routine CLARTG returns the same
CS and SN on complex inputs (F,0) and (G,0).

Arguments

F (input) REAL
The first component of vector to be rotated.

G (input) REAL
The second component of vector to be rotated.

Cs (output) REAL
The cosine of the rotation.

SN (output) REAL

24

¥ ¥ ¥ X X ¥ X x

L

* ¥ X X X X x

The sine of the rotation.

(output) REAL
The nonzero component of the rotated vector.

. Parameters ..
REAL ZERO
PARAMETER (ZERD = 0.0E0)
REAL ONE
PARAMETER (ONE = 1.0E0)
REAL TWO
PARAMETER (TWO = 2.0E0)

. Local Scalars ..

LOGICAL FIRST

INTEGER COUNT, I, MAXCNT

REAL EPS, F1, G1, SAFMIN, SAFMN2, SAFMX2, SCALE
REAL SCL, ESFMN2

. External Functiomns ..
REAL SLAMCH
EXTERNAL SLAMCH

. Intrinsic Functions ..
INTRINSIC ABS, INT, LOG, MAX, SQRT, SIGN

. Save statement ..
SAVE FIRST, EPS, SAFMX2, SAFMIN, SAFMN2, SAFMN
SAVE SAFMX

. Data statements ..
DATA FIRST / .TRUE. /

. Executable Statements ..
IF(FIRST) THEN

On first call to SLARTG, compute

SAFMN2 = sqrt(SAFMIN/EPS) rounded down to the nearest power
of the floating point radix

This means that scaling by multiplication by SAFMN2 and its

reciprocal SAFMX2 cause no roundoff error

FIRST = .FALSE.
SAFMIN = SLAMCH(’S’)
EPS = SLAMCH(’E’)

ESFMN2 = INT(LOG(SAFMIN / EPS) / LOG(SLAMCH(°B’)) / TWO)

SAFMN2 = SLAMCH(’B’)**ESFMN2
SAFMN = SAFMN2x%2

SAFMX2 = ONE / SAFMN2

SAFMX = SAFMX2x%*2

MAXCNT = INT(-MAX(SLAMCH(’L’), SLAMCH(’N’)+ONE-SLAMCH(’M’))

25

+ /ESFMN2 - ONE - ONE)
END IF
IF(G.EQ.ZERD) THEN

Includes the case F=G=0

* ¥ x

CS = ONE
SN = ZERO
R=F
ELSE IF(F.EQ.ZERO) THEN

G must be nonzero

* ¥ *

CS

SN

R
ELSE

ZERO
SIGN(ONE, G)
ABS(G)

Both F and G must be nonzero

* ¥ x

F1 =F
Gl =@

SCALE = MAX(ABS(F1), ABS(G1))
COUNT = 0

IF(SCALE.GE.SAFMX2) THEN

Handle case where F1**2 + G1%*2 might overflow
SCL = SAFMX2

COUNT = COUNT + 1

F1 = F1*SAFMN2

G1 = G1*SAFMN2

SCALE = SCALE*SAFMN2

IF(SCALE.LT.SAFMX2) GOTO 100

COUNT = COUNT + 1

F1 = F1*SAFMN2

Gl = G1*SAFMN2

SCALE = SCALExSAFMN2

IF(SCALE.LT.SAFMX2) GOTO 100

10 CONTINUE
COUNT = COUNT + 1
F1 = F1*SAFMN2
Gl = G1*SAFMN2
SCALE = SCALExSAFMN2
IF(SCALE.GT.SAFMX2 .AND. COUNT.LE.MAXCNT) GOTO 10
ELSE IF(SCALE.LE.SAFMN2) THEN

Handle case where F1x*2 + G1**2 might underflow

SCL = SAFMN2

26

20

100

40

COUNT = COUNT + 1

F1 = F1*SAFMX2

Gl = G1*SAFMX2

SCALE = SCALExSAFMX2

IF(SCALE.GT.SAFMN2) GOTO 100

COUNT = COUNT + 1

F1 = F1xSAFMX2

Gl = G1*SAFMX2

SCALE = SCALExSAFMX2

IF(SCALE.GT.SAFMN2) GOTO 100

CONTINUE
COUNT = COUNT + 1
F1 = F1*xSAFMX2
Gl = G1*xSAFMX2
SCALE = SCALExSAFMX2
IF(SCALE.LT.SAFMN2 .AND. COUNT.LE.MAXCNT) GOTO 20

