
D
R

A
FT

LAPACK Working Note 135
Department of Computer Science Technical Report CS-98-385

Packed storage extension for ScaLAPACK�

E. F. D’Azevedo
Mathematical Sciences Section

Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012

Oak Ridge, TN 37831-6367

J. J. Dongarra,
Department of Computer Science

University of Tennessee
Knoxville, Tennessee 37996-1301

VERSION 1.6 ALPHA, January 1998

Abstract

We describe a new extension to ScaLAPACK [2] for computing with symmetric (Hermi-
tian) matrices stored in a packed form. The new code is built upon the ScaLAPACK rou-
tines for full dense storage for a high degree of software reuse. The original ScaLAPACK
stores a symmetric matrix as a full matrix but accesses only the lower or upper triangular
part. The new code enables more efficient use of memory by storing only the lower or
upper triangular part of a symmetric (Hermitian) matrix. The packed storage scheme dis-
tributes the matrix by block column panels. Within each panel, the matrix is stored as a reg-
ular ScaLAPACK matrix. This storage arrangement simplifies the subroutine interface and
code reuse. Routines PxPPTRF/PxPPTRS implement the Cholesky factorization and solution
for symmetric (Hermitian) linear systems in packed storage. Routines PxSPEV/PxSPEVX

(PxHPEV/PxHPEVX) implement the computation of eigenvalues and eigenvectors for sym-
metric (Hermitian) matrices in packed storage. Routines PxSPGVX (PxHPGVX) implement
the expert driver for the generalized eigenvalue problem for symmetric (Hermitian) ma-
trices in packed storage. Routines PFxSPGVX/PFxSPEVX (PFxHPGVX/PFxHPEVX) uses the
packed storage and perform out-of-core computation of eigenvectors. Performance results
on the Intel Paragon suggest that the packed storage scheme incurs only a small time over-
head over the full storage scheme.

�This work was supported in part by the National Science Foundation Grant No. ASC-9005933; by the
Defense Advanced Research Projects Agency under contract DAAH04-95-1-0077, administered by the Army
Research Office; by the Office of Scientific Computing, U.S. Department of Energy, under Contract DE-AC05-
84OR21400; and by the National Science Foundation Science and Technology Center Cooperative Agreement
No. CCR-8809615, and Center for Computational Sciences at Oak Ridge National Laboratory for the use of
the computing facilities.

1

D
R

A
FT

Contents

1 Introduction 3

2 Data layout for packed storage 4

3 Examples in the use of packed storage matrix 6

4 Numerical experiments 8

5 Summary 10

2

D
R

A
FT

1 Introduction

This paper describes a new extension to ScaLAPACK [2] for computing with symmetric
(Hermitian) matrices stored in a packed form. ScaLAPACK is an acronym for Scalable Lin-
ear Algebra PACKage, or Scalable LAPACK. ScaLAPACK is a library of high-performance
linear algebra routines for distributed-memory message-passing MIMD (Multiple Instruc-
tion Multiple Data) computers and networks of workstations. Capability of ScaLAPACK
is described in the ScaLAPACK Users’ Guide [2].

The new code is built upon the ScaLAPACK routines for full dense storage for maxi-
mum portability. The original ScaLAPACK stores a symmetric matrix as a full matrix but
accesses only the lower or upper triangular part. This design allows the reuse of Level
3 PBLAS (Parallel Basic Linear Algebra Subroutines) [3] without modification. However,
almost half of the storage is holding redundant information. The new code enables more
efficient use of memory by storing the submatrix blocks associated with only the lower or
upper triangular part of a symmetric (Hermitian) matrix.

Although current computers have unprecedented storage and computation speed, they
are also called upon to tackle ever larger problems. Let N � N be the largest symmetric
(Hermitian) problem that can be stored in memory, then a larger approximately

p
2N �p

2N symmetric matrix can be stored in the same memory using the packed storage scheme.
Linear solution of symmetric (Hermitian) matrices by Cholesky factorization and comput-
ing eigenvalues and eigenvectors by the QR algorithm both have O(N3) complexities. With
an O(N3) complexity, the runtime for solving the larger problem will be approximatelyp

