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Abstract

LAPACK90 is a set of FORTRAN90 subroutines which interfaces
FORTRAN90 with LAPACK.

All LAPACK driver subroutines (including expert drivers) and some
LAPACK computationals have both generic LAPACK90 interfaces and
generic LAPACK77 interfaces. The remaining computationals have only
generic LAPACK77 interfaces. In both types of interfaces, no distinction
is made between single and double precision or between real and complex
data types.

1 Introduction

The high performance linear algebra package, LAPACK is adapted for the new
FORTRAN standard, FORTRAN 90/95. For convenience, we use the name
LAPACK 77 to denote the existing FORTRAN 77 LAPACK package, and LA-
PACK 90 to denote the new FORTRAN 90 interface which is describe here.

We provide background information and references for LAPACK, ScaLA-
PACK, FORTRAN 90 and HPF in this section. The end of this section contains
very brief statements of LAPACK90 as well.

1.1 LAPACK

LAPACK is a library of FORTRAN 77 subroutines for solving the most com-
monly occurring problems in numerical linear algebra. It has been designed to
be e�cient on a wide range of modern, high-performance computers. The name
LAPACK is an acronym for Linear Algebra PACKage.
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LAPACK provides routines for solving systems of simultaneous linear equa-
tions, least-squares solutions of linear systems of equations, eigenvalue prob-
lems, and singular value problems. The associated matrix factorizations (LU,
Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are related
computations such as reordering of the Schur factorizations and estimating con-
dition numbers. Dense and banded matrices are handled, but not general sparse
matrices. In all areas, similar functionality is provided for real and complex ma-
trices, in both single and double precision.

The original goal of the LAPACK project was to make the widely used
EISPACK and LINPACK libraries run e�ciently on shared-memory vector and
parallel processors. On these machines, LINPACK and EISPACK are ine�cient
because their memory access patterns disregard the multi-layered memory hier-
archies of the machines, thereby spending too much time moving data instead
of doing useful 
oating-point operations. LAPACK addresses this problem by
reorganizing the algorithms to use block matrix operations, such as matrix mul-
tiplication, in the innermost loops. These block operations can be optimized for
each architecture to account for the memory hierarchy, and so provide a trans-
portable way to achieve high e�ciency on diverse modern machines. LAPACK
requires that highly optimized block matrix operations be already implemented
on each machine.

LAPACK routines are written so that as much of the computation as possible
is performed by calls to the Basic Linear Algebra Subprograms[13] (BLAS).
While LINPACK and EISPACK are based on the vector operation kernels of
the Level 1 BLAS. LAPACK is designed to exploit the Level 3 BLAS { a set
of speci�cations for FORTRAN subprograms that do various types of matrix
multiplication and the solution of triangular systems with multiple right-hand
sides. Because of the coarse granularity of the Level 3 BLAS operations, their
use promotes high e�ciency on many high-performance computers, particularly
if specially coded implementations are provided by the manufacturer.

Highly e�cient, machine-speci�c implementations of the BLAS are available
for many modern high-performance computers. The BLAS enable LAPACK
routines to achieve high performance with transportable software. A model
FORTRAN implementation of the BLAS is available from netlib[5] in the BLAS
library. It is not expected to perform as well as a specially tuned implementation
on most high-performance computers. On some machines, it may give much
worse performance. But it allows users to run LAPACK software on machines
that do not o�er any other implementation of the BLAS.

For more information on LAPACK and references on BLAS, LINPACK and
EISPACK see [13, 1].

1.2 ScaLAPACK

ScaLAPACK is a library of high-performance, linear algebra routines for dis-
tributed memory message-passing MIMD (Multiple Instruction Multiple Data)
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computers and networks of workstations supporting PVM[7] (Parallel Virtual
Machine) and/or MPI[12] (Message Passing Interface). ScaLAPACK is a con-
tinuation of the LAPACK project (see section 1.1). The name ScaLAPACK is
an acronym for Scalable Linear Algebra PACKage, or Scalable LAPACK. Both
libraries (LAPACK and ScaLAPACK) contain routines for solving systems of
linear equations, least squares problems, and eigenvalue problems. The goals of
both projects are e�ciency (to run as fast as possible), scalability (as the prob-
lem size and number of processors grow), reliability (including error bounds),
portability (across all important parallel machines), 
exibility (so users can
construct new routines from well-designed parts), and ease of use (by making
the interface to LAPACK and ScaLAPACK look as similar as possible). Many
of these goals, particularly portability, are aided by developing and promoting
standards , especially for low-level communication and computation routines.
ScaLAPACK has been successful in attaining these goals, limitingmost machine
dependencies to two standard libraries called the BLAS (Basic Linear Algebra
Subprograms) and BLACS[14] (Basic Linear Algebra Communication Subpro-
grams). LAPACK runs on any machine where the BLAS[13] are available, and
ScaLAPACK runs on any machine where both the BLAS and the BLACS are
available.

The library is currently written in FORTRAN 77 (with the exception of a
few symmetric eigenproblem auxiliary routines written in C to exploit IEEE
arithmetic) in a Single Program Multiple Data (SPMD) style using explicit
message passing for interprocessor communication.

For more information on ScaLAPACK and references on BLAS, BLACS,
PBLAS, PVM and MPI see [13, 14, 6, 2, 7, 12].

1.3 FORTRAN 90

FORTRAN has always been the principal computer language used in the �elds
of science, engineering, and numerical computing. A series of revisions to the
standard de�ning successive versions of the language has progressively enhanced
its power and kept it competitive with several generations of rivals. The present
FORTRAN standard is 90/95. Below is a summary of the new features:

� Array operations.

� Pointers.

� Improved facilities for numerical computations including a set of numerical
inquiry functions.

� Parameterization of the intrinsic types, to permit processors to support
short integers, very large character sets, more than two precisions for real
and complex, and packed logicals.
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� User-de�ned derived data types composed of arbitrary data structures and
operations upon those structures.

� Facilities for de�ning collections called \modules", useful for global data
de�nitions and for procedure libraries. These support a safe method of
encapsulating derived data types.

� Requirements on a compiler to detect the use of constructs that do not
conform to syntax of the language or are obsolescent.

� A few source form, more appropriate to use at a terminal

� New control constructs such as the SELECT CASE construct and a new
form of the DO.

� The ability to write internal procedures and recursive procedures, and to
call procedures with optional and keyword arguments.

� Dynamic storage (automatic arrays, allocatable arrays, and pointers).

� Improvements to the input-output facilities, including handling partial
records and a standardized NAMELIST facility.

� Many new intrinsic procedures.

Combined, the new features contained in FORTRAN 90/95 ensure that the
FORTRAN language will continue to be used successfully in the future. The fact
that it contains the whole of FORTRAN 77 as a subset means that conversion to
FORTRAN 90/95 is as simple as conversion to another FORTRAN 77 processor.
For more information on FORTRAN 90/95 see [10].

1.4 High Performance FORTRAN (HPF)

FORTRAN is reaching its limitations on the latest generations of high per-
formance computers. FORTRAN was originally developed for serial machines
with linear memory architectures. In the past several years, it has become in-
creasingly apparent that a language design relying on this architectural feature
creates di�culties when executing on parallel machines. One symptom of this is
the proliferation of parallel FORTRAN dialects, each specialized to the machine
where it was �rst implemented. As the number of competing parallel machines
on the market increases, the lack of a standard parallel FORTRAN is becoming
increasingly problematic. HPF solves this problem. The overriding goal of HPF
was therefore to produce a dialect of FORTRAN that could be used on variety
of parallel machines. HPF is an extension of FORTRAN 90/95. The array
calculation and dynamic storage allocation features of FORTRAN 90, and the
FORALL statement, the PURE and EXTRINSIC attributes of FORTRAN
95, make it natural base for HPF. The new HPF language futures fall into four
categories with respect to FORTRAN 90/95:
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� New directives.