ENDIF

CONTINUE

R = SQRT(F1**2+G1**2)

RR = ONE/R

CS ABS(F1) * RR

SN = G1 * RR

IF (F .LT. ZERDO) THEN
R =-R
SN = -SN

ENDIF

DO 40 I = 1, COUNT
R = RxSCL

CONTINUE

ENDIF
RETURN

End of SLARTG

END

27

B CLARTG

SUBROUTINE CLARTG(F, G, CS, SN, R)

*
* —— LAPACK auxiliary routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* Jan 10, 2001
*
* . Scalar Arguments ..

REAL CS

COMPLEX F, G, R, SN
* Purpose

*

CLARTG generates a plane rotation so that

[¢S SN 1] [F1] [R]
[__] [1 = [1 where CS**2 + |SN|**2 = 1.
[-SN ¢S 1] [G1] [0]

This is a faster version of the BLAS1 routine CROTG, except for
the following differences:
F and G are unchanged on return.
If F=0 and G=0, then CS=1, SN=0, and R=0.
If F .ne. 0 and G=0, then CS=1, SN=0, and R=F.
If F=0 and G .ne. O, then CS=0, SN=conj(G)/abs(G), and R=abs(G).
If F .ne. 0 and G .ne. 0, then
CS = abs(F)/sqrt(F**2 + G*x*2)
SN = (F/abs(F))*conj(G)/sqrt (F**2 + G**2)
R (F/abs(F))*sqrt (F*x2 + G*x2)

If a NaN occurs in the input, then either real(R) and/or imag(R),
and possibly also CS, real(SN) and imag(SN), will be NaNs.

If an infinity occurs in the input, then either real(R) and/or imag(R),
and possibly also CS, real(SN) and imag(SN), will be infinite or NaNs.

The real routine SLARTG returns the same CS and SN (modulo roundoff)
if the inputs F and G are real.

X X X X X X X X X X X K X X X X X X X X X X X X X X X x

Arguments

*

F (input) COMPLEX
The first component of vector to be rotated.

(input) COMPLEX
The second component of vector to be rotated.

Cs (output) REAL
The cosine of the rotation.

* X X X X X X X x
(]

28

* X X X ¥ X X X X x

* ¥ x

* X X X X x

SN (output) COMPLEX
The sine of the rotation.
R (output) COMPLEX
The nonzero component of the rotated vector.

. Parameters ..

REAL FOUR, ONE, ZERD

PARAMETER (FOUR = 4.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0)

COMPLEX CZERO

PARAMETER (CZERO = (0.0E+0, 0.0E+0))
. Local Scalars ..

LOGICAL FIRST, AGAIN

INTEGER COUNT, I, MAXCNT

REAL D1, EPS, F2, G2, SAFMIN,

$ SAFMN2, SAFMX2, SAFMN4, SAFMX4, SAFMN, SAFMX,

$ SCALEF, SCALEG, SCALEFG, FG2, SQREPS, ESFMN4

COMPLEX FF, FS, GS
. External Functiomns ..

REAL SLAMCH, SLAPY2

EXTERNAL SLAMCH, SLAPY2
. Intrinsic Functions ..

INTRINSIC ABS, AIMAG, CMPLX, CONJG, INT, LOG, MAX, REAL,

$ SQRT
. Statement Functions ..

REAL ABS1, ABSSQ
. Save statement ..

SAVE FIRST, SAFMIN, EPS, SQREPS

SAVE SAFMX2, SAFMX4, SAFMN2, SAFMN4, SAFMN, SAFMX
. Data statements ..

DATA FIRST / .TRUE. /

. Statement Function definitions ..
ABS1(FF) = MAX(ABS(REAL(FF)), ABS(AIMAG(FF)))
ABSSQ(FF) = REAL(FF)**2 + AIMAG(FF)**2

. Executable Statements ..

