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1 Introduction

This document is intended to provide information about the internals of NetSolve version
1.2. The NetSolve project started in the Summer of 1995. The �rst public release of an
alpha version (1.0) occurred in January 1996 and generated a lot of feedback (suggestions,
bug reports, new applications, ...). That feedback led to the release of NetSolve version
1.1.b in January 1998. NetSolve's popularity has been growing and the tools for building
a computational Grid [1] have become more available. The 1.1.b design started to show its
weaknesses in two ways: (i) adding new features needed by new users became problematic
because of inappropriate design decisions; (ii) the seamless integration of new tools for the
computation grid seemed di�cult. Those observations motivated a complete rewrite and
re-design of the software: NetSolve 1.2. The di�erence between NetSolve 1.1.b and NetSolve
1.2 will not be as striking to the NetSolve user (even though a number of new features and
capabilities have been added) as to NetSolve developers. Like version 1.1.b, NetSolve 1.2 has
been ported to most UNIX platforms. In addition, it provides Windows 95/NT C, Matlab
and Mathematica client interfaces.

This document is organized as follows. Section 2 describes the general architecture of
the software. Section 3 describes how networking is done in NetSolve 1.2. Section 4 lists
the fundamental data structures. Section 5 details the protocols between agents, servers and
clients. Sections 6.1, 6.2, 6.3, 6.4, and 6.5 describe general idea behind the implementation
of the NetSolve client and its C, Fortran, Matlab, Mathematica, and Java APIs. Sections 7
and 8 gives information about the implementation of the NetSolve agent and server. Section 9
concludes the document with a set of ideas for short-term and long-term evolutions and
improvements.

One of the di�culties about writing a description of the implementation of an ever-
evolving research project is that detailed information becomes out-of-date rather quickly.
We believe that this document is low-level enough to be relevant for future developers while
being high-level enough so that it can be easily updated for future versions of the software.
This is accomplished in several ways. First, this document shows NetSolve as a set of
somewhat independent modules or subsystems (e.g. the networking subsystem in Section 3)
and how each one of them can be entirely replaced by another subsystem of equivalent
functionality. We expect this to happen more and more as grid-enabled tools become further
stable and available. Second, this document contains a lot of hints and information that
were gathered during the development of NetSolve. Those are mostly of general interest
to readers with little experience with portable UNIX system programming and will be of
use for future versions of NetSolve. Third, this document is structured such that it can be
modi�ed/upgraded easily when new versions of the software become available. Our goal is
to make this document the implementation reference and to update it with any relevant
modi�cations in the software.

References to NetSolve include numerous reports and publications [2, 3, 4, 5] as well as
the latest edition of the Users' Guide [6]. We assume that the reader is familiar with the
material in the Users' Guide.
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2 Software Architecture

2.1 Overview
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Figure 1: Software architecture

Figure 1 show the basic organization of the NetSolve software. There are 5 distinct
components:

� The Agent,

� The Server,

� The Client,

� The Code Generator,

� The Tools.
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The NetSolve agent and servers are detailed in Sections 7 and 8. The NetSolve client con-
tained several interfaces detailed in Sections 6.2 to 6.5. All but the Java interface are build
on top of a common set of routines called the Client Core. These routines implement basic
client functionalities and are described in Section 6.1. The Code Generator is described in
Section 8.2. The NetSolve tools are described in the Users' Guide and their implementation
is rather trivial and will not be described in this document. Almost every component of the
system is build on top of Core Functions. Those functions implement all the low-level func-
tionalities in NetSolve: those that handle networking and manage the basic data structures
(see Sections 3 and 4). Finally, the protocol used by modules to exchange information over
the network is described in Section 5.

2.2 Compilation

Even though the compilation procedure is most likely to undergo changes (e.g. use of
autoconf), we still deem it necessary to say a few words about it. In NetSolve version
1.2 the compilation in done with make which is a somewhat portable way of compiling soft-
ware. However, experience shows that only a small subset of its functionalities is truly
portable. In fact, [7] says: \... many useful features have been added by various implemen-
tors after make had time to spread and to develop into di�erent variants...their use de�nitely
reduces the portability of your description �les". And furthermore, \many programmers
have added features to make without updating the documentation". The rule of thumb that
we recommend is: if a feature seems unusually useful, it is probably not portable.