� New language syntax.

� Library routines.

� Language restrictions.

For more information on HPF see [8].

1.5 LAPACK for FORTRAN 90

All LAPACK driver subroutines (including expert drivers) and some LAPACK
computationals have both generic LAPACK90 interfaces and generic LAPACK77
interfaces. The remaining computationals have only generic LAPACK77 inter-
faces. In both types of interfaces, no distinction is made between single and
double precision or between real and complex data types. The use of the LA-
PACK90 (LAPACK77) interface requires the user to specify the F90 LAPACK
(F77 LAPACK) module.

For example, the GESV driver subroutine, which solves a general system of
linear equations, can be called in the following ways:

� CALL LA GESV( A, B, IPIV=ipiv, INFO=info )
or

� CALL LA GESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )

The module F90 LAPACK is needed in the �rst case in which the LA-
PACK90 interface package is called. The module F77 LAPACK is needed in
the second case in which the LAPACK77 package is directly called.

The present implementation of the LAPACK90 can be summarized in the
following titles:

� Driver Routines for Linear Equations.

� Expert Driver Routines for Linear Equations.

� Driver Routines for Linear Least Squares Problems.

� Driver Routines for generalized Linear Least Squares Problems.

� Driver Routines for Standard Eigenvalue and Singular Value Problems.

� Divide and Conquer Driver Routines for Standard Eigenvalue Problems.

� Expert Driver Routines for Standard Eigenvalue Problems.

� Driver Routines for Generalized Eigenvalue and Singular Value Problems.
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� Some Computational Routines for Linear Equations and Eigenproblems.

The LAPACK90 library is successively updated and it is available from netlib
(see [5, 4]).

1.6 ScaLAPACK for HPF

The HPF ScaLAPACK interface project started in several places (see [9, 11])
including UNI�C. The work at UNI�C is not described yet. The report is in
preparation. Several ScaLAPACK subroutines and test programs are interfaced
with HPF.

2 Interface Blocks for LAPACK 77

1 PROGRAM EXAMPLE

2 USE LA_PRECISION, ONLY: WP => SP

3 USE F77_LAPACK, ONLY: LA_GESV

4 IMPLICIT NONE

5 CHARACTER(LEN=*), PARAMETER :: FMT = '(7(1X,F9.3))'

6 INTEGER :: J, INFO, N, NRHS, LDA, LDB

7 INTEGER, ALLOCATABLE :: IPIV(:)

8 REAL(WP), ALLOCATABLE :: A(:,:), B(:,:)

9 N = 5; NRHS = 2

10 ALLOCATE( A(N,N), B(N,NRHS), IPIV(N) )

11 CALL RANDOM_NUMBER(A)

12 DO J = 1, NRHS; B(:,J) = SUM( A, DIM=2)*J; ENDDO

13 LDA = N; LDB = N

14 CALL LA_GESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )

15 WRITE(*,*) 'INFO = ', INFO

16 IF( NRHS < 6 .AND. N < 11 )THEN

17 WRITE(*,*) 'The solution:'

18 DO J = 1, NRHS; WRITE (*,FMT) B(:,J); ENDDO

19 ENDIF

20 END PROGRAM EXAMPLE

Figure 1: Example1: Module F77 LAPACK is used.

All LAPACK77 driver subroutines (including expert drivers) and LAPACK77
computationals have generic interfaces. No distinction is made between single
and double precision or between real and complex data types. The use of the
LAPACK77 generic interface requires the user to specify the F77 LAPACK mo-
dule.
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Example 1 in �g. 1 demonstrates the use of a LAPACK77 generic interface.
The program solves a linear system of equations AX = B, where A is a square
matrix and B and X are rectangular matrices.

Remarks:

� Statement 2 includes SP interface block from the LA PRECISION mo-
dule. WP will be used internally as SP. The interface block SP de�nes the
precision (see page 21), in this case single precision. The program works
in double precision if DP replaces SP.

� Statement 3 includes the LA GESV interface block from F77 LAPACK
module.

� Statement 8. REAL(WP) de�nes variables A and B, in this case al-
locatable arrays A and B in single precision. The program will work in
complex if COMPLEX replaces REAL.

� Statement 14. The generic interface name LA GESV is replaced during
the compilation phase by the proper interface body (see page 15). In this
case SGESV replaces LA GESV.

Appendix A contains, as examples, the generic interfaces of LA GETRF and
LA GESV for LAPACK77. The generic interfaces of the LAPACK77 driver and
computational routines determine the F77 LAPACK module.

For more information see references [3, 4].

3 Interface Blocks for LAPACK 90

All LAPACK90 driver subroutines (including expert drivers) and some LA-
PACK90 computationals have generic interfaces. No distinction is made be-
tween single and double precision or between real and complex data types.
The use of the LAPACK90 generic interface requires the user to specify the
F90 LAPACK module.

Example 2 in �g. 2 demonstrates the use of a LAPACK90 generic interface.
The program solves a linear system of equations AX = B, where A is a square
matrix and B and X are rectangular matrices. The computation in example 2
is the same as that in example 1. However the program is shorter and the call
of LA GESV is simpler.

Remarks:

� Statement 2 includes SP interface block from the LA PRECISION mo-
dule. WP is internally used as SP. The interface block SP de�nes the
precision (see page 21), in this case single precision. The program works
in double precision if DP replaces SP.
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1 PROGRAM EXAMPLE

2 USE LA_PRECISION, ONLY: WP => SP

3 USE f90_LAPACK, ONLY: LA_GESV

4 IMPLICIT NONE

5 CHARACTER(LEN=*), PARAMETER :: FMT = '(7(1X,F9.3))'

6 INTEGER :: J, N, NRHS

7 REAL(WP), ALLOCATABLE :: A(:,:), B(:,:)

8 N = 5; NRHS = 2

9 ALLOCATE( A(N,N), B(N,NRHS) )

10 CALL RANDOM_NUMBER(A)

11 DO J = 1, NRHS; B(:,J) = SUM( A, DIM=2)*J; ENDDO

12 CALL LA_GESV( A, B )

13 IF( NRHS < 6 .AND. N < 11 )THEN

14 WRITE(*,*) 'The solution:'

15 DO J = 1, NRHS; WRITE (*,FMT) B(:,J); ENDDO

16 ENDIF

17 END PROGRAM EXAMPLE

Figure 2: Example2: Module F90 LAPACK is used.

� Statement 3 includes the LA GESV interface block from F90 LAPACK
module.

� Statement 7. REAL(WP) de�nes variables A and B, in this case allo-
catable arrays A and B in single precision. The program works in complex
if COMPLEX replaces REAL.

� Statement 12. The generic interface name LA GESV is replaced during
the compilation phase by the proper interface body (see page 18). In this
case SGESV F90 replaces LA GESV because of SP and REAL and be-
cause the shape of array B is (:,:). LA GESV is replaced by SGESV1 F90
if the array B has shape (:).

Example 3 in �g. 3 demonstrates the use of both LAPACK77 and LA-
PACK90 generic interfaces. The program also solves a linear system of equations
AX = B, where A is a square matrix, and B and X are rectangular matrices.