IF(FIRST) THEN

On first call to SLARTG, compute

SAFMN4 = (SAFMIN/EPS)*%.25 rounded down to the nearest power
of the floating point radix
SAFMN2 = (SAFMIN/EPS)**.5 rounded down to the nearest power

29

* X X X x

* X X X ¥ X X ¥ * * X x

* X X X X X X *

+

of the floating point radix

This means that scaling by SAFMN{2,4} and their
reciprocals SAFMX{2,4} causes no roundoff error

FIRST = .FALSE.
SAFMIN = SLAMCH(’S’)
EPS = SLAMCH(’E’)

SQREPS = SQRT(EPS)
ESFMN4 = INT(LOG(SAFMIN / EPS) /

LOG(SLAMCH(’B’)) / FOUR)
SAFMN4 = SLAMCH(’B’)**ESFMN4

SAFMN2 = SAFMN4x**2
SAFMN = SAFMN2xx*2
SAFMX4 = ONE / SAFMN4
SAFMX2 = SAFMX4xx*2
SAFMX = SAFMX2x%*2

MAXCNT is the maximum number of times a nonzero number
can be scaled up/down by SAFMN4 before reaching 1

MAXCNT = INT(-MAX(SLAMCH(’L’), SLAMCH(’N’)+ONE-SLAMCH(’M’))
/ESFMN4 - ONE - ONE)
ENDIF

If F (or G) contains a NaN, SCALEF (or SCALEG) might not
SCALEF = ABS1(F)

SCALEG = ABS1(G)

IF(SCALEG.EQ.ZERO) THEN

Includes the case F=G=0
Includes the case F is infinite or NaN:

If F is a NaN then R will be a NaN

If F is infinite then R will be infinite
May include cases where G is a NaNl:

If G is a NaN then R will be a NaN

CS = ONE
SN CZERD
Add G to ensure that if G contains a NaN, so does R
R=F+G
ELSEIF(SCALEF.EQ.ZERO) THEN

G must be nonzero.
Includes the cases where G is infinite or NaN:

If G is a NaN then SN and R will be NaNls.

If G is infinite then SN will be a NAN and R will be infinite
May Include cases where F is a NalN:

If F is a NaN then R will be a NalN

CS = ZERD
GS = G
COUNT = O

No scaling if SCALEG is a NaN

30

* ¥ *

* X X X X *

* X X X X x

IF (SCALEG .GT. SAFMX2) THEN
CONTINUE
COUNT = COUNT + 1
GS = GS * SAFMN
SCALEG = SCALEG * SAFMN
Keep scaling unless SCALEG is infinite
IF (SCALEG .GT. SAFMX2 .AND. COUNT .LE. MAXCNT) GOTO 1
SCALE = SAFMX
ELSEIF(SCALEG .LT. SAFMN2) THEN
CONTINUE
COUNT = COUNT + 1
GS = GS * SAFMX
SCALEG = SCALEG * SAFMX
Keep scaling unless SCALEG=0 because G contains a NaN
IF (SCALEG .LT. SAFMN2 .AND. COUNT .LE. MAXCNT) GOTO 2
SCALE = SAFMN
ENDIF
D1 = SQRT(REAL(GS)**2 + AIMAG(GS)**2)
R =D1
D1 = ONE/D1
SN = CMPLX(REAL(GS)*D1, -AIMAG(GS)*D1)
DO 3 I =1, COUNT
R = CMPLX(REAL(R)*SCALE, ZERO)
CONTINUE
Make sure that R contains a NaN if F does
R=R+F
ELSE

Both F and G must be nonzero

IF(SCALEF.LE.SAFMX4 .AND. SCALEF.GE.SAFMN4 .AND.
SCALEG.LE.SAFMX4) THEN

Case 1: Neither F nor G too big or too small, minimal work
Neither F nor G can be infinite
If either F or G a NaN, then
CS, SR and R will be NalNs

F2 = ABSSQ(F)
G2 = ABSSQ(G)

FG2 = F2+G2
D1 = ONE/SQRT(F2*FG2)
CS = F2x*D1

FG2 = FG2 * D1
R = CMPLX(REAL(F)*FG2, AIMAG(F)*FG2)
SN = CMPLX(REAL(F)=*D1 , AIMAG(F)=*D1)
SN = CONJG(G) * SN

ELSEIF(SCALEG .LT. SQREPS*SCALEF) THEN

Case 2: ABS(F)#*%2 + ABS(G)**2 rounds to ABS(F)**2
F may be infinite but not G
Either F and/or G may be NaNs
CS = 1 always, even if F and/or G is a NaN
SN is a NaN if F or G is a NaN or infinite.

31

10

20

30

40

50

60

R is a NaN (or infinite) if F is a NaN (or infinite).