2
3 � 2:8 times longer.
A symmetric eigensolver for packed storage is adapted for use with out-of-core algo-

rithms for solving large eigenvalue problems. The initial stage in the classical algorithm
for finding eigenvalues and eigenvectors is to first reduce the original symmetric matrix
into a tridiagonal matrix by orthogonal similarity Householder transformations. The orig-
inal matrix is overwritten by these Householder transformations. One of the key steps
is the frequent need for computing a matrix-vector multiply. An out-of-core algorithm
that stores the symmetric matrix on disk would be highly inefficient since the matrix must
be read in from disk for each matrix-vector multiply operation. A solution suggested by
Ken Stanley is to hold in memory the symmetric matrix in packed storage and store the
eigenvectors on disk. This approach would require O(N2=2) memory for the symmetric
matrix in packed storage instead of O(2N2) memory for holding the symmetric matrix and
eigenvectors in full storage, and would allow larger problems to be solved using the same
limited amount of memory.

We have developed prototype codes PxPPTRF/PxPPTRS for Cholesky factorization and
solution, and simple driver routines PxSPEV (PxHPEV) for finding eigenvalues and option-
ally eigenvectors of symmetric (Hermitian) matrices in packed storage. Expert drivers
for symmetric (Hermitian) matrices PxSPEVX (PxHPEVX) and generalized eigenvalue prob-
lems PxSPGVX (PxHPGVX) are also available as prototype code. The out-of-core drivers [4]
PFxSPGVX/PFxSPEVX (PFxHPGVX/PFxHPEVX) are based on the packed storage eigenvalue
routines but stores the eigenvectors on disk. The names for the new routines follow the
convention used in LAPACK [1] of using a ‘P’ to represent packed storage. Thus ‘SY’ (‘HE’)
represents a symmetric (Hermitian) matrix and ‘SP’ (‘HP’) represents a symmetric (Hermi-

3

D
R

A
FT

tian) matrix in packed storage; similarly, ‘PO’ denotes a symmetric positive definite matrix
and ‘PP’ denotes the symmetric positive definite matrix in packed storage.

Section 2 describes the layout of the packed storage scheme. Section 3 shows by a
simple example how other ScaLAPACK routines can be modified for use with packed
matrices. Section 4 summarizes the performance of PDPPTRF/PDPPTRS, PDSPEV, PDSPEVX,
PDSPGVX, PFDSPEVX and PFDSPGVX on the Intel Paragon. Finally, Section 5 contains the
summary.

2 Data layout for packed storage

ScaLAPACK principally uses a two-dimensional block-cyclic data distribution (see Fig-
ure 1) for full dense in-core matrices [2, Chapter 4]. This distribution has the desirable
properties of good load balancing where the computation is spread reasonably evenly
among the processes, and can make use of highly efficient level 3 BLAS (Basic Linear
Algebra Subroutines) at the process level. Each colored rectangle represents an mb� nb
submatrix. Matrix entry (i; j) is mapped to matrix block (ib; jb) = (1+ b(i� 1)=mbc;1+
b(j� 1)=nbc) and is assigned to process (p;q) = (mod(ib� 1; Pr);mod(jb� 1; Pc)) on a Pr �
Pc process grid. Thus the first entry (1;1) is mapped to process (0;0) and entry (1+mb;1+
nb) is mapped to process (1;1).

The packed storage scheme resembles the ScaLAPACK two-dimensional block-cyclic
data distribution but physically stores only the lower (or upper) blocks. For example, on a
2� 3 process grid as shown in Figure 1, if only the lower blocks are stored, then process
(0;0) holds blocks A11, A31, A51, A71, A54, A74, A77. Process (0;2) holds blocks A33, A53,
A73 and A76. Similarly process (1;1) holds blocks A22, A42, A62, A82 and A65, A85 plus
A88. We note that each block in the packed storage scheme is assigned to the same process
as in the fully two-dimensional block-cyclic data distribution. Moreover, each block col-
umn or panel in the packed storage scheme may be considered a full ScaLAPACK matrix
distributed across only one process column. This treatment of a block column panel as a
particular ScaLAPACK submatrix is a key characteristic to the reuse of ScaLAPACK and
PBLAS library components.