The main make�le is located $NETSOLVE ROOT/src. From now on we will assume that the
current directory is $NETSOLVE ROOT and we will denote subdirectories as ./src. ./src/Makefile
calls and includes a number of other make�les. Some of those make�les are generated at
compile time by the Code Generator (see Section 8.2). Figure 2 shows the entire make�le
structure with all the make�les:

� ./src/Makefile: main entry-point,

� ./conf/conf.def: general settings,

� ./conf/$NETSOLVE ARCH.def: machine dependent settings,

� ./src/Makefile.def: general variable de�nitions,

� ./src/Makefile.object: object rules,

� ./src/Makefile.numerical: computational module make�le,

� ./src/Makefile.num libs: numerical software dependencies,

� ./src/Makefile.sample software: sample software make�le.
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./src/Makefile.sample_software
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Figure 2: Make�le structure

2.3 Source Code

In this section, we give a list of all the source code directories in the current NetSolve
distribution:

� ./src/Agent: The agent,

� ./src/CFortran: The C and Fortran APIs,

� ./src/ClientCore: The client core functions,

� ./src/CodeGenerator: The code generator,

� ./src/CoreFunctions: The core functions,

� ./src/Demo: The demos,

� ./src/Examples: The C, Fortran and farming examples,

� ./src/Farming: The farming interface,

� ./src/GlobusHBMWrappers: Wrappers around the Globus Heart Beat Monitor,
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� ./src/MCellInterface: The interface to MCell (see [8]),

� ./src/Mathematica: The Mathematica interface,

� ./src/Matlab: The Matlab interface,

� ./src/SampleNumericalSoftware: The default numerical software,

� ./src/Server: The server,

{ ./src/Server/Condor: The Condor server,

{ ./src/Server/Standard: The standard server,

{ ./src/Server/ScaLAPACK: The ScaLAPACK server,

{ ./src/Server/PETSC: The PETSC server.

� ./src/Testing: The testing programs for the C, Fortran and Matlab interfaces,

� ./src/Tool: The command line tools.

3 Networking

In NetSolve 1.2 networking is done with TCP/IP and the socket layer. However, all the
networking is kept isolated from the rest of the software. The only routines performing any
networking tasks are in:

� ./src/CoreFunctions/socketutil.c

� ./src/CoreFunctions/communicator.c

The �rst �le contains wrappers around the socket layer to (i) bind a socket to a port; (ii)
connect a socket to a remote port; (iii) poll a socket to see if some data has arrived. The
wrappers are useful because they isolate those system-dependent functionalities and because
the actual calls with the socket layer are rather cumbersome. The second �le contains all the
functions that are used to actually transfer data over the network in NetSolve. The following
two sections give details on how transfers are performed.

3.1 XDR

The common method used to transfer data between machines which do not have the same
internal data representations is the XDR protocol [9]. Since NetSolve operates in hetero-
geneous environment it uses XDR. However, XDR might be expensive when transferring
large amount of data, typically user data. NetSolve is designed such that it avoids using
XDR when it would be too costly and unnecessary. Each host in the NetSolve system is
described by the HostDesc data structure (see Section 4), which contains an integer �eld, the
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data format. This integer is set in the same way it is set in the reference implementation of
PVM [10] in ./src/include/netsolvearch.h. NetSolve compares the data format of hosts
to decide on whether XDR should be used or not.

We give here a few notes about the use of XDR in NetSolve. First, xdr vector() is
used as opposed to xdr array(). Indeed, xdr array() inserts an XDR-encoded integer
representing the size of the array before the XDR-encoded elements of the array. This
is not practical when sending over the network a matrix with a number of rows di�er-
ent from its leading dimension (sub-matrices). Second, xdrstdio create() is not used.
It would be convenient in order to bind the XDR stream to the socket stream, however,
this routine is not available on all platform and especially on Windows systems. Instead,
xdrmem create() is used with dynamically allocated bu�ers. It would be possible to use one
static bu�er for better performance. Third, ./src/CoreFunction/communicator.c contains
a function called setXDRSizes() which computes the memory space needed to encode each
data type. The memory space needed can then be then subsequently accessed by a call to
netsolve xdrsizeof(). This is used to allocate the bu�ers in which encoded data will be
placed. Again, it would be better to use xdr sizeof() but it is missing in some imple-
mentations of XDR (e.g. HP-UX). Lastly, NetSolve de�nes the structures scomplex and
dcomplex in ./include/communicator.h to stored single and double precision numbers in
a Fortran manner. The routines to process those structures with XDR are xdr scomplex()

and xdr dcomplex() and they are implemented in ./src/CoreFunctions/communicator.c.