CS = ONE

FS = F

GS = G

COUNTF = 0

COUNTG = 0

IF(SCALEF .GT. SAFMX2) THEN
CONTINUE

COUNTF = COUNTF + 1
FS = FS * SAFMN
SCALEF = SCALEF * SAFMN
Keep scaling unless SCALEF is infinite
IF (SCALEF .GT. SAFMX2 .AND. COUNTF .LE. MAXCNT) GOTO 10
ELSEIF(SCALEF .LT. SAFMN2) THEN
CONTINUE
COUNTF = COUNTF - 1
FS = FS * SAFMX
SCALEF = SCALEF * SAFMX
Keep scaling unless SCALEF=0 because F contains a NaN
IF (SCALEF .LT. SAFMN2 .AND. COUNTF.GE.-MAXCNT) GOTO 20
ENDIF
IF(SCALEG .GT. SAFMX2) THEN
CONTINUE
COUNTG = COUNTG - 1
GS = GS * SAFMN
SCALEG = SCALEG * SAFMN
SCALEG finite so scaling must terminate
IF (SCALEG .GT. SAFMX2) GOTO 30
ELSEIF(SCALEG .LT. SAFMN2) THEN
CONTINUE
COUNTG = COUNTG + 1
GS = GS * SAFMX
SCALEG = SCALEG * SAFMX
Keep scaling unless SCALEG=0 because G contains a NaN
IF (SCALEG .LT. SAFMN2 .AND. COUNTG .LE.MAXCNT) GOTO 40
ENDIF
D1 = ONE/(REAL(FS)#**2 + AIMAG(FS)**2)
SN = FS * CONJG(GS)
SN will be a NaN if F is infinite or a NalN
SN = CMPLX(REAL(SN)*D1 , AIMAG(SN)=*D1)
COUNT = COUNTF + COUNTG
IF(COUNT .GT. O) THEN
DO 50 I = 1, COUNT
SN = CMPLX(REAL(SN)*SAFMN , AIMAG(SN)*SAFMN)
CONTINUE
ELSEIF(COUNT .LT. O) THEN
DO 60 I = 1, -COUNT
SN = CMPLX(REAL(SN)*SAFMX , AIMAG(SN)*SAFMX)
CONTINUE
ENDIF
Make sure R contains a NaN if G does
R = F + SNxG
ELSEIF(SCALEF .LT. SQREPS*SCALEG) THEN

32

Case 3: ABS(F)**2 + ABS(G)**2 rounds to ABS(G)**2
G may be infinite but not F
Either F or G may be a NaN, in which case
CS, SN and R are NaNs
SN and R are NaNs if G is infinite

¥ ¥ X X X ¥ x

FS =F

GS = G

COUNTF = O

COUNTG = O

IF(SCALEF .GT. SAFMX4) THEN
70 CONTINUE

COUNTF = COUNTF + 1
FS = FS * SAFMN2
SCALEF = SCALEF * SAFMN2
* SCALEF finite so scaling must terminate
IF (SCALEF .GT. SAFMX4) GOTO 70
ELSEIF(SCALEF .LT. SAFMN4) THEN
80 CONTINUE
COUNTF = COUNTF - 1
FS = FS x SAFMX2
SCALEF = SCALEF * SAFMX2

* Keep scaling unless SCALEF=0 because F contains a NaN
IF (SCALEF .LT. SAFMN4 .AND. COUNTF .GE.-MAXCNT) GOTO 80
ENDIF
IF(SCALEG .GT. SAFMX4) THEN
90 CONTINUE

COUNTG = COUNTG + 1
GS = GS * SAFMN2
SCALEG = SCALEG * SAFMN2
* Keep scaling unless SCALEG is infinite
IF (SCALEG .GT. SAFMX4 .AND. COUNTG .LE. MAXCNT) GOTO 90
ELSEIF(SCALEG .LT. SAFMN4) THEN
100 CONTINUE
COUNTG = COUNTG - 1
GS = GS * SAFMX2
SCALEG = SCALEG * SAFMX2
* SCALEG cannot be zero so scaling must terminate
IF (SCALEG .LT. SAFMN4) GOTO 100
ENDIF
F2
G2
D1