If we consider the ‘local’ view in process (0;0), the first block column panel consists of
A11, A31, A51 and A71. This panel is stored in memory as a 4 �mb� nb Fortran column-
major matrix. The second block column panel consists of blocks A54 and A74. It is stored in
local memory as a 2 �mb� nb Fortran column-major matrix. The first entry of the second
panel follows the last entry of the first panel in memory, i.e. the first entry in block A54
follows the last entry in block A71. Note that the entire diagonal block A11 is stored, even
though only the lower triangular part is accessed. This incurs a small price in extra storage
but greatly simplifies reuse of ScaLAPACK components.

4

D
R

A
FT

D
R

A
FT

2-DIMENSIONAL BLOCK CYCLIC

DISTRIBUTION

A

A

A

A

A

A

A

A

21

31

41

51

61

71

81

11

A

A

A

A

A

A

A

A

12

32

22

42

52

62

72

82 A

A

A

A

A

A

A

A

13

23

33

43

53

63

73

83 A

A

A

A

A

A

A

A

14

24

34

44

54

64

74

84 A

A

A

A

A

A

A

A

15

25

35

45

55

65

75

85 A

A

A

A

A

A

A

A

16

26

36

46

56

66

76

86 A

A

A

A

A

A

A

A

17

27

37

47

57

67

77

87 A

A

A

A

A

A

A

A

18

28

38

48

58

68

78

88

A

A

A

A

11

A

A

A

A

A

A

A

A

31

51

71

14 17

3734

54 57

7774

A

A

A

A

A

A

A

A

A

A

A

A

21

61

41

81

24

44

64

84

27

47

67

87

A

A

A

A

A

A

A

A

A

A

A

A

12

32

52

72

15 18

38

58

7875

55

35 A

A

A

A

A

A

A

A

1613

33 36

53

73 76

56

A

A

A

A

A

A

A

A

A

A

A

A

22

42

62

82

25

45

65

85

28

48

68

88

A

A

A

A

A

A

A

A

23

43

63

83

26

86

46

66

0 1 2

1

0

Global (left) and distributed (right) views of matrix

Figure 1: Two-dimensional block-cyclic distribution.

5

D
R

A
FT

3 Examples in the use of packed storage matrix

Here we illustrate by examples the reuse of ScaLAPACK library components for matrices
stored in packed form. The key idea is the treatment of each block column or panel as a
regular ScaLAPACK matrix distributed across a process column. The routine DESCINITT

is provided to simplify the manipulation of indices by initializing a new matrix descriptor
for a block column panel. The routine interface can be described using Fortran 90 syntax
as

SUBROUTINE DESCINITT(UPLO, IA, JA, DESCA, IAP, JAP, LOFFSET, DESCAP)

CHARACTER,INTENT(IN) :: UPLO

INTEGER, INTENT(IN) :: IA, JA, DESCA(:)

INTEGER, INTENT(OUT) :: IAP, JAP, LOFFSET, DESCAP(:)

END SUBROUTINE DESCINITT

For example, access to the global entry A(IA, JA) in full storage is obtained by the ScaLA-
PACK routine

CALL PDELGET(SCOPE, TOP, ALPHA, A, IA, JA, DESCA)

The corresponding code to access the lower triangular entry in packed storage would be

CALL DESCINITT('Lower', IA, JA, DESCA, IAP, JAP, LOFFSET, DESCAP)

CALL PDELGET(SCOPE, TOP, ALPHA, A(LOFFSET), IAP, JAP, DESCAP)

The routine DESCINITT generates a new matrix descriptor DESCAP that corresponds to the
block column panel with new indices (IAP, JAP) relative to the new descriptor. It will
also produce the correct value for LOFFSET to adjust for the beginning of the column panel.

Another more complicated example (see Figure 2) is computing the largest absolute
value (max(jA(I; J)j)) in a packed matrix. This is similar to computing with the NORM=`M'

option in PDLANSY for the full storage,

ANRM = PDLANSY('M', UPLO, N, A, 1, 1, DESCA, WORK)

The new code reuses ScaLAPACK PDLANSY and PDLANGE for computing the maximum en-
try in each block column panel.

The code traverses each block column (line 4) and calls DESCINITT to establish the
appropriate matrix descriptor. It calls PDLANSY (line 11) to find the largest value in the
diagonal block. Routine PDLANGE (line 19) computes the largest value in the remaining
off-diagonal rectangular block. Although essentially the same computation is performed,
the packed version has higher overhead in making several separate calls to PDLANSY and
PDLANGE. Moreover, the granularity of the algorithm is limited by the width of the column
panel (NB=DESCA(NB)).