3.2 Transactions

In this section, we describe a typical transaction between two processes over the network.
By transaction we mean an entire exchange of data between the two processes, starting
from socket connection until socket shutdown, with any number of data transmissions in any
direction in between. Let us call A the client process connecting to B, the server process.
First, B needs to set up a listening socket bound to a port with a call to establishSocket()
and accept connections with the accept() system call. Then, A calls connectToSocket()
to connect to the listening socket of B. At this point, the two processes are connected
and can start calling the routines in ./src/CoreFunctions/communicator.c. Process A
calls initTransaction() and B calls acceptTransaction(). These calls take care of the
agreement about the XDR encoding by sending and receiving a byte with two possible
bit patterns: (i) all 0 meaning non-XDR and (ii) all 1 meaning XDR. Each call returns a
Communicator structure on each side. That structure needs to be used for any subsequent
communication until socket shutdown. At this point, both processes can exchange data
by any calls to routines such as sendInt(), recvInt(), sendArray(), recvArray(), and
the like, which are all implemented in ./src/CoreFunctions/communicator.c. When all
the necessary data has been transmitted, the connection must be shutdown by a call to
endTransaction() on both sides.
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3.3 Future of Networking in NetSolve

As seen in the previous sections, the networking subsystem in NetSolve is isolated from the
rest of the software as it is entirely implemented in only two source �les. We anticipate
that this implementation directly on top of TCP/IP will become obsolete as soon as an
appropriate communication protocol becomes available on the Grid. Such a protocol will
probably implement secure network communications [11]. At the time this document is
being written, Nexus [12] seems to be the most likely candidate as it is part of a major
Grid infrastructure project [13] and already implements mechanisms for security and remote
process creation in a portable fashion.

4 Fundamental Data Structures

In this section, we give brief descriptions of some of the fundamental data structures used
throughout the NetSolve code. Those data structures are de�ned in the header �les located
in ./include:

� AgentDesc: contains information about an agent. At the moment, it contains only a
port number and a pointer to a HostDesc.

� ServerDesc: contains information about a server. That information includes a pointer
to a HostDesc, a port number, statistics about network speed and CPU load, along
with other data gathered from the server con�guration �le.

� HostDesc: contains information about a host, including its hostname, its IP address,
its architecture type, ...

� ProblemDesc: describes a NetSolve problem and contains the problem name, descrip-
tion, a list of input Object structures, a list of output Object structures, along with
miscellaneous information that corresponds to the content of the associated problem
description �le.

� Object: describes a datum. It contains the object type, the object's data type, a
description, a name, and attributes that depend on the object type. The attributes
can be �lled in with information about the memory space to transfer data over the
network, or left empty in which case the Object structure provides only problem
speci�cation information.

� MappingDesc: we call mapping the correspondence between a server and a problem.
The NetSolve agent keeps track of which server can perform which problem in a matrix
of mappings. Hence, a mapping contains a pointer to a ProblemDesc, a pointer to a
ServerDesc, a the number of failures encountered for that particular server/problem
combination.
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A collection of functions is implemented in ./src/CoreFunctions to manipulate those
structures. For example, there are functions to allocate/free memory for each of the data
structures, to send/receive the structures over the network, to read/write the data structures
to �les, etc. It would be too tedious to give here an exhaustive list of all the structures and
associated functions, and we encourage the reader to just inspect the content of ./include
and ./src/CoreFunctions.

5 Protocols

During a transaction between two processes, NetSolve uses integer tags for control informa-
tions (as opposed to actual data). All the tags are de�ned as macros in ./include/protocol.h
and start with NS PROT in order to di�erentiate them from other integer macros in the source
code. This section is rather long as it contains the complete speci�cation of the NetSolve
protocol of the current NetSolve version. We assume that the reader is familiar with the
roles of the NetSolve client, agent, and server. Each transaction is described separately, and
we assume that the network connection is established and that the transaction has been
initiated as explained in Section 3.2.

In what follows, we describe a transaction by specifying the sender of each datum, the
data type (C data type or NetSolve-de�ned structure) and a short description of the datum.
We use the symbol � to denote zero or more datum of a current data type.

We distinguish two classes of transactions: (i) the ones that do not involve any client
process and (ii) the ones that involve client processes. Readers only interested in building a
new client interface to NetSolve should skip Section 5.1 and go directly to Section 5.2. All
the tables referenced are in Appendix A.