REAL(FS)**2 + AIMAG(FS)**2
REAL(GS) **2 + AIMAG(GS)**2
ONE/SQRT(F2xG2)
Cs F2*D1
SN = FS * CONJG(GS)
* SN will be a NaN if G is infinite
SN = CMPLX(REAL(SN)*D1 , AIMAG(SN)*D1)
D1 = G2x*D1
* R will be a NaN if G is infinite
R = CMPLX(REAL(FS)*D1 , AIMAG(FS)*D1)
COUNT = COUNTF - COUNTG
IF(COUNT .GT. O) THEN
DO 110 I = 1, COUNT

33

CS = CS*SAFMX2
110 CONTINUE
ELSEIF(COUNT .LT. O) THEN
DO 120 I = 1, -COUNT
CS = CS*SAFMN2
120 CONTINUE
ENDIF
IF(COUNTG .GT. O) THEN
DO 130 I = 1, COUNTG
R = CMPLX(REAL(R)*SAFMX2, AIMAG(R)*SAFMX2)
130 CONTINUE
ELSEIF(COUNTG .LT. O) THEN
DO 140 I = 1, -COUNTG
R = CMPLX(REAL(R)*SAFMN2, AIMAG(R)*SAFMN2)
140 CONTINUE
ENDIF
ELSE

Case 4: Scale F and G up or down and use formula from Case 1
Both F and G may be simultaneously infinite,
in which case CS, SN and R are all NaNs
Either F or G may be a NaN, in which case
CS, SN and R are all NaNs

* X X X X X x

FS = F

GS = G

COUNT = 0

AGAIN = .FALSE.

SCALEFG = MAX(SCALEF, SCALEG)
IF(SCALEFG .GT. ONE) THEN

IF (SCALEFG .LE. SAFMX2) THEN
SCALE2 = SAFMX4
AGAIN = .TRUE.
FS = FS * SAFMN4
GS = GS * SAFMN4
GOTO 153
ENDIF
SCALE = SAFMX2
FS = FS * SAFMN2
GS = GS * SAFMN2
SCALEFG = SCALEFG * SAFMN2
COUNT = COUNT + 1

* Keep scaling unless SCALEFG is infinite
151 CONTINUE
IF(SCALEFG .LE. SAFMX2 .OR. COUNT .GT. MAXCNT) GOTO 152
FS = FS * SAFMN2
GS = GS * SAFMN2

SCALEFG = SCALEFG * SAFMN2
COUNT = COUNT + 1
GOTO 151
152 CONTINUE
IF(SCALEFG .GT. SAFMX4) THEN

34

160

162

153

170

SCALE2 = SAFMX4
AGAIN = .TRUE.

FS = FS * SAFMN4
GS = GS * SAFMN4
ENDIF

ELSE
SCALEFG might be a NaN

IF (SCALEF .GE. SAFMN2) THEN
SCALE2 = SAFMN4
AGAIN = .TRUE.
FS = FS * SAFMX4
GS = GS * SAFMX4
GOTO 153
ENDIF
SCALE = SAFMN2
FS = FS * SAFMX2
GS = GS * SAFMX2
SCALEF = SCALEF * SAFMX2
COUNT = COUNT + 1

CONTINUE

IF(SCALEF .GE. SAFMN2 .0OR. COUNT .GT. MAXCNT) GOTO 162
FS = FS * SAFMX2
GS = GS * SAFMX2
SCALEF = SCALEF * SAFMX2
COUNT = COUNT + 1

CONTINUE

IF(SCALEF .LT. SAFMN4) THEN
SCALE2 = SAFMN4
AGAIN = .TRUE.
FS = FS * SAFMX4
GS = GS * SAFMX4

ENDIF

ENDIF

CONTINUE
F2 = ABSSQ(FS)
G2 = ABSSQ(GS)
FG2 = F2+G2
D1 = ONE/SQRT(F2xFG2)
CS will be a NaN if both F and G infinite
CS = F2xD1
FG2 = FG2 * D1
R = CMPLX(REAL(FS)*FG2, AIMAG(FS)*FG2)
SN = CMPLX(REAL(FS)*D1 , AIMAG(FS)*D1)
SN will be a NaN if both F and G infinite
SN = CONJG(GS) * SN
DO 170 I = 1, COUNT
R = CMPLX(REAL(R) * SCALE, AIMAG(R) * SCALE)
CONTINUE
IF (AGAIN)
R = CMPLX(REAL(R) * SCALE2, AIMAG(R) * SCALE2)
ENDIF

ENDIF
RETURN

End of CLARTG

END

36