6

D
R

A
FT1 N = DESCA(N_) ! Number of columns in matrix A

2 NB = DESCA(NB_) ! Width of each block column

3 ANRM = ZERO

4 DO JA=1,N,NB

5 JB = MIN(NB, N-JA+1)

6 IA = JA

7 CALL DESCINITT('Lower',IA,JA,DESCA,IAP,JAP,LOFFSET,DESCAP)

8 !

9 ! Handle diagonal block

10 !

11 ANRM2 = PDLANSY('M','Lower',JB,A(LOFFSET),IAP,JAP,DESCAP,WORK)

12 ANRM = MAX(ANRM, ANRM2)

13 !

14 ! Handle off-diagonal rectangular block

15 ! Use Lower triangular part

16 !

17 IA = IA + JB

18 IF (IA .LE. N) THEN

19 ANRM2 = PDLANGE('M',N-IA+1,JB,A(LOFFSET),IAP+JB,JAP,DESCAP,WORK)

20 ANRM = MAX(ANRM, ANRM2)

21 ENDIF

22 ENDDO

Figure 2: Example code to illustrate the reuse of ScaLAPACK components for matrices
stored in packed storage.

7

D
R

A
FT

4 Numerical experiments

We have developed the following prototype codes: PxPPTRF/PxPPTRS for Cholesky factor-
ization and solution, simple driver PxSPEV (PxHPEV) routines for finding eigenvalues and
eigenvectors of symmetric (Hermitian) matrices stored in packed form, expert drivers for
symmetric (Hermitian) matrices PxSPEVX/PxHPEVX and generalized eigenvalue problems
PxSPGVX/PxHPGVX. Out-of-core drivers [4] PFxSPGVX/PFxSPEVX (PFxHPGVX/PFxHPEVX) are
based on the packed storage eigenvalue routines but stores the eigenvectors on disk.

We have compared the performance of the new routines in packed storage with ScaLA-
PACK routines in full storage. The goal is to demonstrate that the new version with packed
storage has little or no overhead cost over the existing routines for full storage. The new
routines have higher overhead in index calculations and have algorithm granularity lim-
ited by the width of the block column panel. However, the packed storage may have better
data locality and cache reuse.

The tests were performed on the XPS/35 Intel Paragon at the Center for Computational
Sciences at the Oak Ridge National Laboratory. The XPS/35 has 512 GP nodes arranged
in a 16� 32 rectangular mesh. Each GP node has 32MBytes of memory. The runs were
performed in a time-shared multi-user (non-dedicated) environment using a Pr � Pc logi-
cal process grid. Matrix block mb = nb = 50 was used for all tests. Results for upper case
(UPLO='U') and lower case (UPLO='L') are very similar so results for only the lower case are
presented. The latest version of PBLAS (version 2.0 alpha) was compiled with ‘-O3 -Mvect
-Knoieee’y and linked with ‘-lkmath’, the highly optimized CLASSPACK serial BLAS li-
brary. The new version of PBLAS incorporates automatic algorithmic blocking with block
size set to 50z. The PBLAS version 2.0 alpha release is still undergoing performance tuning.

Table 1 summarizes the times for the Cholesky factorization PDPOTRF for full storage
and PDPPTRF for packed storage. The relative increase in runtime with packed storage
over full storage is also displayed in the table. Routines PDPPTRS and PDPOTRS are used to
solve the factored system with 50 and 1000 (NRHS) right-hand vectors. For the cases con-
sidered, the times for factorization by PDPPTRF with packed storage is comparable (at most
two seconds difference) to times taken by PDPOTRF with full storage. Solution times for a
narrow right-hand matrix (NRHS=50) show PDPPTRS for packed storage to be slower than
PDPOTRSfor full storage for large problems (N � 2000). The difference is about 3 seconds.
Solution times for a wide right-hand matrix (NRHS=1000) show PDPPTRS for packed storage
to be competitive with PDPPTRS. Routine PDPPTRS is slightly faster than PDPOTRS for cases
N = 1000 and N = 4000, whereas for N = 2000, PDPPTRS is slower by 36%.

