
Overview of Iterative Linear System Solver

Packages

Victor Eijkhout

July, 1998

Abstract

Description and comparison of several packages for the iterative solu-

tion of linear systems of equations.

1

1 Introduction

There are several freely available packages for the iterative solution of linear
systems of equations, typically derived from partial di�erential equation prob-
lems. In this report I will give a brief description of a number of packages, and
give an inventory of their features and de�ning characteristics.

The most important features of the packages are which iterative methods
and preconditioners supply; the most relevant de�ning characteristics are the
interface they present to the user's data structures, and their implementation
language.

2

2 Discussion

Iterative methods are subject to several design decisions that a�ect ease of use
of the software and the resulting performance. In this section I will give a global
discussion of the issues involved, and how certain points are addressed in the
packages under review.

2.1 Preconditioners

A good preconditioner is necessary for the convergence of iterative methods as
the problem to be solved becomes more di�cult. Good preconditioners are hard
to design, and this especially holds true in the case of parallel processing. Here
is a short inventory of the various kinds of preconditioners found in the packages
reviewed.

2.1.1 About incomplete factorisation preconditioners

Incomplete factorisations are among the most successful preconditioners devel-
oped for single-processor computers. Unfortunately, since they are implicit in
nature, they cannot immediately be used on parallel architectures. Most pack-
ages therefore concentrate on more parallel methods such as Block Jacobi or
Additive Schwarz. There are a few implementations of multicolour incomplete
factorisations.

BlockSolve95 is the only package catching breakdown of the ILU or IC fac-
torisation. The manual outlines code that successively shifts the diagonal until
the factorisation succeeds.

2.1.2 Preconditioners for sequential processing

On sequential architectures, the BPKIT package provides sophisticated block
factorisations, and LASpack contains multigrid solvers. Most other packages
supply the user with variants of ILU (Incomplete LU) or IC (Incomplete Cholesky).

2.1.3 Preconditioners for parallel iterative methods

These are the approaches towards parallel preconditioning taken in the packages
under review here.

Direct approximations of the inverse SPAI (section 3.13) is the only pack-
age that provides a direct approximation method to the inverse of the
coe�cient matrix. Since such an approximation is applied directly, using
a matrix-vector product, it is trivially parallel. The SPAI preconditioner
is in addition also generated fully in parallel.

Block Jacobi Each processor solves its own subsystem, and there is no commu-
nication between the processors. Since this strategy neglects the global/implicit
properties of the linear system, only a limited improvement in the number

3

of iterations can result. On the other hand, this type of method is very
parallel.

All parallel preconditioner packages provide some form of Block Jacobi
method.

Additive Schwarz As in the Block Jacobi method, each processor solves a
local subsystem. However, the local system is now augmented to include
bordering variables, which belong to other processors. A certain amount
of communication is now necessary, and the convergence improvement can
by much higher.

This method is available in Aztec (3.1), Petsc (3.10), ParPre (3.8), PSparselib (3.12).

Multicolour factorisations It is possible to perform global incomplete fac-
torisation if the domain is not only split over the processors, but is also
augmented with a multicolour structure. Under the reasonable assumption
that each processor has variables of every colour, both the factorisation
and the solution with a system thus ordered are parallel. The number of
synchronisation points is equal to the number of colours.

This is the method supplied in BlockSolve95 (3.2); it is also available in
ParPre (3.8).

Block factorisation It is possible to implement block SSOR or ILU methods,
with the subblocks corresponding to the local systems (with overlap, this
gives the Multiplicative Schwarz method). Such factorisations are neces-
sarily more sequential than Block Jacobi or Additive Schwarz methods,
but they are also more accurate. With an appropriately chosen processor
ordering (e.g., multicolour instead of sequential) the solution time is only a
small multiple times that of Block Jacobi and Additive Schwarz methods.

Such block factorisations are available in Parpre (3.8); PSparselib (3.12)
has the Multiplicative Schwarz method, under the name `multicolourSOR'.

Multilevel methods Petsc (3.10) and ParPre (3.8) are the only packages sup-
plying variants of (algebraic) multigrid methods in parallel.

Schur complement methods ParPre (3.8) and PSparselib (3.12) contain Schur
complement domain decomposition methods.

4

2.2 Data structure issues

Every iterative method contains a matrix-vector product and a preconditioner
solve. Since these are inextricably tied to the data structures used for the
matrix and the preconditioner (and possibly even to the data structure used for
vectors), perhaps the most important design decision for an iterative methods
package is the choice of the data structure.

2.2.1 The interface to user data

The more complicated the data structure, the more urgent the question becomes
of how the user is to supply the structures to the package. This question is
particularly important in a parallel context.

The packages reviewed here have taken the following list of approaches to
this problem.

� Fully internal, not directly accessible, data structures (basically object ori-
ented programming). This approach is taken in Petsc (3.10), ParPre (3.8),
and BlockSolve (3.2).

The data structures here are only accessible through function calls. This
means that the package has to supply routines for constructing the struc-
tures, for inspecting them, and for applying them.

� Prescribed, user supplied, data structures. This approach is taken in
Aztec (3.1); it is available in PCG (3.9).

Here the user has to construct the data structures, but the package supplies
the product and solve routines.