5.1 Transaction not Involving any Client Process

Server registration : A new server registers to an agent according to Table 1. The server
may then register to some of the agents whose descriptors are in the returned list. This is
decided by the server con�guration �le (� after the @AGENT clause). Note that the descriptor
of the agent that was contacted in the �rst place is also in that list.

New agent : A new agent may let an existing server know of its existence according to
Table 2. That agent was able to learn of the server's existence from another agent because
the server was con�gured to allow such behavior (� after the @AGENT clause in the server
con�guration �le).

Network measurements : A process can measure the network latency and bandwidth
between itself and a server according to Table 3. This feature will most certainly be rendered
obsolete by the use of Grid-speci�c tool to obtain such measurements (see [14] for example).
Table 3 does not describe the entire protocol for the actual measurements but points to the
source code.
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Network measurement report : A process that has completed a network measurement
(see above) may report the measurement to an agent according to Table 5.

Server Re-registration : It is possible for an agent to be contacted by a server (for a
workload report typically) that it is not aware of. For instance, this happens when an agent
is restarted and servers never stopped running. In this case, the agent asks unknown servers
to register again according to Table 4.

Terminate Server : It is possible to terminate a server according to Table 6. The process
trying to terminate a server must proceed via an agent. This is used by the NetSolve
command line tools for instance.

Service completion : When a server's child process �nishes a user computation (success-
fully or not), it noti�es the server according to Table 7.

Agent registration : A new agent (Agent 2) registers to an existing agent (Agent 1)
according to table 8. Agent 1 send the server descriptors of those servers that were con�gured
with a � after the @AGENT clause of their con�guration �le. Agent 2 may then notify those
servers of its existence.

Workload report : A server may report its workload to any agent according to Table 9.

Terminate Agent : It is possible to terminate an agent according to Table 10. This is
used by the NetSolve command line tools for instance.

5.2 Transactions Involving a Client Process

Number of Servers : A process (typically a client) can query an agent to know the
number of servers that (i) can solve a given problem and (ii) have never failed while solving
that problem before. This is done according to Table 11

Problem Information : A process (typically a client) can query an agent to get the entire
ProblemDesc structure associated with a problem name according to Table 12.

List of Agents : a process can query an agent to get the list of all agents in the system
according to Table 13.

List of Server : a process can query an agent to get the list of all servers in the system
according to Table 14.
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List of Problems : a process can query an agent to get the list of all problems solvable
by the system according to Table 15.

Submitting a request to an agent : a client submits a request to an agent according
to Table 16. The agent does not send back the whole ServerDesc structures since it could
contain extensive workload and network history information in future implementations of
NetSolve.

Reporting a server failure : a process may report a server failure to an agent according
to table 17.

Reporting a request completion : a client process must report request completions to
its agent according to Table 18.

Submitting a request to a server : a client may submit a request to a server according
to Table 19.

Terminating a request : a client may prematurely terminate a pending request by con-
tacting the server serving the request according to Table 20.

6 The NetSolve Client

6.1 Client Core

As depicted on �gure 1, all but the Java client interfaces are build on top of a common set
of routines called the Client Core. Those routines are located in ./src/ClientCore and
basically implement the following functionalities:

1. sending a request to NetSolve,

2. waiting for a request's completion,

3. polling for a request,

4. getting miscellaneous information about the NetSolve system,

5. reporting errors to a NetSolve agent.

The client core routines use the data structures described in Section 4 and the networking
subsystem to implement the protocol of Section 5. They also use an additional data structure,
RequestDesc, that contains information about pending requests. That structure is de�ned
in ./include/requestdesc.h and is used only inside the client core. Finally, let us note
that that function netsolveWaitProbeRequest() that is used to check on pending requests
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performs automatic resubmission of requests in case of failures and may call itself recursively.
The purpose of this behavior is to isolate failure detection and recovery inside the client core.
The role of the AIPs described in the following sections is to gather information from the end-
user about the data layout in his/her memory space, process and pass down that information
down to the client core.