Table 2 summarizes the execution times for the symmetric eigensolvers PDSYEV with
full storage and PDSPEV with packed storage. The computations were performed with
JOBZ='N' to find all eigenvalues or with JOBZ='V' to find all eigenvectors and eigenval-
ues. Routine PDSPEV for packed storage incurs at most a 11% increase over PDSYEV for full
storage in finding eigenvalues only. On closer examination and profiling, we find part of
the extra time is incurred in a routine to perform a matrix vector multiply operation where
the matrix is stored in packed storage. Performance of DSYMV and DGEMV for the packed

yOption -Knoieee turns off software emulation of IEEE arithmetic in divisions or operations on de-
normalized numbers to use the faster (but slightly less accurate) hardware units.

zvalue return by routine PILAENV in PBLAS.

8

D
R

A
FT

version may be limited by the width of the block column panel and by the block column
by block column nature of the algorithm. When both eigenvectors and eigenvalues are
required, PDSPEV compares favorably with PDSYEV for full storage.

Table 3 summarizes the execution times for the expert drivers for the symmetric eigen-
solvers. Although the expert driver is capable of finding specific clusters of eigenvalues,
all eigenvalues (RANGE='ALL') are requested. The routine PDSPEVX performs reorthogonal-
ization of eigenvectors when there is sufficient temporary workspace. This reorthogonal-
ization can cause the higher run times for finding all eigenvectors over the simple driver
PDSYEV. In these runs, reorthoginalization is turned off by setting ORFAC=0 and ABSTOL=0

Performance analysis of PDSYEVX is described in [2, Chapter 5] and [5]. When only eigen-
values are requested (JOBZ='N'), PDSPEVX for packed storage is slower than PDSYEVX for
full storage by 5 to 9 seconds. For longer running computation when both eigenvectors
and eigenvalues are requested (JOBZ='V'), PDSPEVX for packed storage is comparable to
PDSYEVX for full storage.

Table 4 summarizes the times for the generalized symmetric eigensolvers PDSPGVX with
packed storage and PDSYGVXwith full storage for finding all eigenvalues with RANGE='All'.
The input parameter IBTYPE describes the type of problem to be solved:

IBTYPE=

8><
>:

1 solve Ax = �Bx,
2 solve ABx = �x ,
3 solve BAx = �x.

(1)

The problem is reduced to canonical form by first performing a Cholesky factorization on
B (B = LLH or UHU) and then overwriting A with

IBTYPE=

(
1 A � U-H AU-1 or L-1AL-H,
2 or 3 A � UAUH or LH AL.

(2)

For the cases IBTYPE=2 and IBTYPE=3, the packed version incurs a significant extra over-
head compared to the version for full storage. The in-place conversion of matrix A to
canonical form (2) may require access to block rows in matrix A or B. Since the packed
storage is stored in a column panel oriented manner, traversal across block rows will be
less efficient than traversal down columns.

Table 5 summarizes the times for the out-of-core eigensolvers PFDSPEVXwith RANGE='All'.
Routine PFDSPEVX is based on the packed storage PDSPEVX to compute groups of the eigen-
vectors using RANGE='Interval' and store them to disk. The results suggest the out-of-
core version PFDSPEVX is almost competitive with PDSYEVX.

Table 6 summaries the times for the out-of-core eigensolver PFDSPGVX that calls PFDSPEVX
to compute subsets of the eigenvectors. ScaLAPACK routine PDSYGVX calls PDSYEVX for the
computation of eigenvectors, and performs a modification of eigenvectors by Cholesky
factors of B. Unlike PDSYGVX, routine PFDSPGVX calls a routine similar to PFDSPEVX but also
computes the modification of eigenvectors by B before they are stored to disk. If PFDSPEVX
were used, there would be unnecessary input/output overhead to bring eigenvectors from
disk to be modified by B and then write the vectors back out. However, even with this ar-
rangement, the out-of-core packed routines still impose a significant overhead. For the

9

D
R

A
FT

NRHS=50 NRHS=1000
Pr � Pc N PDPOTRF PDPPTRF change PDPOTRS PDPPTRS change PDPOTRS PDPPTRS change
8� 8 1000 2.3s 0.9s -63% 1.6s 1.5s -1% 4.1s 3.8s -8%
8� 8 2000 2.5s 2.9s 14% 1.3s 2.2s 73% 6.9s 8.5s 24%
8� 8 4000 14.7s 13.9s -5% 3.9s 7.6s 93% 62.6s 27.8s -56%

10� 10 1000 2.3s 0.8s -63% 1.9s 1.6s -20% 4.2s 3.2s -25%
10� 10 2000 2.0s 2.5s 21% 1.3s 2.1s 68% 4.8s 6.5s 36%
10� 10 4000 11.3s 10.8s -4% 4.1s 6.8s 67% 58.1s 20.2s -65%

Table 1: Performance (in seconds) of Cholesky factorizations and solves.