� User supplied, arbitrary, data structures, with user supplied product and
solve routines. This approach is available in PCG (3.9) and Petsc (3.10);
the object-oriented package IML++ (3.5) can also be considered to use
this approach.

� User de�ned data structures, not passed to the iterative method at all;
product and solve operations are requested through a reverse communica-
tion interface.

This approach is taken in PIM (3.11); it is also available in PCG (3.9).

2.2.2 Parallel data layout

There are several ways of partitioning a sparse matrix over multiple processors.
The scheme supported by all packages is partitioning by block rows.

� Each processor receives a contiguous series of rows of the matrix. This is
the approach taken in Petsc (3.10); it is available in BlockSolve95 (3.2).

Under this approach a processor can determine the ownership of any vari-
able, by keeping a short list of �rst and last rows of each processor.

5

� Each processor receives an arbitrary set or rows. This is the approach
taken in Aztec (3.1); it is available in BlockSolve95 (3.2).

Under this scheme, each processor needs to maintain the mapping of its
local rows to the global numbering. It is now no longer trivial to determine
ownership of a variable.

When a sparse matrix is distributed, the local matrix on each processor
needs to have its column indices mapped from the global to the local numbering.
Various packages o�er support for this renumbering.

6

2.3 High performance computing

Sparse matrix problems are notoriously low performers. Most of this is related
to the fact that there is little or no data reuse, thereby preventing the use of
BLAS kernels. See for example the tests on vector architectures in [4].

Other performance problems stem from parallel aspects of the solution meth-
ods.

Here are then a few of the approaches taken to alleviate performance prob-
lems.

2.3.1 Quotient graph computation

A matrix de�nes a graph by introducing an edge (i; j) for every nonzero ele-
ment a ij. A dense matrix in this manner de�nes a graph in which each node
is connected to every other node. This is also called a `clique'. Sparse matrices,
on the other hand, induce a graph where, no matter the number of nodes, each
node is connected to only a small number of other nodes.

However, sparse matrices from problems with multiple physical variables
will have dense subblocks, for instance corresponding to the variables on any
given node. It is possible to increase the e�ciency of linear algebra operations
by imposing on the matrix the block structure induced by these small dense
subblocks. For instance, the scalar multiplication/division a ika kk

�1
a ki that

appears in Gaussian elimination now becomes a matrix inversion and a matrix-
matrix multiplication, in other words, BLAS3 kernels.

Identifying cliques in the matrix graph, and deriving a quotient graph by
`factoring them out', is the approach taken in the BlockSolve package; sec-
tion 3.2.

The PCG package (section 3.9) takes the opposite approach in its Regular
Grid Stencil data format. To get dense subblocks, the degrees of freedom have
to be numbered �rst in regular storage, but in PCG they are numbered last.
This approach is more geared towards vector architectures.

2.3.2 Inner products

Most linear algebra operations in the iterative solution of sparse systems are
easily parallelised. The one exception concerns the inner products that appear
in all iterative methods (with the exception of the Chebyshev iteration). Since
the collection and redistribution of data in an inner product will inevitably have
some processors waiting, the number of inner products should be kept low.

The conjugate gradients and bi-conjugate gradients algorithms have two in-
terdependent inner products, and various people have suggested ways to reduce
this to two independent ones, which can then combine their communication
stages. See [3] and the references cited therein. This approach has been taken
in the PIM package; section 3.11.

The second source of inner products is the orthogonalisation stage in the
GMRES algorithm. Using Gram-Schmidt orthogonalisation, the inner products

7

are independent and can be combined; however, this makes the resulting al-
gorithm unstable. Modi�ed Gram-Schmidt gives a more stable algorithm, but
the inner products are interdependent, and have to be processed in sequence.
A middle ground is to apply (unmodi�ed) Gram-Schmidt twice.

8

2.4 Language

The languages used to implement the packages here are C, C++, and Fortran.
To some extent the implementation language determines from what language
the library can be called: C++ constructs can not be used from C, and if a
C routine returns an internally allocated array, this routine cannot directly be
used from Fortran. The Petsc library addresses this last point in its Fortran
interface.

9

3 The packages

3.1 Aztec

Aztec is a parallel library of iterative solution methods and preconditioners.
Its main aim is to provide tools that facilitate handling the distributed data
structures. For this, there is a collection of data transformation tools, as well
as query functions of the data structures.

3.1.1 Basic information

Available from Web site1; registration required

Author(s) Scott A. Hutchinson, John N. Shadid, Ray S. Tuminaro

Latest version 1.1, October 1995

Status Unknown

3.1.2 Contents

Iterative methods CG, GMRES, CGS, TFQMR, BiCGstab, Direct solve (on
one processor only).

Preconditioners Block Jacobi with ILU on the subblocks; also Additive Schwarz,
with an overlap limited to one.

Data structures Distributed variants of Compressed Row and Variable Block
Row; see below.

Manual User's Guide, 43 pages

Example codes Yes

3.1.3 Parallelism and data layout

Aztec can handle arbitrary assignments of matrix rows to processors. Since this
quite general arrangement makes it harder to construct the local numbering
of the matrices (see section 2.2.2), the user can supply the matrix with global
numbering and a preprocessing routine performs the localisation. However, the
user does have to supply all rows on the appropriate processor.