Finally let us note that in the current implementation, a NetSolve client maintains a
TCP/IP connection to each server that is performing a computation on behalf of that client.
This solution was adopted for the sake of simplicity. However, it is not scalable as most
operating systems impose an upper bound on the number of �le descriptors that can be
opened by a single process. This is especially penalizing for NetSolve's request farming
feature (see Section 6.6). The alternative is to allow the client to set up a listening socket
bound to a given port and have the server connect back to that socket when they complete a
computation. At the moment, NetSolve implements a function, getMaxNumberFileDesc(),
to �nd out how many �le descriptors can be opened simultaneously by a single process. The
system call getdtablesize() is not used because it is not quite portable.

6.2 C/Fortran API Implementation

The C and fortran APIs are implemented in ./src/CFortran. The Fortran API consists
of C functions that are to be called directly from Fortran. The main functions, netsl()
and netslnb() for C, fnetsl() and fnetslnb() for Fortran, take a variable number of
arguments. The di�erences between the C and Fortran functions come from the di�er-
ences between stacks generated by C calls and Fortran calls (call by reference in For-
tran, and call by value in C). In order to re-use code as much as possible, functions to
transform a C or Fortran stack into an array of pointers or integers are implemented in
./src/CFortran/callingsequence.c. Once the conversion has taken place, it is possible
for all four main functions to call netslX() of netslnbX() that are independent on the
original language. Those two last functions use the client core routines to make transactions
with the agent and the servers.

Finally, let us note that the way a Fortran stack is build is machine dependent when
arguments contains strings. Since Fortran strings are not null-terminated, it is necessary
to put the length of each string on the stack. On most architecture with most compilers
the lengths of all the strings passed as arguments are put at the end of the stack. How-
ever, on CRAY machines, the length of a string is put on the stack right after the string
pointer. In all the cases we have encountered so far, the string lengths are put on the stack
a integers and not as addresses of integers. Such details are handled by the functions in
./src/CFortran/callingsequence.c.

6.3 Matlab API Implementation

The Matlab API to NetSolve is implemented in ./src/Matlab. It consists of 4 mex-�les, each
of them implementing one function of the API. We use the mex routines provides by Matlab
to access data from the Matlab space and pass them down to the client core functions. Since
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Matlab is object oriented, the implementation is not as involved as for the C and Fortran
APIs. However, care must be exerted when manipulating dynamic memory in Matlab.
Indeed, dynamic memory must be allocated with a call to mxCalloc() instead of calloc().
Furthermore, if memory needs to be persistent between calls to the mex-�les, it must be
made persistent explicitly with calls to mexMakeMemoryPersistent(). Persistent memory
is the only way to allow the user to get control back when he/she uses non-blocking calls.
To that end, the Matlab API contains functions to make some of the NetSolve structures
persistent.

Matlab stores complex matrices in a di�erent way than Fortran. A complex matrix in
Matlab consists of two matrices: real part and imaginary part. This means that the real part
and imaginary part of a matrix element are not contiguous in memory. NetSolve assumes a
Fortran storage so that it can use directly most numerical software on the server side. The
Matlab API performs translation from one storage mode to the other. Finally, note that
all numerical data in Matlab is stored as double precision reals. For instance, a matrix of
integers is stored as a matrix of doubles. The Matlab API performs data conversions to
handle this particularity.

6.4 Mathematica API Implementation

The Mathematica [15] API in implemented in ./src/Mathematica and is very similar in
philosophy to the Matlab interface. It was developed by Alexander Karaivanov and details
on the implementation can be found in [5]. Let us just say that the C code from the client
core function can be used more directly than for the Matlab API as the memorymanagement
issues are much more straightforward.

6.5 Java GUI/API Implementation

The Java interfaces to NetSolve are implemented 100% in Java which makes them more
di�cult to maintain as they cannot re-use any code from the client core. Most functions
from ./src/CoreFunctions and ./src/ClientCore have been re-implemented in Java and
are used by both the API and the GUI. At the time this document is being written, the Java
interfaces have not yet been converted to NetSolve 1.2.

6.6 Farming Implementation

The netsl farm() function initiates multiple NetSolve requests and takes a variable number
of arguments. Like the functions of the C API, it converts its call stack to an array of pointers
and integers and calls netsl farmX(). Even though this is not motivated by the existence of
a Fortran interface, it is always more convenient to work with an array than with a call stack.
As seen in the Users' Guide, the arguments to netsl farm() are values returned by calls
to ns int(), ns int array(), or ns ptr array(). Those functions all return an Iterator

structure. That structure encapsulates information about how to generate the values of the
arguments for each individual NetSolve request.