Appendix B contains, as examples, the generic interfaces of LA GETRF and
LA GESV for LAPACK90. The generic interfaces of the LAPACK90 driver and
computational routines determine the F90 LAPACK module.

For more information see references [3, 4].
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1 PROGRAM EXAMPLE

2 USE LA_PRECISION, ONLY: WP => SP

3 USE f77_LAPACK, ONLY: F77GESV => LA_GESV

4 USE f90_LAPACK, ONLY: F90GESV => LA_GESV

5 IMPLICIT NONE

6 INTEGER :: INFO, J, LDA, LDB, N, NRHS

7 INTEGER, ALLOCATABLE :: IPIV(:)

8 REAL :: T0, T1, T2

9 REAL(WP), ALLOCATABLE :: A(:,:), B(:,:)

10 N = 500; NRHS = 2

11 ALLOCATE( A(N,N), B(N,NRHS), IPIV(N) )

12 CALL RANDOM_NUMBER(A)

13 DO J = 1, NRHS; B(:,J) = SUM( A, DIM=2)*J; ENDDO

14 LDA = N; LDB = N

15 CALL CPU_TIME(T0); CALL CPU_TIME(T1); T0 = T1-T0

16 CALL F77GESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )

17 CALL CPU_TIME(T2)

18 WRITE(*,*) 'INFO and CPUTIME of F77GESV ', INFO, T2-T1-T0

19 CALL CPU_TIME(T1); CALL F90GESV( A, B ); CALL CPU_TIME(T2)

20 WRITE(*,*) 'CPUTIME of F90GESV ', T2-T1-T0

21 END PROGRAM EXAMPLE

Figure 3: Example3: Both modules F77 LAPACK and F90 LAPACK are used.

4 Code of LAPACK90 Routines

Two LAPACK90 interface routines, LA GESV and LA GETRI are listed in the
appendix C. The code of such routine can be divided in the following parts:

� Heading of the routine

{ Subroutine or function statement

{ USE statements

� LA PRECISION module

� LA AUXMOD (auxiliary) module if needed

� F77 LAPACK module

{ IMPLICIT NONE statement

{ Argument speci�cations

� Argument descriptions (comments)

� Local variable declaration
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� Executable statements

{ Local variables initialization

{ Testing the arguments

{ Work space allocation if needed

{ Writing warning message if needed

{ Calling the LAPACK77 routine

{ Work space deallocation if needed

{ Calling the error trapping routine (see page 22)

� end of routine statement

The routines LA GESV (page 19) and LA GETRI (page 19) illustrate the
above.

The LA PRECISION module and the ERINFO subroutine are illustrated in
appendix D.

5 LAPACK90 Documentation

The LAPACK90 documentation can be divided into three categories.

Routine text. Every LAPACK90 interface routine contains documentation as
comments, including the purpose, argument speci�cation, argument de-
scription, and further details if necessary.

On-line documentation. The documentation of the LAPACK90 library is
available on the Web at address "http://www.netlib.org/lapack90/\. It
gives very brief information but there are links to more detailed informa-
tion if needed. First is given general LAPACK90 information. If you need
LAPACK77 information you can click on "LAPACK Users' Guide\. If you
want to down load the LAPACK90 installation package you should click on
"lapack90/lapack90.tar.gz\. If you need LAPACK90 speci�c information
you should click on "LAPACK90 homepage\.

In the "LAPACK90 homepage\ you will �nd a brief description of every
LAPACK90 interface subroutine. For example,

� CALL LA GESV ( A, B, IPIV=ipiv, INFO=info )
Solves a general system of linear equations AX = B.

For more information click on "LA GESV\.

LAPACK90 Users' Guide. The guide gives some theoretical background in-
formation and describes every user-callable subroutine. Purposes of the
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subroutines, argument speci�cations, argument descriptions, and exam-
ples are provided. The documentation of the LA GESV subroutine is
listed in appendix E.

The manual is also applicable to the LAPACK FORTRAN90 and ScaLA-
PACK HPF interfaces.

A CD ROM with examples from the book are attached to the Users'
Guide.

6 LAPACK90 Test Programs

The LAPACK90 test programs can be divided into three categories.

1. Every LAPACK90 interface program has a test program. These programs
were used by the authors in developing the LAPACK90 interface. The
programs test the interface routines, the computation, and the error exits.
These programs can be used as examples for LAPACK90 beginners. The
programs are collected in the directory LAPACK90/EXAMPLES.

2. Some of the LAPACK77 test programs were adapted for LAPACK90.

3. A new series of easy-to-use test programs are under development. The user
can run such a program, interpret the results, and examine the numerical
accuracy. The tests are already developed for the driver routines of the
section on linear system of equations. The results of the test program for
LA GESV are listed in appendix F. These tests will be distributed with
the LAPACK90 package.

7 LAPACK90 User Callable Routines

Appendix G contains a short description of all LAPACK90 routines. The call
of the routine and a brief statement of its purpose are given. For example, for
LA GESV:

� CALL LA GESV( A, B, IPIV=ipiv, INFO=info )
Solves a general system of linear equations AX = B.

Arguments A and B must always be speci�ed while IPIV and INFO are
optional. For more routine descriptions see appendix G.
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A LAPACK77 Generic Interface Blocks

LA GETRF
MODULE F77_LAPACK

INTERFACE LA_GETRF

SUBROUTINE SGETRF( M, N, A, LDA, PIV, INFO )

USE LA_PRECISION, ONLY: WP => SP

INTEGER, INTENT(IN) :: LDA, M, N

INTEGER, INTENT(OUT) :: INFO

INTEGER, INTENT( OUT ) :: PIV( * )

REAL(WP), INTENT( INOUT ) :: A( LDA, * )

END SUBROUTINE SGETRF

SUBROUTINE DGETRF( M, N, A, LDA, PIV, INFO )

USE LA_PRECISION, ONLY: WP => DP

INTEGER, INTENT(IN) :: LDA, M, N

INTEGER, INTENT(OUT) :: INFO

INTEGER, INTENT( OUT ) :: PIV( * )

REAL(WP), INTENT( INOUT ) :: A( LDA, * )

END SUBROUTINE DGETRF

SUBROUTINE CGETRF( M, N, A, LDA, PIV, INFO )

USE LA_PRECISION, ONLY: WP => SP

INTEGER, INTENT(IN) :: LDA, M, N

INTEGER, INTENT(OUT) :: INFO

INTEGER, INTENT( OUT ) :: PIV( * )

COMPLEX(WP), INTENT( INOUT ) :: A( LDA, * )

END SUBROUTINE CGETRF

SUBROUTINE ZGETRF( M, N, A, LDA, PIV, INFO )

USE LA_PRECISION, ONLY: WP => DP

INTEGER, INTENT(IN) :: LDA, M, N

INTEGER, INTENT(OUT) :: INFO

INTEGER, INTENT( OUT ) :: PIV( * )

COMPLEX(WP), INTENT( INOUT ) :: A( LDA, * )

END SUBROUTINE ZGETRF

END INTERFACE

END MODULE F77_LAPACK
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LA GESV
MODULE F77_LAPACK

INTERFACE LA_GESV

SUBROUTINE SGESV( N, NRHS, A, LDA, PIV, B, LDB, INFO )

USE LA_PRECISION, ONLY: WP => SP

INTEGER, INTENT(IN) :: LDA, LDB, NRHS, N

INTEGER, INTENT(OUT) :: INFO

INTEGER, INTENT(OUT) :: PIV(*)