3.1.4 Other

Aztec requires routines from Blas, Lapack, Linpack, Y12m.

1http://www.cs.sandia.gov/CRF/aztec1.html

10

3.1.5 Installation

As part of the installation, Aztec requests auxiliary routines from netlib, and
places them in a subdirectory to be compiled later. This precludes native Blas
or Lapack libraries to be used. There is no hint on how to substitute these.

AzTec uses a distributed version of the MSR (Modi�ed Sparse Row) storage
format, which is close to the Compressed Row Storage format. I �nd this an
unfortunate choice:

� I do not see any advantage over the CRS format.

� While conversion to and from CRS is straightforward, the arrays need to
be longer by one position. This means that interfacing AzTec to a code
using CRS entails deallocating and reallocating the arrays.

� The extra storage location in the real array is not used; the location in the
integer array duplicates the scalar parameter giving the number of rows.

11

3.2 BlockSolve95

The main focus of the BlockSolve package is the implementation of SSOR and
ILU preconditioners based on a parallel multi-colouring algorithm by the au-
thors. The algorithm �rst computes a quotient graph of the matrix graph by
eliminating cliques and identical nodes. Operations on the nodes of this quotient
graph then become of BLAS2/3 type, leading to a high performance.

BlockSolve can be used with the Petsc package; section 3.10.

3.2.1 Basic information

Available from Web site2

Author(s) Mark T. Jones and Paul E. Plassmann

Latest version 3.0, June 1997

Status Being maintained and further developed

3.2.2 Contents

Iterative methods CG, SYMMLQ, GMRES are provided, though these are
not the main focus of package; BlockSolve can be interfaced to Petsc for
more iterative methods.

Preconditioners diagonal scaling, block Jacobi with blocks corresponding to
the cliques factored out of the quotient graph, incomplete LU and Cholesky.

Data structures Internal, as a C structure..

Access operations on the data structure None; the de�nition of the
structure is given in the manual.

Operations using the data structure Iterative solution of the system
and of a shifted system, application of the matrix and the precondi-
tioner3.

Manual Users Manual; 34 pages. This is a complete reference; the user is
suggested to use the example codes as templates for applications.

Example codes Yes

2http://www.mcs.anl.gov/blocksolve95/
3The separate application of the matrix and the preconditioner are not documented in the

manual

12

3.2.3 Parallelism and data layout

The user has two ways to pass the distributed matrix to BlockSolve.

1. Since the de�nition of the data structure is given in the manual, the user
can explicitly construct it.

2. The user can supply a compressed row storage matrix, with column indices
in the local numbering (section 2.2.2), to the routine BSeasy_A, which
yields the matrix structure.

In the second case, the matrix rows need to be consecutively numbered. In
the �rst case the assignment of rows over the processors can be arbitrary; the
user has to construct the mapping functions between local and global number-
ings. There are example codes illustrating this.

13

3.3 BPKIT2

BPKIT is a package of block preconditioners, that is, factorisation precondi-
tioners that treat the matrix �rst on a subblock level, then recursively factor
the blocks on the element level. One of the selling points of BPKIT is the
object-oriented approach to this two-level factorsation.

3.3.1 Basic information

Available from Web site4

Author(s) E. Chow and M. A. Heroux

Latest version 2.0, September 1996

Status Maintained

3.3.2 Contents

Iterative methods Flexible GMRES, though this is not the focus of the pack-
age

Preconditioners Block SSOR and ILU, possibly with block �ll-in, and with
various methods for explicit and implicit approximationof inverses of pivot
blocks

Data structures Internal, as a C++ class.

Access operations on the data structure Retrieve rows and scalar in-
formation such as the number of nonzeros of the matrix.

Operations using the data structure Multiply and multiply transpose
by the matrix; solve and solve transpose of the preconditioner, both
the whole preconditioner, and the left and right split parts.

Manual Reference manual, 53 pages

Example codes Yes, in Fortran, C, and C++

3.3.3 Installation

The make�le in the app subdirectory requires editing for the location of MPI
and for compiler options.

The manual is not well written. Many parameters and auxiliary routines are
under-documented.

4http://www.cs.umn.edu/%7Echow/bpkit.html/

14

3.4 GPS: General Purpose Solver

3.4.1 Basic information

Available from Web site5; requires registration by postal mail.

Author(s) Olaf O. Storaasli, Majdi Baddourah, Duc Nguyen

Latest version 03/08/95 (submission to NASA Langley Software Server)

Status Approval for downloading the software did not come in in time for this
report.

5http://www.larc.nasa.gov/LSS/ABSTRACT/LSS-1995-0002.html

15

3.5 IML++

The IML++ package consists of C++ implementation of the iterative methods
from the templates project [2]. It relies on the user supplying Matrix, Vector,
and Preconditioner classes that implement the required operations.

An example implementation of such classes called Sparselib++ is available
from the same authors. It contains uni-processor matrix classes based on com-
pressed row and column and coordinate storage, a vector class, and Jacobi and
ILU/IC preconditioners for the compressed row and column matrices. Addi-
tionally it contains tools for converting a Harwell-Boeing matrix or matrix �le
to these formats.