Pr � Pc N JOBZ PDSYEV PDSPEV Change
8� 8 1000 N 25.3s 27.6s 9%
8� 8 2000 N 81.4s 90.5s 11%
8� 8 4000 N 317.0s 341.1s 8%

10� 10 1000 N 25.4s 27.7s 9%
10� 10 2000 N 79.0s 87.8s 11%
10� 10 4000 N 304.2s 321.6s 6%
8� 8 1000 V 64.6s 62.8s -3%
8� 8 2000 V 239.6s 226.8s -5%
8� 8 4000 V 1336.1s 1342.3s 0%

10� 10 1000 V 65.3s 62.3s -5%
10� 10 2000 V 217.4s 221.7s 2%
10� 10 4000 V 866.4s 843.2s -3%

Table 2: Performance (in seconds) of simple drivers for symmetric eigensolvers.

large problem N=6000, PDSYGVX did not complete in a reasonable amount of time due to
excessive paging whereas PFDSPGVX completes in about 1500s since PFDSPGVX require only
O(N2) instead of O(3N2) amount of memory.

5 Summary

The overall results suggest that for a reasonably large block size (nb= 50), the packed stor-
age incurs only a small time overhead over the full storage routines. The difference may
be as large as 20 seconds for short runs that complete in about a minute and approximately
extra 10% overhead for larger problems. In some cases, the packed storage may even yield
slightly better performance due to better data locality and cache reuse. The generalized
eigensolver with IBTYPE=2 or IBTYPE=3 may require traversal across block rows and this
leads to higher overhead (about 30% – 50%) for packed storage over full storage. The out-
of-core generalized eigensolver incurs substantial time overhead (about 60% – 70%). A
more efficient version is under development.

The design of the packed storage data layout to be a dense ScaLAPACK matrix in each
block column panel also facilitates the reuse of PBLAS and ScaLAPACK library compo-
nents for good performance.

10

D
R

A
FTPr � Pc N JOBZ PDSYEVX PDSPEVX Change

8� 8 1000 N 11.7s 15.2s 29%
8� 8 2000 N 36.4s 44.9s 23%
8� 8 4000 N 137.6s 157.2s 14%
8� 8 1000 V 14.8s 18.2s 23%
8� 8 2000 V 49.2s 57.8s 17%
8� 8 4000 V 222.3s 228.1s 3%

10� 10 1000 N 10.8s 14.3s 33%
10� 10 2000 N 30.5s 38.8s 27%
10� 10 4000 N 107.6s 126.6s 18%
10� 10 1000 V 13.0s 16.6s 28%
10� 10 2000 V 40.1s 48.4s 21%
10� 10 4000 V 172.0s 176.9s 3%

Table 3: Performance (in seconds) of expert drivers for symmetric eigensolvers.

11

D
R

A
FT

Pr � Pc N IBTYPE JOBZ PDSYGVX PDSPGVX Change
8� 8 500 1 N 9s 8s -11%
8� 8 1000 1 N 15s 21s 34%
8� 8 2000 1 N 54s 70s 30%
8� 8 500 2 N 6s 7s 15%
8� 8 1000 2 N 15s 21s 38%
8� 8 2000 2 N 48s 75s 55%
8� 8 500 3 N 5s 7s 31%
8� 8 1000 3 N 15s 21s 39%
8� 8 2000 3 N 48s 75s 55%

10� 10 500 1 N 10s 8s -16%
10� 10 1000 1 N 14s 20s 39%
10� 10 2000 1 N 47s 62s 32%
10� 10 500 2 N 6s 7s 14%
10� 10 1000 2 N 13s 19s 41%
10� 10 2000 2 N 40s 65s 62%
10� 10 500 3 N 5s 7s 36%
10� 10 1000 3 N 13s 19s 44%
10� 10 2000 3 N 40s 65s 61%