REAL(WP), INTENT(INOUT) :: A(LDA,*), B(LDB,*)

END SUBROUTINE SGESV

SUBROUTINE DGESV( N, NRHS, A, LDA, PIV, B, LDB, INFO )

USE LA_PRECISION, ONLY: WP => DP

INTEGER, INTENT(IN) :: LDA, LDB, NRHS, N

INTEGER, INTENT(OUT) :: INFO

INTEGER, INTENT(OUT) :: PIV(*)

REAL(WP), INTENT(INOUT) :: A(LDA,*), B(LDB,*)

END SUBROUTINE DGESV

SUBROUTINE CGESV( N, NRHS, A, LDA, PIV, B, LDB, INFO )

USE LA_PRECISION, ONLY: WP => SP

INTEGER, INTENT(IN) :: LDA, LDB, NRHS, N

INTEGER, INTENT(OUT) :: INFO

INTEGER, INTENT(OUT) :: PIV(*)

COMPLEX(WP), INTENT(INOUT) :: A(LDA,*), B(LDB,*)

END SUBROUTINE CGESV

SUBROUTINE ZGESV( N, NRHS, A, LDA, PIV, B, LDB, INFO )

USE LA_PRECISION, ONLY: WP => DP

INTEGER, INTENT(IN) :: LDA, LDB, NRHS, N

INTEGER, INTENT(OUT) :: INFO

INTEGER, INTENT(OUT) :: PIV(*)

COMPLEX(WP), INTENT(INOUT) :: A(LDA,*), B(LDB,*)

END SUBROUTINE ZGESV

MODULE PROCEDURE SGESV1, DGESV1, CGESV1, ZGESV1

END INTERFACE
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LA GESV (cont)

CONTAINS

SUBROUTINE SGESV1( N, NRHS, A, LDA, PIV, B, LDB, INFO )

USE LA_PRECISION, ONLY: WP => SP

INTEGER, INTENT(IN) :: LDA, LDB, NRHS, N

INTEGER, INTENT(OUT) :: INFO

INTEGER, INTENT(OUT) :: PIV(*)

REAL(WP), INTENT(INOUT) :: A(LDA,*), B(*)

INTERFACE

SUBROUTINE SGESV( N, NRHS, A, LDA, PIV, B, LDB, INFO )

USE LA_PRECISION, ONLY: WP => SP

INTEGER, INTENT(IN) :: LDA, LDB, NRHS, N

INTEGER, INTENT(OUT) :: INFO

INTEGER, INTENT(OUT) :: PIV(*)

REAL(WP), INTENT(INOUT) :: A(LDA,*), B(LDB,*)

END SUBROUTINE SGESV

END INTERFACE

CALL SGESV( N, NRHS, A, LDA, PIV, B, LDB, INFO )

END SUBROUTINE SGESV1

SUBROUTINE DGESV1( N, NRHS, A, LDA, PIV, B, LDB, INFO )

USE LA_PRECISION, ONLY: WP => DP

� � � � � � � � �

CALL DGESV( N, NRHS, A, LDA, PIV, B, LDB, INFO )

END SUBROUTINE DGESV1

SUBROUTINE CGESV1( N, NRHS, A, LDA, PIV, B, LDB, INFO )

USE LA_PRECISION, ONLY: WP => SP

� � � � � � � � �

CALL CGESV( N, NRHS, A, LDA, PIV, B, LDB, INFO )

END SUBROUTINE CGESV1

SUBROUTINE ZGESV1( N, NRHS, A, LDA, PIV, B, LDB, INFO )

USE LA_PRECISION, ONLY: WP => DP

� � � � � � � � �

CALL ZGESV( N, NRHS, A, LDA, PIV, B, LDB, INFO )

END SUBROUTINE ZGESV1

END MODULE F77_LAPACK
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B LAPACK90 Generic Interface Blocks

LA GETRF
MODULE F90_LAPACK

INTERFACE LA_GETRF

SUBROUTINE SGETRF_F90( A, IPIV, RCOND, NORM, INFO )

USE LA_PRECISION, ONLY: WP => SP

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: NORM

INTEGER, INTENT(OUT), OPTIONAL :: INFO

REAL(WP), INTENT( OUT ), OPTIONAL :: RCOND

INTEGER, INTENT( OUT ), OPTIONAL :: IPIV( : )

REAL(WP), INTENT( INOUT ) :: A( :, : )

END SUBROUTINE SGETRF_F90

SUBROUTINE DGETRF_F90( A, IPIV, RCOND, NORM, INFO )

USE LA_PRECISION, ONLY: WP => DP

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: NORM

INTEGER, INTENT(OUT), OPTIONAL :: INFO

REAL(WP), INTENT( OUT ), OPTIONAL :: RCOND

INTEGER, INTENT( OUT ), OPTIONAL :: IPIV( : )

REAL(WP), INTENT( INOUT ) :: A( :, : )

END SUBROUTINE DGETRF_F90

SUBROUTINE CGETRF_F90( A, IPIV, RCOND, NORM, INFO )

USE LA_PRECISION, ONLY: WP => SP

� � � � � � � � �

END SUBROUTINE CGETRF_F90

SUBROUTINE ZGETRF_F90( A, IPIV, RCOND, NORM, INFO )

USE LA_PRECISION, ONLY: WP => DP

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: NORM

INTEGER, INTENT(OUT), OPTIONAL :: INFO

REAL(WP), INTENT( OUT ), OPTIONAL :: RCOND

INTEGER, INTENT( OUT ), OPTIONAL :: IPIV( : )

COMPLEX(WP), INTENT( INOUT ) :: A( :, : )

END SUBROUTINE ZGETRF_F90

END INTERFACE

END MODULE F90_LAPACK
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LA GESV
MODULE F90_LAPACK

INTERFACE LA_GESV

SUBROUTINE SGESV_F90( A, B, IPIV, INFO )

USE LA_PRECISION, ONLY: WP => SP

INTEGER, INTENT(OUT), OPTIONAL :: INFO

INTEGER, INTENT(OUT), OPTIONAL :: IPIV(:)

REAL(WP), INTENT(INOUT) :: A(:,:), B(:,:)

END SUBROUTINE SGESV_F90

SUBROUTINE SGESV1_F90( A, B, IPIV, INFO )

USE LA_PRECISION, ONLY: WP => SP

INTEGER, INTENT(OUT), OPTIONAL :: INFO

INTEGER, INTENT(OUT), OPTIONAL :: IPIV(:)

REAL(WP), INTENT(INOUT) :: A(:,:), B(:)

END SUBROUTINE SGESV1_F90

SUBROUTINE DGESV_F90( A, B, IPIV, INFO )

USE LA_PRECISION, ONLY: WP => DP

� � � � � � � � �

END SUBROUTINE DGESV_F90

SUBROUTINE DGESV1_F90( A, B, IPIV, INFO )

USE LA_PRECISION, ONLY: WP => DP

� � � � � � � � �

END SUBROUTINE CGESV_F90

SUBROUTINE CGESV1_F90( A, B, IPIV, INFO )

USE LA_PRECISION, ONLY: WP => SP

� � � � � � � � �

END SUBROUTINE CGESV1_F90

SUBROUTINE ZGESV_F90( A, B, IPIV, INFO )

USE LA_PRECISION, ONLY: WP => DP

� � � � � � � � �

END SUBROUTINE ZGESV1_F90

END INTERFACE

END MODULE F90_LAPACK
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C LA GESV and LA GETRI subroutines

LA GESV
SUBROUTINE SGESV_F90( A, B, IPIV, INFO )