3.5.1 Basic information

Available from Web site6

Author(s) Jack Dongarra, Andrew Lumsdaine, Roldan Pozo and Karin A.
Remington

Latest version 1.2, April 1996

Status Being maintained; IML++ will eventually be superseded by the Tem-
plate Numerical Toolkit, a package not currently available.

3.5.2 Contents

Iterative methods BiCG, BiCGstab, CG, CGS, Chebyshev, GMRES, IR,
QMR

Preconditioners n/a

Data structures n/a

Manual Reference guide, 39 pages; also SparseLib++ Reference Guide, 20
pages.

Example codes no

6http://math.nist.gov/iml++/

16

3.6 Itpack 2C / ItpackV 2D

Itpack is a package of iterative methods. It runs sequentially, but ItpackV is an
optimised version for vector machines such as the Cray Y-MP.

Itpack features adaptive determination of matrix bounds, to be used in ac-
curate stopping tests, of for the Chebyshev semi-iteration.

3.6.1 Basic information

Available from Ftp site7, also on Netlib

Author(s) David R. Kincaid, Thomas C. Oppe, David M. Young

Latest version Itpack 2C: manual dated July 1997, Itpack 2D: manual dated
May 1989

Status Being maintained

3.6.2 Contents

Iterative methods Jacobi Conjugate Gradient, Jacobi Semi-iteration (i.e.,
Chebyshev iteration, SOR, SSOR, SSOR CG, Reduced system CG, Re-
duced system SI

Preconditioners n/a; see above

Data structures Itpack 2C: Compressed Row (there are auxiliary routines to
facilitate building the data structure); ItpackV 2D: ellpack storage.

Manual 22/14 pages

Example codes Yes

3.6.3 Installation

Itpack There is no make�le or anything like it, but there is really no need for
it either, since a complete installation consists of one �le of library routines and
one �le of tests.

The PROGRAM statement in the test �les had to be edited.
The test code was insu�ciently documented for an easy 'same problem but

larger' test.

Nspcg The nspcg routines come in �les with undescriptive names such as
nspcg1.f.

The nspcg5.f �le needed replacement of the timer routine.

7ftp://ftp.ma.utexas.edu/pub/CNA/ITPACK

17

3.7 Laspack

LASpack is an object-oriented package of iterative methods, iterative methods,
multigrid solvers, and auxiliary routines for the iterative solution of linear sys-
tems. It does not run in parallel.

There are data structures for vectors, general and square matrices, and pre-
conditioners; a large number of accessing and manipulating these objects is
available.

3.7.1 Basic information

Available from Web site8; also from Netlib

Author(s) Tom�a�s Skalick�y

Latest version 1.12.3, January 1996

Status Developed

3.7.2 Contents

Iterative methods Jacobi, SOR, SSOR, Chebyshev iteration, CG, CGN, GM-
RES, BiCG, QMR, CGS, BiCGstab, restarted GMRES.

Multigrid methods Conventional and Full multigrid, BPX preconditioning

Preconditioners Jacobi, SSOR, ILU(0)

Data structures Internal, created by passing elements by function call.

Access operations on the data structure Many

Operations using the data structure Matrix addition and scaling; Matrix-
vector multiply, transposition, Matrix inverse vector multiply.

Manual Reference manual, 8+40 pages.

Example codes Yes.

8http://www.math.tu-dresden.de/ skalicky/laspack/index.html

18

3.8 ParPre

This is an add-on package to Petsc; section 3.10. It is solely a collection of
parallel preconditioners, to be used with iterative methods either from Petsc or
coded by the user. The data structures are those used by Petsc.

ParPre can be used independently of Petsc, but does require Petsc to be
installed.

3.8.1 Basic information

Available from Web site9

Author(s) Victor Eijkhout and Tony Chan

Latest version 2.0.17

Status Maintained and developed

3.8.2 Contents

Iterative methods None

Preconditioners Additive and multiplicativeSchwarz, Generalised Block SSOR,
Schur complement domain decomposition, Algebraic multilevel methods
(including multicolour ILU and algebraic multigrid).

Data structures Internal.

Access operations on the data structure Inherited from Petsc.

Operations using the data structure Solve, no solve transpose.

Manual Reference manual with programming examples; 32 pages.

Example codes Yes

3.8.3 Parallelism and data layout

All methods in ParPre are based on decomposition of the physical domain into
subdomains, with an assignment of one subdomain per processor (or rather:
process). Most methods involve a local solve on the subdomain, for which any
of the non-parallel Petsc preconditioners can be used.

For the methods that do not have all subdomains operate in parallel (e.g.,
multiplicative Schwarz as opposed to additive Schwarz), the user can specify the
strategy that determines the sequential ordering of the domains. The choices
are: natural, red-black, and multicolour.

9http://www.math.ucla.edu/ eijkhout/parpre.html

19

3.9 PCG

The PCG package has a large number of iterative methods and a few simple
preconditioners. The code is publically available in a uni-processor version,
and one optimised for Cray YMP. An MPI version is under development. The
iterative methods are addressable on three levels, each with a di�erent way of
handling the data structures.