14



The scheduling strategy for farming is entirely implemented in function netsl farmX()

and is isolated from NetSolve's internals. This allows to do experiments and research on
scheduling without having to know any of the NetSolve speci�cs. Furthermore, any of that
research is applicable to any other system that bears fundamental similarities to NetSolve
(e.g. Ninf [16]).

7 The NetSolve Agent

The NetSolve agent is implemented in ./src/Agent as a daemon that maintains a database
of which computational services are available, on which machines. In addition is keeps track
of the status of the machines in terms of network proximity and workload. That data base
is stored as a matrix of MappingDesc structures (see Section 4). The tasks performed by the
NetSolve agent are of the three following types:

� Update the database with new information,

� Answer queries about the database,

� Use the database to estimate execution times.

These tasks are accomplished according to the protocol described in Section 5. Updating the
database is done when (i) a new server registers, (ii) a client reports a failure about a server,
(iii) a process reports a network speed measurement, (iv) a server broadcasts its workload.
Queries about the database are issued by clients.

The estimation of server execution times occurs for each incoming client request and is
done in ./src/Agent/scheduler.c. For each incoming request, the agent computes an esti-
mate of the time necessary to ship the input data, perform the computation, and retrieve the
output data, for each server in the system. This estimation exploits the database (workload,
network speed, computational complexity) and the user request (data size, problem size).
Once an execution time has been estimated for each server, the servers can be ranked from
the most suitable one to the least suitable one. That list is then returned to the client as
shown in Table 16.

The implementation of the NetSolve agent is rather straightforward as it is not a real
scheduler, but more a monitor of the resource pool. Future versions of NetSolve will need
more sophisticated scheduling policies as the diversity of computational resources and appli-
cations increases. Such evolutions might increase the complexity of the agent (see Section 9).

8 The NetSolve Server

Like the agent, the NetSolve server is implemented as a daemon. However, it's design is a lit-
tle more complex due to the fact that (i) the server monitor the workload of the host it is run-
ning on and that (ii) it can start computational processes to answer users' requests. Monitor-
ing the workload is done by a process implemented in ./src/Server/workload manager.c.
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This process wakes up every IDLE TIME seconds (de�ned in ./include/workloadmanager.h,
assesses the current workload, and may decides to broadcast its value to the agents in case
of signi�cant changes. This process needs to be restarted each time a new agent appears
in the system, which is of course done automatically by the server. Starting computational
processes is a little more complex and is the object of the following section.

8.1 Customized Servers

When a server �nally agrees to perform a computation (after checking the workload thresh-
old, the user access restrictions, etc..), it needs to start a child process. In the most common
scenario, this is done by calling fork() and exec() system calls. However, several customized
version of the NetSolve server use di�erent mechanisms to spawn computing processes. At
the moment, there are four versions of the NetSolve server implemented in the following
directories:

1. ./src/Server/Standard: standard fork() and exec(),

2. ./src/Server/Condor: Condor job with condor submit,

3. ./src/Server/ScaLAPACK: MPI job with mpirun,

4. ./src/Server/PETSC: MPI job with mpirun.

Adding a new customized server is rather standard. The procedure consists in creating a
new sub-directory in ./src/Server that implements (i) the function that spawns the com-
putation process, (ii) the main function of the computation process. For instance in the case
of the Condor [17, 18, 19] server, the spawning is done by issuing a call to the condor submit

executable and waiting for that call to complete, whereas the main computational function
has to read its input from �les rather than from the network. Once those two functions have
been created, it just su�ces to modify the �le ./src/Server/generateservice.c to add
the call to spawn new customized server.

8.2 Expanding a Server

As explained in the NetSolve's Users' Guide, it is possible to expand a NetSolve server by
generating new description �les and compiling them into a new server with the code gen-
erator. The code generator is implemented in ./src/CodeGenerator. It parse the server
con�guration �le to get the list of description �les to be used. It then parses each problem
description in those �les performing error checking and code generation. For each descrip-
tion �le ./problems/file, the code generator generates ./src/Server/numerical-file.c
along with the make�les to compile it (see Figure 2). The generation merely replaces oc-
currences of mnemonics in the pseudo-code section of the problem description �le by actual
data structures references that are meaningful to the NetSolve server. Again, we expect that
the reader is entirely familiar with the Users' Guide and we do not give details about the
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problem description �les. At the time this document is being written, the Java applet to
generate description �les in an interactive manner is still under testing.