USE LA_PRECISION, ONLY: WP => SP

USE LA_AUXMOD, ONLY: ERINFO

USE F77_LAPACK, ONLY: GESV_F77 => LA_GESV

IMPLICIT NONE

INTEGER, INTENT(OUT), OPTIONAL :: INFO

INTEGER, INTENT(OUT), OPTIONAL, TARGET :: IPIV(:)

REAL(WP), INTENT(INOUT) :: A(:,:), B(:,:)

!------------------------------------------------------------

(Argument descriptions)

!------------------------------------------------------------

CHARACTER(LEN=7), PARAMETER :: SRNAME = 'LA_GESV'

INTEGER :: LINFO, ISTAT, ISTAT1, SIPIV, N, NRHS, LDA, LDB

INTEGER, POINTER :: LPIV(:)

INTRINSIC SIZE, PRESENT, MAX

!------------------------------------------------------------

LINFO = 0; ISTAT = 0; N = SIZE(A,1); NRHS = SIZE(B,1)

IF( PRESENT(IPIV) )THEN; SIPIV = SIZE(IPIV)

ELSE; SIPIV = N; ENDIF

IF( N < 0 .OR. SIZE(A,2) /= N )THEN; LINFO = -1

ELSE IF( SIZE( B, 1 ) /= N .OR. NRHS < 0 )THEN; LINFO = -2

ELSE IF( SIPIV /= SIZE(A,1) )THEN; LINFO = -3

ELSE IF( N > 0 )THEN

IF( PRESENT(IPIV) )THEN; LPIV => IPIV

ELSE; ALLOCATE( LPIV(SIZE(A,1)), STAT = ISTAT ); END IF

IF( ISTAT == 0 ) THEN; LDA = MAX(1,N); LDB = MAX(1,N)

CALL GESV_F77( N, NRHS, A, LDA, LPIV, B, LDB, LINFO )

ELSE; LINFO = -100; END IF

IF( .NOT.PRESENT(IPIV) ) DEALLOCATE(LPIV,STAT = ISTAT1)

END IF

CALL ERINFO( LINFO, SRNAME, INFO, ISTAT )

END SUBROUTINE SGESV_F90
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LA GETRI
SUBROUTINE SGETRI_F90( A, IPIV, INFO )

USE LA_PRECISION, ONLY: WP => SP

USE LA_AUXMOD, ONLY: ERINFO

USE F77_LAPACK, ONLY: GETRI_F77 => LA_GETRI, &

ILAENV_F77 => ILAENV

IMPLICIT NONE

INTEGER, INTENT(OUT), OPTIONAL :: INFO

INTEGER, INTENT(IN) :: IPIV(:)

REAL(WP), INTENT(INOUT) :: A(:,:)

(Argument Descriptions)

CHARACTER(LEN=8), PARAMETER :: SRNAME = 'LA_GETRI'

CHARACTER(LEN=6), PARAMETER :: BSNAME = 'SGETRI'

INTEGER :: LINFO, N, LD, LWORK, ISTAT, ISTAT1, NB

REAL(WP), POINTER :: WORK(:)

INTRINSIC SIZE, MAX

!--------------------------------------------------------

N = SIZE(A,1); LINFO = 0; LD = MAX(1,N); ISTAT = 0

IF( SIZE( A, 2 ) /= N .OR. N < 0 )THEN; LINFO = -1

ELSE IF( SIZE( IPIV ) /= N )THEN; LINFO = -2

ELSE IF( N > 0 )THEN

NB = ILAENV_F77( 1, BSNAME, ' ', N, -1, -1, -1 )

IF( NB < 1 .OR. NB >= N )THEN; NB = 1; END IF

LWORK = MAX( N*NB, 1 )

ALLOCATE(WORK(LWORK), STAT=ISTAT)

IF( ISTAT /= 0 )THEN; DEALLOCATE(WORK, STAT=ISTAT1)

LWORK = MAX(1,N); ALLOCATE(WORK(LWORK), STAT=ISTAT)

IF( ISTAT == 0 ) CALL ERINFO( -200, SRNAME, LINFO )

END IF

IF( LINFO == 0 )THEN

CALL GETRI_F77( N, A, LD, IPIV, WORK, LWORK, LINFO )

ELSE; LINFO = -100; END IF

DEALLOCATE(WORK, STAT=ISTAT1)

END IF

CALL ERINFO(LINFO,SRNAME,INFO,ISTAT)

END SUBROUTINE SGETRI_F90

20



D Auxiliary Routines

LA PRECISION

MODULE LA_PRECISION

INTEGER, PARAMETER :: SP=KIND(1.0), DP=KIND(1.0D0)

END MODULE LA_PRECISION

LA AUXMOD

MODULE LA_AUXMOD

INTERFACE

SUBROUTINE ERINFO(LINFO, SRNAME, INFO, ISTAT)

CHARACTER( LEN = * ), INTENT(IN) :: SRNAME

INTEGER, INTENT(IN) :: LINFO

INTEGER, INTENT(OUT), OPTIONAL :: INFO

INTEGER, INTENT(IN), OPTIONAL :: ISTAT

END SUBROUTINE ERINFO

INTEGER FUNCTION LA_WS_GELS( VER, M, N, NRHS, TRANS )

CHARACTER( LEN=1 ), INTENT(IN) :: TRANS, VER

INTEGER, INTENT(IN) :: M, N, NRHS

END FUNCTION LA_WS_GELS

INTEGER FUNCTION LA_WS_GELSS( VER, M, N, NRHS )

CHARACTER(LEN=1), INTENT(IN) :: VER

INTEGER, INTENT(IN) :: M, N, NRHS

END FUNCTION LA_WS_GELSS

END INTERFACE

CONTAINS

LOGICAL FUNCTION LSAME( CA, CB )

CHARACTER(LEN=1), INTENT(IN) :: CA, CB

! LSAME TESTS IF CA IS THE SAME LETTER AS CB REGARDLESS OF CASE.

� � � � � � � � �

END FUNCTION LSAME

END MODULE LA_AUXMOD
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LA ERINFO
SUBROUTINE ERINFO(LINFO, SRNAME, INFO, ISTAT)

IMPLICIT NONE

CHARACTER( LEN = * ), INTENT(IN) :: SRNAME

INTEGER, INTENT(IN) :: LINFO

INTEGER, INTENT(OUT), OPTIONAL :: INFO

INTEGER, INTENT(IN), OPTIONAL :: ISTAT

IF( ( ( LINFO < 0 .AND. LINFO > -200 ) .OR. LINFO > 0 ) &

.AND. .NOT.PRESENT(INFO) )THEN

WRITE (*,*) 'Terminated in LAPACK\_90 subroutine ', &

SRNAME

WRITE (*,*) 'Error indicator, INFO = ',LINFO

IF( PRESENT(ISTAT) )THEN; IF( ISTAT /= 0 ) THEN

IF( LINFO == -100 )THEN

WRITE (*,*) 'ALLOCATE causes STATUS = ', ISTAT

ELSE

WRITE (*,*) 'LINFO = ', LINFO, ' not expected'

END IF

END IF; END IF

STOP

ELSE IF( LINFO <= -200 ) THEN

WRITE(*,*) '+++++++++++++++++++++++++++++++++++++++++++'

WRITE(*,*) '*** WARNING, INFO = ', LINFO, ' WARNING ***'

IF( LINFO == -200 )THEN

� � � � � � � � �

WRITE(*,*) '+++++++++++++++++++++++++++++++++++++++++++'

END IF

IF( PRESENT(INFO) ) INFO = LINFO

END IF

END SUBROUTINE ERINFO
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E Documentation of LA GESV

Purpose

LA GESV computes the solution to a real or complex system of linear equa-
tionsAX = B, where A is a square matrix andB andX are rectangular matrices
or vectors. Gaussian elimination with row interchanges is used to factor A as
A = PTLU , where P is a permutation matrix, L is unit lower triangular, and
U is upper triangular. The factored form of A is then used to solve the system
of equations AX = B.