3.9.1 Basic information

Available from Web site10

Author(s) W.D. Joubert, G.F. Carey, N.A. Berner, A. Kalhan, H. Khli, A.
Lorber, R.T. McLay, Y. Shen

Latest version 1.0, September 1996

Status Being further developed

3.9.2 Contents

Iterative methods Richardson, CG, CG with Neuman polynomial precondi-
tioning, BiCG, BiCG with restart, Lanczos / Orthores, CGS, BiCGstab,
BiCGstab2, BiCGstab(`), QMR, TFQMR, truncated OrthoMin and Or-
thoRes, Incomplete Orthogonalisation, GMRES: restarted, restarted with
Householder reections, and nested restarted GMRESR; CGNE and CGNR,
LSQR and LSQE.

Preconditioners Richardson and Jacobi

Data structures Regular Grid Stencil storage supported; also data structure
free mode by passing product and solve routines, or through reverse com-
munication.

Manual Reference manual, 64 pages; also Getting Started manual, Examples
manual, and guide to the XPCG Xwindows front end.

Example codes Yes.

3.9.3 Interface to user data structures

PCG has three ways of handling the matrix and preconditioner data structures.
First of all, PCG has one supported data structure: the Regular Grid Stencil

storage. This corresponds to the type of matrices arising from having the same
�nite di�erence or �nite element stencil on each grid point of a Cartesian product
grid. Such matrices are trivially stored in multi-dimensional arrays. After the
user sets up the matrix array and the right hand side vector, PCG solves the
system (this is called Top Level Usage of PCG).

10http://www.cfdlab.ae.utexas.edu/pcg/index.html

20

Secondly, the user can pass matrix and preconditioner arrays, plus two inte-
ger arrays for each, to iterative method routines on the Iterative Method Level
of PCG. Additionally, now the user has to supply routines to perform the matrix
vector product and the preconditioner solve, plus their transposes for methods
such as BiCG that need them.

Thirdly, PCG supports Reverse Communication Usage: no matrix or pre-
conditioner structures whatsoever are passed to the iterative routines. Instead,
when a product or solve operations needs to be performed, the iterative routine
will save its internal state, and return control to the user program with a request
to perform that operation.

1 continue

call CG(.... IREQ IVA, IVQL ... FWK ...)

if (IREQ .eq. JAV) then

c perform matrix-vector product to the vector FWK(IVQR)

c leaving the result in FWK(IVA)

else if (IREQ .eq. JQLV)

c apply left preconditioner to the vector FWK(IVA)

c leaving the result in FWK(IVQR)

else

end if

goto 1

Control is also returned to the user for the convergence test, but inner products
are still performed inside the iterative routine.

The Regular Grid Stencil storage scheme incorporates the possibility of hav-
ing multiple physical variables per grid point; see section 2.3.1.

21

3.10 Petsc

Petsc is a package for the solution of PDE problems. It contains everything from
linear algebra tools, through linear solvers, nonlinear solvers, and time-stepping
methods. Since it is written in an object-oriented style, all data structures are
hidden from the user. A large number of construction and inspection routines
give access to the numerical data and parameters of the objects.

Petsc can use the preconditioners of the BlockSolve package; section 3.2.

3.10.1 Basic information

Available from Web site11

Author(s) Satish Balay, William Gropp, Lois Curfman McInnes,Barry Smith

Latest version 2.0.17

Status Begin maintained and further developed

3.10.2 Contents

Iterative methods Richardson, Chebyshev, CG, GMRES, TCQMR, BCGS,
CGS, TFQMR, CR, LSQR

Preconditioners Identity, Jacobi, Block Jacobi, Block Gauss-Seidel (only se-
quential), SOR and SSOR, IC and ILU (sequential only?), Additive Schwarz,
full factorisation (sequential only), user supplied.

Data structures Internal, elements passed through function calls.

Access operations on the data structure Function calls yielding the
internal arrays of matrices and vectors, matrix rows and the matrix
diagonal; other statistics.

Operations using the data structure Vector-vector and matrix-vector
operations; creation and application of preconditioners, linear and
nonlinear system solvers.

Manual Users manual, 196 pages; the manual and the man pages are also
available in html format.

Example codes Yes

3.10.3 Parallelism and data layout

Petsc supports both dense and sparse data structures sequential and in parallel;
there is support for multiple physical variables per unknown.

The data structures are completely hidden from the user, only accessible
through function calls. Creation of the vector and matrix data structures is
completely general: any processor can specify elements for any other processor.

11http://www.mcs.anl.gov/petsc/petsc.html

22

3.11 Parallel Iterative Methods (PIM)

The sole focus of this package is on iterative methods. PIM let's the user supply
external routines for the matrix-vector product, preconditioner application, and
norms and inner products. This makes the package largely independent of
data structures and communication protocols, in fact of whether the program
is running in parallel or not. It also puts a considerable burden on the user.

3.11.1 Basic information

Available from Web site12

Author(s) Rudnei Dias da Cunha, Tim Hopkins

Latest version 2.2, May 1997

Status Maintained

3.11.2 Contents

Iterative methods CG, CG on the normal equation (CGNE and CGNR),
BiCG, CGS, BiCGstab (normal and restarted), restarted GMRES, restarted
GCR, QMR with reduced synchronisation overhead, TFQMR, Chebyshev
iteration.