A large part of the NetSolve source code, both on the client and the server side and of
course within the code generator itself, is dedicated to the parsing/interpretation/storage of
the information contained in the problem description �les. That part of the source code is also
the most involved as the description language is complex, because low-level. Distributing
the aforementioned Java applet is an attempt to provide a higher level tool to generate
description �le. Other projects like Ninf [16] use much higher level description languages
thereby choosing convenience over generality. Indeed, it is our experience that most legacy
numerical code cannot be described accurately enough by a language that does not provide
low-level primitives to access the memory layout. At this time, a collaboration the the Ninf
team has been initiated in order to make concerted decisions about the description language
that should be used. That collaboration will undoubtedly result in changes that will impact
the NetSolve code generator, server, and client.

8.3 User Provided Functions

The User Provided Function (UPF) feature in NetSolve allows a server to compile C or
Fortran source code on the 
y, perform some basic security checks, and link it into the
computational process. This is useful for the numerous numerical software routines that take
a function pointer as argument (typically for non-linear computations). The implementation
of the UPF handling at the server side is done in ./src/Server/netsolveupf.c. That
�les de�nes a list of allowed system or library calls. Once the source code is downloaded
on the server side, the server generates a make�le to compile it. The server then examines
the compiled object �les (with nm) for unde�ned symbols that are not in the list of allowed
calls. If all the calls are allowed, then the server generates another make�le to re-link the
computational process with the UPF object �les. Once that new executable is available, it
can then be started by the server is the usual way (see Section 8.1). We do not make the
claim that this procedure is safe, but it provides a basis for experimentations.

9 Conclusion

NetSolve 1.2 is a consequent improvement over version 1.1.b as the code is easier to maintain
and upgrade. A number of new features have been added without any di�culty thanks to
the new software architecture. As mentioned throughout this document, many parts of
the software will probably be replaced in the near future (build procedure, networking,
description language, etc...), but we are con�dent that such replacements will be rather
straightforward. On issue that seems to be emerging is that of scheduling. At the moment,
the NetSolve agent just maintains a database about the computational resources and uses
that database to provide the client with estimation about relative execution times. The
client is the one responsible for the scheduling, especially in the farming interface. Should
the agent be the center of the scheduling decision ? The answer to such questions will
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probably arise from future experiments with the system and with new applications. Another
important issue concerns data locality and proximity. Indeed, a number of applications do
not need to use a full RPC paradigm as intermediary data might not be needed between
calls. The idea would then be to cache such data on storage servers rather than returning
it to clients. It may also be the case that an application makes a large number of calls
to NetSolve and some input data is passed to each call. Such data could then be shared
between multiple remote servers without having each of them download and store a copy.
This is particularly easy to do if that input data is a �le. This exact situation is in fact
common among many embarrassingly parallel applications that would make use of farming
(e.g. Monte-Carlo simulations in MCell). NetSolve's characteristics make it an ideal terrain
for such computer science research as well as a powerful enabling technology that targets
domain scientists.
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A Protocol speci�cations

Sender Data Content
Server int NS PROT SV REGISTER

- ServerDesc this server's descriptor
- int number of problems for this server
- ProblemDesc� corresponding problem descriptor list

Agent int NS PROT REGISTRATION REFUSED (abort) or
NS PROT REGISTRATION ACCEPTED (continue)

- int total number of known agents
- AgentDesc� corresponding agent descriptor list

Table 1: Server registration

Sender Data Content
Agent int NS PROT NEW AGENT

- AgentDesc this agent's descriptor

Table 2: New agent

Sender Data Content
Process int NS PROT PONG REQUEST

- ProblemDesc� corresponding problem descriptor list
Process/Server char� (see ./src/CoreFunctions/pong.c

Server int latency in microseconds
- int bandwidth in byte per second
- int date (in seconds since 1/1/1970, 00:00:00)

Table 3: Network measurements
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Sender Data Content
Agent int NS PROT REGISTER AGAIN

Table 4: Network measurements

Sender Data Content
Process int NS PROT NETWORK REPORT

- IPaddr type IP address of the measuring process
- IPaddr type IP address of the server
- int latency in microseconds
- int bandwidth in byte per second
- int date (in seconds since 1/1/1970, 00:00:00)

Table 5: Network measurement report

Sender Data Content
Process to Agent int NS PROT KILL SERVER

- IPaddr type IP address of the server to terminate
Agent to Process int NS PROT SERVER PORT

int port number of the server to kill (-1 if error)
Process to Server int NS PROT KILL SERVER