Speci�cation

SUBROUTINE LA GESV( A, B, IPIV=ipiv, INFO=info )
type(wp), INTENT(INOUT) :: A(:,:), rhs
INTEGER, INTENT(OUT), OPTIONAL :: IPIV(:)
INTEGER, INTENT(OUT), OPTIONAL :: INFO
where
type ::= REAL j COMPLEX
wp ::= KIND(1.0) j KIND(1.0D0)
rhs ::= B(:,:) j B(:)

Arguments

A { (input/output) REAL or COMPLEX square array, shape (:; :).

� On entry, the matrix A.

� On exit, the factors L and U from the factorization A = PTLU ; the
unit diagonal elements of L are not stored.

B { (input/output) REAL orCOMPLEX array, shape (:; :) or (:), and size(B; 1) =
size(A; 1) or size(B) = size(A; 1).

� On entry, the right-hand side vector(s) of matrix B in the system of
equations AX = B.

� On exit, if there is no error, the matrix of solution vector(s) X.

IPIV { Optional (output) INTEGER array, shape (:), size(IPIV) = size(A; 1).

� The indices that de�ne the permutation matrixP ; row i of the matrix
was interchanged with row IPIVi .

INFO { Optional (output) INTEGER.

23



� = 0 : successful exit.

< 0 : if INFO = �i, the ith argument has an illegal value.

> 0 : if INFO = i, then Ui;i = 0. A is singular and no solution was
computed.

If INFO is not present and an error occurs, then the program is termi-
nated with an error message.

Examples

The results below are computed with � = 1:192110 � 07.

Example 1 (from Program LA GESV EXAMPLE)

A =

0
BBBB@

0 2 3 5 4
1 0 5 6 6
7 6 8 0 5
4 6 0 3 9
5 9 0 0 8

1
CCCCA
; B =

0
BBBB@

14 28 42
18 36 54
26 52 78
22 44 66
22 44 66

1
CCCCA

Arrays A and B on entry:

A
0 2 3 5 4
1 0 5 6 6
7 6 8 0 5
4 6 0 3 9
5 9 0 0 8

B
14 28 42
18 36 54
26 52 78
22 44 66
22 44 66

The call:

CALL LA GESV( A, B )

B on exit:
B

1:0000000 2:0000000 3:0000012
1:0000000 2:0000000 3:0000000
1:0000000 2:0000000 2:9999993
1:0000001 2:0000002 3:0000012
1:0000000 2:0000000 2:9999990
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The solution of the system AX = B is:

X =

0
BBBB@

1:0000000 2:0000000 3:0000012
1:0000000 2:0000000 3:0000000
1:0000000 2:0000000 2:9999993
1:0000001 2:0000002 3:0000012
1:0000000 2:0000000 2:9999990

1
CCCCA
:

Example 2 (from Program LA GESV EXAMPLE)

A on entry: As in Example 1.
B on entry: B:;1, where B is the input matrix in Example 1.

The call:

CALL LA GESV( A, B(:,1), IPIV, INFO )

A, B(:;1), IPIV and INFO on exit:

A
7:0000000 6:0000000 8:0000000 0:0000000 5:0000000
0:7142857 4:7142859 �5:7142859 0:0000000 4:4285712
0:0000000 0:4242424 5:4242425 5:0000000 2:1212122
0:5714286 0:5454544 �0:2681566 4:3407826 4:2960901
0:1428571 �0:1818182 0:5195531 0:7837837 1:6216215

B(:;1)
1:0000000
1:0000000
1:0000000
1:0000001
1:0000000

IPIV
3
5
3
4
5

INFO = 0
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Matrices L, U and P :

L =

0
BBB@

1:0000000
0:7142857 1:0000000
0:0000000 0:4242424 1:0000000
0:5714286 0:5454544 �0:2681566 1:0000000
0:1428571 �0:1818182 0:5195531 0:7837837 1:0000000

1
CCCA

U =

0
BBBB@

7:0000000 6:0000000 8:0000000 0:0000000 5:0000000
4:7142859 �5:7142859 0:0000000 4:4285712

5:4242425 5:0000000 2:1212122
4:3407826 4:2960901

1:6216215

1
CCCCA

P =

0
BBBB@

0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0

1
CCCCA

The solution of the system AX = b is:

x =

0
BBBB@

1:0000000
1:0000000
1:0000000
1:0000001
1:0000000

1
CCCCA
:

F The LA GESV test results

Test Runs Correctly

SGESV Test Example Program Results.

LA\_GESV LAPACK subroutine solves a dense general

linear system of equations, Ax = b.

Threshold value of test ratio = 10.00 the machine eps = 0.11921E-06
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--------------------------------------------------------

3 matrices were tested with 4 tests. NRHS was 50 and one.

The biggest tested matrix was 300 x 300

12 tests passed.

0 tests failed.

--------------------------------------------------------

9 error exits tests were ran

9 tests passed.

0 tests failed.

Test Partly Fails

SGESV Test Example Program Results.

LA\_GESV LAPACK subroutine solves a dense general

linear system of equations, Ax = b.

Threshold value of test ratio = 5.00 the machine eps = 0.11921E-06

--------------------------------------------------------

Test 1 -- 'CALL LA\_GESV( A, B, IPIV, INFO )', Failed.

Matrix 300 x 300 with 50 rhs.

INFO = 0

|| A ||1 = 14.4323969 COND = 2.0686414E+02

|| X ||1 = 2.2516827E+05 || B - AX ||1 = 2.0583858

ratio = || B - AX || / ( || A ||*|| X ||*eps ) = 5.3133821

--------------------------------------------------------

3 matrices were tested with 4 tests. NRHS was 50 and one.

The biggest tested matrix was 300 x 300

11 tests passed.

1 test failed.

--------------------------------------------------------

9 error exits tests were ran

9 tests passed.

0 tests failed.

G LAPACK90 User Callable Routines

Driver Routines for Linear Equations

� CALL LA GESV( A, B, IPIV=ipiv, INFO=info )
Solves a general system of linear equations AX = B.

� CALL LA GBSV( AB, B, KL=kl, IPIV=ipiv, INFO=info )
Solves a general band system of linear equations AX = B.
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� CALL LA GTSV( DL, D, DU, B, INFO=info )
Solves a general tridiagonal system of linear equations AX = B.

� CALL LA POSV( A, B, UPLO=uplo, INFO=info )
Solves a symmetric/Hermitian positive de�nite system of linear equations
AX = B.

� CALL LA PPSV( AP, B, UPLO=uplo, INFO=info )
Solves a symmetric/Hermitian positive de�nite (packed storage) system
of linear equations AX = B.

� CALL LA PBSV( AB, B, UPLO=uplo, INFO=info )
Solves a symmetric/Hermitianpositive de�nite band system of linear equa-
tions AX = B.

� CALL LA PTSV( D, E, B, INFO=info )
Solves a symmetric/Hermitian positive de�nite tridiagonal system of linear
equations AX = B.