Preconditioners None

Data structures None

Manual User's guide; 81 pages

Example codes Yes; both sequential and parallel, and for dense and sparse
data formats. The manual contains a good discussion of the example
programs.

3.11.3 Interface to user data structures

PIM iterative method routines need parameters corresponding to external rou-
tines for the matrix-vector (possible matrix-transpose-vector) product, and the
preconditioner application.

The calling interface for these external routines is fairly simple, e.g.,

subroutine matvec{u,v,ipar}

double precision u(*),v(*)

integer ipar(*)

12http://www.mat.ufrgs.br/pim-e.html

23

where the ipar array is the information array that is passed to the iterative
method.

Unfortunately this puts a number of restriction on the user's choices. For
instance, it implies that the matrix has to be in common blocks, and that the
vectors need to be simple arrays; they can not be pointers to more elaborate
structures.

24

3.12 PSparselib

This seems to be very much a package under development. There are various
discrepancies between the manual and the code, and the manual is far from
being a reference.

3.12.1 Basic information

Available from Web site13

Author(s) Yousef Saad and Gen-Ching Lo

Latest version 2.15, May 1997 (manual is dated June 1996)

Status Being developed; future version may be for internal use only.

3.12.2 Contents

Iterative methods Flexible GMRES, CG, BiCG, BiCGstab, GMRES, DQGM-
RES, TFQMR

Preconditioners Additive and multiplicative Schwarz, Schur complement do-
main decomposition

Data structures Undocumented, the user is referred to tech reports and arti-
cles.

Manual Users manual, 14 pages; this does not document calling sequences or
data structures.

Example codes Yes

3.12.3 Parallelism and data layout

PSparselib uses reverse communication to abstract away from particulars of the
communication layer and the data structure: the fgmres routine returns con-
trol to the user for each matrix-vector product and preconditioning operation.
However, inner products are still performed by hard MPI instructions in the
fgmres routine.

3.12.4 Installation

The make�le required editing for some macros, as described in the README �le.

13http://www.cs.umn.edu/Research/arpa/p_sparslib/psp-abs.html

25

3.13 Sparse Approximate Inverse (SPAI) Preconditioner

SPAI is a research code, implementing in parallel an approximate inverse pre-
conditioner, based on computing a minimumnorm approximation to the inverse
of the coe�cient matrix. Both the computation and application of the precon-
ditioner are fully parallel.

3.13.1 Basic information

Available from Web site14

Author(s) Steve Barnard

Latest version

Status Maintained and developed

3.13.2 Approximate inverse

Most popular preconditioners are implicit, that is, to apply them one has to
solve a system. One might say that they compute an approximation to the
coe�cient matrix that is easier to solve with than the matrix itself.

The approximate inverse class of preconditioners is di�erent in that they
compute explicitly an approximation to the inverse. Hence the application is
an explicit matrix-vector product operation, and therefore trivially parallel.

The method in the SPAI code is based on ideas from [5]: the minimisation
problem

minkAM � Ik

or
minkMA� Ik

is solved, with the sparsity pattern of M predetermined or adaptively deter-
mined. This minimisation problem turns out to reduce to independent sub-
problems for the rows or columns of M , and is therefore executable in parallel.

An other advantage of this method is that it is not subject to breakdown
the way factorisation based methods are.

14http://lovelace.nas.nasa.gov/NAS/SPAI/download.html

26

3.14 SPlib

SPlib is a package of uni-processor iterative methods and preconditioners, pri-
marily designed for ease of use.

3.14.1 Basic information

Available from Ftp site15

Author(s) Randall Bramley and Xiaoge Wang

Latest version Unknown

Status Being maintained

3.14.2 Contents

Iterative methods CG-stab, BiCG, CGNR and CGNE, CGS, BiCGstab, GM-
RES, TFQMR, templates version of CGS, templates version of GMRES,
Jacobi, Gauss-Seidel, SOR, Orthomin

Preconditioners Identity, ILU(s), MILU(s; r), ILUT(s; t), SSOR(!), TRID(s),
ILU0, ECIMGS; where s is the number of levels of �ll, r is the relaxation
parameter [1], t is the drop tolerance.

Data structures Compressed Sparse Row

Manual 26 pages

Example codes Driver program that read a Harwell-Boeing matrix and solves
a problem with it.

15ftp://ftp.cs.indiana.edu/pub/bramley/splib.tar.gz

27

3.15 Templates

The templates codes are meant as example implementations of the methods
in the Templates book [2]. As such they are somewhat unsophisticated, more
illustrations of the principles than optimised realisations.

3.15.1 Basic information

Available from Netlib16

Author(s) Richard Barrett et. al.

Latest version

Status Maintained

3.15.2 Contents

Iterative methods BiCG, BiCGstab, CG, CGS, Chebyshev, GMRES, Jacobi,
QMR, SOR

Preconditioners Identity, Jacobi

Data structures User supplied: each iterative method is given in two versions.

1. The matrix-vector product routine is an external, passed to the iter-
ative routine, and the matrix is assumed to be in common.

2. The iterative routine uses reverse communication.

Manual The Templates book [2] is available commercially, or for download
from Netlib.