8� 8 500 1 V 12s 10s -19%
8� 8 1000 1 V 21s 25s 18%
8� 8 2000 1 V 76s 89s 16%
8� 8 500 2 V 7s 8s 25%
8� 8 1000 2 V 19s 25s 33%
8� 8 2000 2 V 66s 94s 42%
8� 8 500 3 V 6s 8s 29%
8� 8 1000 3 V 18s 25s 34%
8� 8 2000 3 V 65s 93s 44%

10� 10 500 1 V 13s 10s -25%
10� 10 1000 1 V 18s 23s 27%
10� 10 2000 1 V 64s 76s 19%
10� 10 500 2 V 6s 8s 28%
10� 10 1000 2 V 16s 22s 38%
10� 10 2000 2 V 53s 79s 49%
10� 10 500 3 V 6s 8s 34%
10� 10 1000 3 V 16s 22s 39%
10� 10 2000 3 V 52s 78s 51%

Table 4: Performance (in seconds) of expert drivers for generalized eigensolvers.

Pr � Pc N JOBZ PDSYEVX PFDSPEVX Change
8� 8 1000 V 21 21 -1%
8� 8 2000 V 55 63 15%
8� 8 4000 V 220 260 18%
8� 8 6000 V 1123 1056 -6%

Table 5: Performance (in seconds) of expert drivers for out-of-core symmetric eigensolvers.

12

D
R

A
FTPr � Pc N IBTYPE JOBZ PDSYGVX PFDSPGVX Change

8� 8 1000 1 V 21s 37s 77%
8� 8 2000 1 V 73s 99s 35%
8� 8 4000 1 V 336s 444s 32%
8� 8 6000 1 V N/Aa 1511s N/A
8� 8 1000 2 V 19s 27s 43%
8� 8 2000 2 V 66s 98s 49%
8� 8 4000 2 V 296s 487s 64%
8� 8 6000 2 V N/A 1503s N/A
8� 8 1000 3 V 19s 27s 42%
8� 8 2000 3 V 65s 100s 54%
8� 8 4000 3 V 292s 487s 67%
8� 8 6000 3 V N/A 1500s N/A

Table 6: Performance (in seconds) of expert drivers for out-of-core generalized
eigensolvers.

aDid not complete due to excessive paging.

13

D
R

A
FT

References

[1] E. ANDERSON, Z. BAI, C. BISCHOF, J. DEMMEL, J. DONGARRA, J. D. CROZ,
A. GREENBAUM, S. HAMMARLING, A. MCKENNEY, S. OSTROUCHOV, AND

D. SORENSEN, LAPACK Users’ Guide, SIAM, second ed., 1995. Online version at
http://www.netlib.org/lapack/lug/lapack lug.html.

[2] L. S. BLACKFORD, J. CHOI, A. CLEARY, E. D’AZEVEDO, J. DEMMEL, I. DHILON,
J. DONGARRA, S. HAMMARLING, G. HENRY, A. PETITET, K. STANLEY, D. WALKER,
AND R. C. WHALEY, ScaLAPACK Users’ Guide, SIAM, 1997. Online version at
http://www.netlib.org/scalapack/slug/scalapack slug.html.

[3] J. CHOI, J. DONGARRA, S. OSTROUCHOV, A. PETITET, D. WALKER, AND R. C.
WHALEY, A proposal for a set of parallel basic linear algebra subprograms, Tech. Rep.
CS-95-292, Department of Computer Science, University of Tennessee, Knoxville,
Tennessee, 1995. Also appears as LAPACK working note 100. Online version at
http://www.netlib.org/lapack/lawns/lawn100.ps.

[4] E. D’AZEVEDO AND J. DONGARRA, The design and implementation of par-
allel out-of-core ScaLAPACK LU, QR and Cholesky factorization routines, Tech.
Rep. ORNL/TM-13372, Oak Ridge National Laboratory, Oak Ridge, Tennessee,
1997. Also available as LAPACK working note 118. Online version at
http://www.netlib.org/lapack/lawns/lawn118.ps.

[5] J. DEMMEL AND K. STANLEY, The performance of finding eigenvalues and eigenvec-
tors of dense symmetric matrices on distributed memory computers, Tech. Rep. CS-94-
254, Department of Computer Science, University of Tennessee, Knoxville, Ten-
nessee, 1994. Also appears as LAPACK working note 86. Online version at
http://www.netlib.org/lapack/lawns/lawn86.ps.

14