� CALL LA SYSV / LA HESV( A, B, UPLO=uplo, IPIV=ipiv, &

INFO=info )
Solves a symmetric/Hermitian/complex inde�nite system of linear equa-
tions AX = B.

� CALL LA SPSV /LA HPSV( AP, B, UPLO=uplo, IPIV=ipiv, &

INFO=info )
Solves a symmetric/Hermitian/complex inde�nite (packed storage) system
of linear equations AX = B.

Expert Driver Routines for Linear Equations

� CALL LA GESVX( A, B, X, AF=af, IPIV=ipiv, FACT=fact, &

TRANS=trans, EQUED=equed, R=r, C=c, &

FERR=ferr, BERR=berr, RCOND=rcond, &

RPVGRW=rpvgrw, INFO=info )
Solves a general system of linear equations AX = B. Error bounds on the
solution and a condition estimate are also provided.

� CALL LA GBSVX( AB, B, X, KL=kl, ABF=abf, IPIV=ipiv, &

FACT=fact, TRANS=trans, EQUED=equed, &

R=r, C=c, FERR=ferr, BERR=berr, &

RCOND=rcond, RPVGRW=rpvgrv, INFO=info)
Solves a general band system of linear equations AX = B. Error bounds
on the solution and a condition estimate are also provided.

28



� CALL LA GTSVX( DL, D, DU, B, X=x, DLF=dlf, DF=df, &

DUF=duf, DU2=du2, IPIV=ipiv, FACT=fact, &

TRANS=trans, FERR=ferr, BERR=berr, &

RCOND=rcond, INFO=info)
Solves a general tridiagonal system of linear equations AX = B. Error
bounds on the solution and a condition estimate are also provided.

� CALL LA POSVX( A, B, X, UPLO=uplo, AF=af, FACT=fact, &

EQUED=equed, S=s, FERR=ferr, &

BERR=berr, RCOND=rcond, INFO=info )
Solves a symmetric/Hermitian positive de�nite system of linear equations
AX = B. Error bounds on the solution and a condition estimate are also
provided.

� CALL LA PPSVX( AP, B, X, UPLO=uplo, AFP=afp, FACT=fact, &

EQUED=equed, S=s, FERR=ferr, &

BERR=berr, RCOND=rcond, INFO=info )
Solves a symmetric/Hermitian positive de�nite (packed storage) system
of linear equations AX = B. Error bounds on the solution and a condition
estimate are also provided.

� CALL LA PBSVX(AB, B, X, UPLO=uplo, AFB=afb, FACT=fact, &

EQUED=equed, S=s, FERR=ferr, &

BERR=berr, RCOND=rcond, INFO=info )
Solves a symmetric/Hermitianpositive de�nite band system of linear equa-
tions AX = B. Error bounds on the solution and a condition estimate are
also provided.

� CALL LA PTSVX( D, E, B, X, DF=df, EF=ef, FACT=fact, &

FERR=ferr, BERR=berr, RCOND=rcond, &

INFO=info )
Solves a symmetric/Hermitian positive de�nite tridiagonal system of linear
equations AX = B. Error bounds on the solution and a condition estimate
are also provided.

� CALL LA SYSVX / LA HESVX( A, B, X, UPLO=uplo, AF=af, &

IPIV=ipiv, FACT=fact, &

FERR=ferr, BERR=berr, &

RCOND=rcond, INFO=info )
Solves a symmetric/Hermitian/complex inde�nite system of linear equa-
tions AX = B. Error bounds on the solution and a condition estimate are
also provided.
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� CALL LA SPSVX / LA HPSVX( AP, B, X, UPLO=uplo, AFP=afp, &

IPIV=ipiv, FACT=fact, &

FERR=ferr, BERR=berr, &

RCOND=rcond, INFO=info )
Solves a symmetric/Hermitian/complex inde�nite (packed storage) system
of linear equations AX = B. Error bounds on the solution and a condition
estimate are also provided.

Driver Routines for Linear Least Squares Prob-
lems

� CALL LA GELS( A, B, TRANS=trans, INFO=info )
Solves over-determined or under-determined linear systems or its trans-
pose, using a QR or LQ factorization of A.

� CALL LA GELSX( A, B, RANK=rank, JPVT=jpvt, &

RCOND=rcond, INFO=info )
Computes the minimum-norm solution to a linear least squares problem,
using a complete orthogonal factorization of A.

� CALL LA GELSS( A, B, RANK=rank, S=s, RCOND=rcond, &

INFO=info )
Computes the minimumnorm solution to a real linear least squares prob-
lem, using the singular value decomposition (SVD) of A.

Driver Routines for generalized Linear Least Squares
Problems

� CALL LA GGLSE( A, B, C, D, X, INFO=info )
Solves the linear equality-constrained least squares (LSE) problem.

� CALL LA GGGLM( A, B, D, X, Y, INFO=info )
Solves a general Gauss-Markov linear model (GLM) problem.

Driver Routines for Standard Eigenvalue and Sin-
gular Value Problems

� CALL LA SYEV / LA HEEV( A, W, JOBZ=jobz, UPLO=uplo, &
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INFO=info )
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric
or Hermitian matrix A.

� CALL LA SPEV / LA HPEV( AP, W, UPLO=uplo, Z=z, &

INFO=info )
Computes all the eigenvalues and, optionally, eigenvectors of a real sym-
metric / hermitian matrix A in packed storage.

� CALL LA SBEV / LA HBEV( AB, W, UPLO=uplo, Z=z, &

INFO=info )
Computes all the eigenvalues and, optionally, eigenvectors of a symmetric
/ Hermitian band matrix A.

� CALL LA STEV( D, E, Z=z, INFO=info )
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix A.

� CALL LA GEES( A, !, VS=vs, SELECT=select, SDIM=sdim, &

INFO=info )
Computes for a non-symmetric matrix A, the eigenvalues, the Schur form
T, and, optionally, the matrix of Schur vectors Z. ! is either WR, WI or
W.

� CALL LA GEEV( A, !, VL=vl, VR=vr, INFO=info )
Computes for a non-symmetric matrix A, the eigenvalues and, optionally,
the left and/or right eigenvectors. ! is either WR, WI or W.

� CALL LA GESVD( A, S, U=u, VT=vt, WW=ww, JOB=job, &

INFO=info )
Computes the singular value decomposition (SVD) of matrix A, optionally
computing the left and/or right singular vectors.

Divide and Conquer Driver Routines for Stan-
dard Eigenvalue Problems

� CALL LA SYEVD / LA HEEVD( A, W, JOBZ=jobz, &

UPLO=uplo, INFO=info )
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric
or Hermitian matrix A. If eigenvectors are desired, it uses a divide and
conquer algorithm.
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� CALL LA SPEVD / LA HPEVD( AP, W, UPLO=uplo, Z=z, &

INFO=info )
Computes all the eigenvalues and, optionally, eigenvectors of a real sym-
metric / hermitian matrix A in packed storage. If eigenvectors are desired,
it uses a divide and conquer algorithm.

� CALL LA SBEVD / LA HBEVD( AB, W, UPLO=uplo, Z=z, &

INFO=info )
Computes all the eigenvalues and, optionally, eigenvectors of a symmetric
/ Hermitian band matrix A. If eigenvectors are desired, it uses a divide
and conquer algorithm.

� CALL LA STEVD( D, E, Z=z, INFO=info )
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix A. If eigenvectors are desired, it uses a divide and
conquer algorithm.