Example codes Yes

16http://www.netlib.org/templates/

28

4 Comparison chart of features

The following chart gives some basic information about the packages. Please
consult the previous section for a more detailed discussion of the individual
packages.

Parallel Does the package run in parallel? All the parallel packages are based
on MPI, other protocols are noted.

Iterative Does the package contain iterative methods? A few packages have
preconditioners as their main focus, but suppply one or a few iterative
methods for the user who doesn't have any yet.

Prec Does the package contain preconditioners?

Data How does the package interface to user data? See note 3 below.

Lang What is the implementation language of the package?

Inst Is the library instrumented, reporting on ops and timing?

Package Parallel Iterative Prec Data3 Language Inst
Aztec yes yes yes internal3a C Yes

BlockSolve95 yes yes1 yes internal3a C Yes
BPKIT no yes1 yes internal3b C++8 No

IML n/a2 yes yes9 supplied C++
Itpack no yes yes7 prescribed Fortran No

Laspack no yes yes internal C
ParPre yes no yes internal4 C
PCG coming yes yes prescribed/supplied/free Fortran
Petsc yes yes yes internal/supplied C8 Yes
PIM n/a2 yes no free Fortran

PSparselib yes yes yes free Fortran No
SPAI yes yes1 yes C
SPlib no yes yes prescribed Fortran

templates no yes no5 supplied6/free Fortran/C/Matlab

Notes

1 Not the main focus of this package.

2 The library abstracts away from data structure implementation aspects;
parallelism is possible, but is the user's responsibility.

3 For the explanation of terms `internal', `prescribed', `supplied', and `free',
see section 2.2.1.

3a converted from compressed row format.

3b converted from Harwell-Boeing format.

4 Identical to Petsc format.

29

5 Nothing beyond Jacobi.

6 The external product and solve routines are presumed to �nd the matrix
in a common block.

7 Can not be chosen independently of the iterative method: the user picks
a combination.

8 Fortran interface provided.

9 Preconditioners provided in an example C++ matrix class library, SparseLib++.

30

5 Performance tests

We have run performance tests on a number of packages. Ideally, these tests
combine all of the following possibilities:

� Single processor and parallel where possible.

� Using all data structures supplied or accepted by the package.

� Comparing various iterative methods, in particular where they have dif-
ferent parallel behaviour, such as the Chebyshev method versus the Con-
jugate Gradient method.

� Assessing the e�cacy of di�erent preconditioners, measuring separately
and combined:

{ Cost of setup,

{ Reduction in numbers of iterations,

{ Number of ops per iteration,

{ Flop rate of the solve performed in each iteration.

� Solving di�erent systems of the same size and structure is not of much
use, as this only changes the number of iterations performed; one could
note how many iterations are necessary to o�set the initial setup cost.

5.1 Machines used

The following machines at the University of Tennessee, Knoxville, were used:

nala Sun Ultra-Sparc 2200 with Solaris 5.5.1. 200MHz, 16K L1, 1Mb L2. Com-
pilers: f77 -O5 and gcc -O2.

cetus lab Sun Ultra-Sparc 1, 143 Mhz, connected by 10Mbps Ethernet.

31

N M MSR M VBR (nb=4)
2500 23
2744 23

10,000 20
9261 22

22,500 19 22

Table 1: AzTec performance on Nala (section 5.1.

N np=1 np=2 np=4 np=8
2500 26 20 18 16

10,000 20 26 37 45
22,500 19 27 49 68
90,000 17 26 50 89
250,000 16 25 49 95

Table 2: AzTec aggregate Mop rating for Jacobi preconditioned CG on the
Cetus lab (section 5.1.

5.2 Results

5.2.1 AzTec

Problem tested: �ve-point Laplacian solved with Jacobi CG.We used the sample
main program provided, and altered only parameter settings

� CG instead of CGS,

� Block Jacobi preconditioner,

� 5-point instead of 7-point matrix.

We also tested the 7-point Laplacian with 4 variables per grid point, using the
VBR format. Since this uses level 2 BLAS routines, it should in principle be
able to get higher performance, but in practice we do not see this happening.
In the single processor tests in table 1 we see that for small problems there is
a slight performance increase due to cache reuse, but not on the order that we
would see for dense operations. The use of Blas2 in the VBR format seems to
have no e�ect.

AzTec's built in timing and op count does not support the ILU(0) pre-
conditioner, so we added that. The op count is approximate, but does not
overestimate by more than a few percent. We omit the N = 400 tests because
they were too short for the timer to be reliable.

From table 2 we see for small problem sizes the communication overhead
dominates; for larger problems the performance seems to level o� at 13 M per
processors, about 10 percent of peak performance. Performance of an ILU(0)-
preconditioned method (table 3) is slightly lower. The explanation for this is
not immediately clear. Note that, since we used a regular grid problem, it is
not due to indirect addressing overhead.

32

N np=1 np=2 np=4 np=8
2500 17 19 19 17

10,000 15 21 35 47
22,500 14 21 38 65
90,000 13 20 39 73
250,000 20 38 76

Table 3: AzTec aggregate Mop rating for ILU(0) preconditioned CG on the
Cetus lab (section 5.1.