Server to Process int NS PROT NOT ALLOWED (not allowed) or
NS PROT KILLED (killed)

Table 6: Network measurements

Sender Data Content
Process int NS PROT SERVICE FINISHED

- int restriction index
Server int any integer, for ack

Table 7: Service completion
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Sender Data Content
Agent 2 int NS PROT AG REGISTER

- AgentDesc this agent's descriptor
Agent 1 int NS PROT REGISTRATION REFUSED (abort) or

NS PROT REGISTRATION ACCEPTED (continue)
- int total number of known agents
- AgentDesc� corresponding agent descriptor list
- int total number of known and advertisable servers
- ServerDesc� corresponding server descriptor list
- int total number of known problems
- ProblemDesc� corresponding problem descriptor list
- int total number of known mappings
- MappingDesc� corresponding mapping descriptor list

Table 8: Agent registration

Sender Data Content
Server int NS PROT WPRKLOAD RREPORT

- IPaddr type the server's IP address
- int the server's port number
- int the server's workload
- int the date (in seconds since 1/1/1970, 00:00:00)

Table 9: Workload report

Sender Data Content
Process int NS PROT KILL AGENT

- char username
Server int NS PROT NOT ALLOWED (unallowed)

int NS PROT KILLED (killed)

Table 10: Terminate Agent

Sender Data Content
Process int NS PROT NB SERVERS

- char problem's name
Agent int number of servers (may be 0)

Table 11: Number of Servers
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Sender Data Content
Process int NS PROT PROBLEM INFO

- char problem's name
Agent int NS PROT PROBLEM NOT FOUND (abort) or

NS PROT PROBLEM PROBLEM DESC (ok)
ProblemDesc number of servers (may be 0)

Table 12: Problem Information

Sender Data Content
Process int NS PROT AGENT LIST

Agent int number of agents
- AgentDesc� corresponding agent descriptor list

Table 13: List of Agents

Sender Data Content
Process int NS PROT SERVER LIST

Agent int number of servers
- ServerDesc� corresponding server descriptor list

Table 14: List of Servers

Sender Data Content
Process int NS PROT PROBLEM LIST

Agent int number of problems
- ProblemDesc� corresponding problem descriptor list

Table 15: List of Problems
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Sender Data Content
Process int NS PROT PROBLEM SUBMIT

- char * problem name
- int input size in bytes
- int output size in bytes
- int problem size

Agent int NS PROT PROBLEM NOT FOUND (abort) or
NS PROT OK

- int number of servers
- (char * + server hostname

IPaddr type + server IPAddr
int + server port number
int + server data format
int)� predicted execution time in seconds

Table 16: Submitting a request to an agent

Sender Data Content
Process int NS PROT SV FAILURE

- IPaddr type server's IP address
- char * server's hostname
- int HOST ERROR or

SERVER ERROR

Table 17: Reporting a server failure
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Sender Data Content
Client int NS PROT JOB COMPLETED

- IPaddr type successful server's IP address

Table 18: Reporting a request completion

Sender Data Content
Client int NS PROT PROBLEM SOLVE

- ProblemDesc descriptor of the problem to solve
Server int NS PROT PROBLEM NOT FOUND (abort) or

NS PROT BAD SPECIFICATION (abort) or
NS PROT NOT ALLOWED (abort) or
NS PROT ACCEPTED (ok)

Client int client major
- char * agent name
- Object� all the input objects (with data)

Server int NS PROT SERVIVE PID (ok) or
NS PROT INTERNAL FAILURE (abort) or
NS PROT BAD VALUES (abort) or
NS PROT DIM MISMATCH (abort) or
NS PROT NO SOLUTION (abort) or
NS PROT UPF ERROR (abort) or
NS PROT UPF UNSAFE (abort)

- int service process pid
Computation under way

Server char * server stdout
- int NS PROT SOLVED (ok) or

NS PROT INTERNAL FAILURE (abort) or
NS PROT BAD VALUES (abort) or
NS PROT DIM MISMATCH (abort) or
NS PROT NO SOLUTION (abort)

- Object� all the output objects (with data)

Table 19: Submitting a request to a server

Sender Data Content
Client int NS PROT KILL REQUEST

- int service process pid
Server int NS PROT KILLED (ok) or

NS PROT SV FAILURE (error)

Table 20: Terminating a request
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