Expert Driver Routines for Standard Eigenvalue
Problems

� CALL LA SYEVX / LA HEEVX( A, W, UPLO=uplo, VL=vl, &

VU=vu, L=il, IU=iu, M=m, &

IFAIL=ifail, ABSTOL=abstol, &

INFO=info )
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric
or Hermitian matrix A. Eigenvalues and eigenvectors can be selected by
specifying either a range of values or a range of indices for the desired
eigenvalues.

� CALL LA SPEVX / LA HPEVX( AP, W, UPLO=uplo, Z=z, VL=vl, &

VU=vu, IL=il, IU=iu, M=m, &

IFAIL=ifail, ABSTOL=abstol, &

INFO=info )
Computes all the eigenvalues and, optionally, eigenvectors of a real sym-
metric / hermitian matrix A in packed storage. Eigenvalues/vectors can
be selected by specifying either a range of values or a range of indices for
the desired eigenvalues.

� CALL LA SBEVX / LA HBEVX( AB, W, UPLO=uplo, Z=z, VL=vl, &

VU=vu, IL=il, IU=iu, M=m, &

IFAIL=ifail, Q=q, &
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ABSTOL=abstol, INFO=info )
Computes all the eigenvalues and, optionally, eigenvectors of a symmetric
/ Hermitian band matrix A. Eigenvalues and eigenvectors can be selected
by specifying either a range of values or a range of indices for the desired
eigenvalues.

� CALL LA STEVX( D, E, W, Z=z, VL=vl, VU=vu, IL=il, IU=iu, &

M=m, IFAIL=ifail, ABSTOL=abstol, INFO=info )
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix A. Eigenvalues and eigenvectors can be selected by
specifying either a range of values or a range of indices for the desired
eigenvalues.

� CALL LA GEESX(A, !, VS=vs, SELECT=select, SDIM=sdim, &

RCONDE=rconde, RCONDV=rcondv, &

INFO=info )
Computes for a non-symmetric matrix A, the eigenvalues, the Schur form
T, and, optionally, the matrix of Schur vectors Z. Optionally, it also orders
the eigenvalues on the diagonal of the real Schur form so that selected
eigenvalues are at the top left; computes a reciprocal condition number
for the average of the selected eigenvalues, and computes a reciprocal
condition number for the right invariant subspace corresponding to the
selected eigenvalues. ! is either WR, WI or W.

� CALL LA GEEVX( A, !, VL=vl, VR=vr, BALANC=balanc, &

ILO=ilo, IHI=ihi, SCALE=scale, &

ABNRM=abnrm, RCONDE=rconde, &

RCONDV=rcondv, INFO=info )
Computes for a non-symmetric matrix A, the eigenvalues and, optionally,
the left and/or right eigenvectors. Optionally also, it computes a bal-
ancing transformation to improve the conditioning of the eigenvalues and
eigenvectors (ILO, IHI, SCALE, and ABNRM), reciprocal condition num-
bers for the eigenvalues (RCONDE), and reciprocal condition numbers for
the right eigenvectors (RCONDV). ! is either WR, WI or W.

Driver Routines for Generalized Eigenvalue and
Singular Value Problems

� CALL LA SYGV /LA HEGV( A, B, W, ITYPE=itype, JOBZ=jobz, &

UPLO=uplo, INFO=info )
Computes all the eigenvalues, and optionally, the eigenvectors of a real ge-
neralized symmetric-de�nite or complex Hermitian-de�nite eigenproblem
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� CALL LA SPGV /LA HPGV( AP, BP, W, ITYPE=itype, &

UPLO=uplo, Z=z, INFO=info )
Computes all the eigenvalues and, optionally, the eigenvectors of a real
generalized symmetric-de�nite eigenproblem.

� CALL LA SBGV /LA HBGV( AB, BB, W, UPLO=uplo, Z=z, &

INFO=info )
Computes all the eigenvalues, and optionally, the eigenvectors of a real
generalized symmetric-de�nite banded eigenproblem.

� CALL LA GEGS( A, B, �=alpha, BETA=beta, VSL=vsl, &

VSR=vsr, INFO=info )
Computes for a pair of non-symmetric matrices A, B: the generalized
eigenvalues (�r, �i, �), the Schur form (A, B), and optionally left and/or
right Schur vectors (VSL and VSR). � ::= ALPHAR, ALPHAI j ALPHA

� CALL LA GEGV( A, B, �=alpha, BETA=beta, VL=vl, &

VR=vr, INFO=info )
Computes for a pair of non-symmetric matrices A and B, the generali-
zed eigenvalues (�, �), and optionally, the left and/or right generalized
eigenvectors. � ::= ALPHAR, ALPHAI j ALPHA

� CALL LA GGSVD( A, B, ALPHA, BETA, K=k, L=l, U=u, V=v, &

Q=q, INFO=info )
Computes the generalized singular value decomposition.

Some Computational Routines for Linear Equa-
tions and Eigenproblems

Routines for Linear Equations

� CALL LA GETRF( A, IPIV, RCOND=rcond, NORM=norm, &

INFO=info )
Computes an LU factorization of a general rectangle matrix A using par-
tial pivoting with row interchanges. Optionally estimates the reciprocal
of the condition number if A is a square matrix.

� CALL LA GETRS(A, IPIV, B, TRANS=trans, INFO=info)
Solves a system of linear equations with a general square matrix A using
the LU factorization computed by LA GETRF.
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� CALL LA GETRI( A, IPIV, INFO=info )
Computes the inverse of a matrix using the LU factorization computed by
LA GETRF.

� CALL LA GERFS( A, AF, IPIV, B, X, TRANS=trans, &

FERR=ferr, BERR=berr, INFO=info )
Improves the computed solution X of a system of linear equations AX = B

or ATX = B and provides error bounds and backward error estimates for
the solution. LU factors computed by LA GETRF are used.

� CALL LA GEEQU( A, R, C, ROWCND=rowcnd, &

COLCND=colcnd, AMAX=amax, INFO=info )
Computes row and column scalings intended to equilibrate a rectangle
matrix A and reduces its condition number.

� CALL LA POTRF( A, UPLO=uplo, RCOND=rcond, &

NORM=norm, INFO=info )
Computes the Cholesky factorization and optionally estimates the recip-
rocal of the condition number of a real symmetric or complex Hermitian
positive de�nite matrix A.

Routines for Eigenproblems

� CALL LA SYGST / LA HEGST( A, B, ITYPE=itype, &

UPLO=uplo, INFO=info )
Reduces a real symmetric-de�nite or complex Hermitian-de�nite genera-
lized eigenproblem to standard form.

� CALL LA SYTRD / LA HETRD( A, TAU, UPLO=uplo, INFO=info )
Reduces a real symmetric or complex Hermitian matrix A to real sym-
metric tridiagonal form T by an orthogonal or unitary similarity transfor-
mation: QHAQ = T .

� CALL LA ORGTR / LA UNGTR( A, TAU, UPLO=uplo, INFO=info )
Generates a real orthogonal / complex unitary matrix Q which is de�ned
as the product of elementary re
ectors, as returned by LA SYTRD /
LA HETRD.

Matrix Manipulation Routines

� VNORM = LA ANGE( A, NORM=norm, INFO=info )
Returns the value of the one norm, or the Frobenius norm, or the in�nity
norm, or the element of largest absolute value of a complex matrix A.
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� CALL LA LAGGE( A, KL=kl, KU=ku, D=d, ISEED=iseed, &

INFO=info )
Generates a general rectangular matrix A, by pre- and post-multiplying a
diagonal matrix D with random orthogonal matrices: A = U D V .
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