N p=1 p=2 p=4
400 5.6 8.8 4.5
2500 5.5 2.4 2.4

10,000 5.5 3.7 4.6
90,000 5.0 5.3 8.4
250,000 4.8 5.5 9.5

Table 4: BlockSolve95 aggregate megaop rates on the Cetus lab (section 5.1;
one equation per grid point.

5.2.2 BlockSolve95

We tested the supplied grid5 demo code, with the timing and op counting
data supplied in BlockSolve95. The method was CG preconditioned with ILU.

From table 4 we see that the performance of BlockSolve95 is less than of other
packages reported here. This is probably due to the more general data format
and the resultant indirect addressing overhead. Results in table 5 show that by
inode/clique identi�cation BlockSolve95 can achieve performance comparable
to regular grid problems in other packages.

Larger problems than those reported led to segmentation faults, probably
because of insu�cient memory. Occasionally, but not always, BlockSolve aborts
with an `Out of memory' error.

5.2.3 Itpack

Problem tested: �ve-point Laplacian solved with Jacobi CG. We wrote our own
main program to generate the Laplacian matrix in row compressed and diagonal

N p=1 p=2 p=4 p=8
400 23(10) 10(2) 5(2) 06(2)
2500 19(9) 20(6) 17(5) 24(5)

10,000 18(8) 25(7.5) 38(9) 54(10)

Table 5: BlockSolve95 aggregate megaop rates on the Cetus lab (section 5.1;
�ve equations per grid point; parenthesized results are without inode/clique
isolation.

33

N alloc (Mb) M CRS M Dia
400 .05 19 1
2500 .3 20 8

10,000 1.2 17 14
22,500 2.8 16 15

Table 6: Megaop rates for Itpack on a single Cetus machine (section 5.1.

N p=1 p=2 p=4 p=8
400 17 4 2 1
2500 18 12 8 7

10,000 15 20 20 24
90,000 13 22 44 75
250,000 13 22 44 88

Table 7: Aggregate megaop rates for unpreconditioned CG under Petsc on the
Cetus lab (section 5.1).

storage format.
Certain Itpack �les are provided only in single precision. We took the single

precision �les and compiled them with f77 -r8 -i4, which makes the REALs
8 bytes and INTEGERs 4. It is not clear why diagonal storage will only give
good performance on larger problems.

5.2.4 Petsc

We tested the Petsc library on Sun UltraSparcs that were connected by both
Ethernet and an ATM switch. The results below are for the Ethernet connection,
but the ATM numbers were practically indistinguishable.

We wrote our own main program to generate the �ve-point Laplacian matrix.
The method in table 7 is an unpreconditioned CG algorithm.

We tested the e�cacy of ILU by specifying

PCSetType(pc,PCSOR);

PCSORSetSymmetric(pc,SOR_LOCAL_SYMMETRIC_SWEEP);

which corresponds to a block Jacobi method with a local SSOR solve on-
processor. This method, reported in table 8, has a slightly lower performance
than the unpreconditioned method, probably due to the larger fraction of indirect-
addressing operations.

5.2.5 PSparsLib

We added op counting to the example program dd-jac, which is an additive
Schwarz method with a local solve that is ILUT-preconditioned GMRES.

Larger problem sizes ran into what looks like a memory-overwrite. Attempts
to allocate more storage failed.

34

N p=1 p=2 p=4 p=8
400 14 2 2 1
2500 15 9 7 6

10,000 12 13 18 20
90,000 10 13 26 45
250,000 14 27 52

Table 8: Aggregate megaop rates for ILU CG under Petsc on the Cetus lab
(section 5.1).

N p=1 p=2
400 29 10
2500 26 5

Table 9: Aggregate megaop rates for PSparsLib on the Cetus lab (section 5.1).

5.3 Discussion

Although our tests are nowhere near comprehensive, we can state a few general
conclusions.

� A sequential code should be able to attain 10{20% of the peak speed of
the machine. This value was attained by most packages, using a variety
of storage formats.

� Parallel codes have signi�cant overhead; for large enough problems this is
amortized to where the per-processor performance is about half of that of
the sequential code.

� Inode/clique identi�cation can make a large di�erence in systems that
have multiple variables per node.

References

[1] Owe Axelsson and Gunhild Lindskog. On the eigenvalue distribution of a
class of preconditioning matrices. Numer. Math., 48:479{498, 1986.

[2] Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June Do-
nato, Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and
Henk van der Vorst. Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods. SIAM, Philadelphia PA, 1994.

[3] E.F. D'Azevedo, V.L. Eijkhout, and C.H. Romine. Lapack working note
56: Reducing communication costs in the conjugate gradient algorithm on
distributed memory multiprocessor. Technical Report CS-93-185, Computer
Science Department, University of Tennessee, Knoxville, 1993. to appear.

35

[4] Jack Dongarra and Henk van der Vorst. Performance of various computers
using sparse linear equations software in a fortran environment. Supercom-

puter, 1992.

[5] L. Yu. Kolotilina and A. Yu. Yeremin. On a family of two-level precondition-
ings of the incomlete block factorization type. Sov. J. Numer. Anal. Math.

Modelling, pages 293{320, 1986.

36

