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Abstract

We present a new parallel implementation of a divide and conquer algo-

rithm for computing the spectral decomposition of a symmetric tridiagonal

matrix on distributed memory architectures. The implementation we de-

velop di�ers from other implementations in that we use a two dimensional

block cyclic distribution of the data, we use the L�owner theorem approach

to compute orthogonal eigenvectors, and we introduce permutations before

the back transformation of each rank-one update in order to make good
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use of de
ation. This algorithm yields the �rst scalable, portable and nu-

merically stable parallel divide and conquer eigensolver. Numerical results

con�rm the e�ectiveness of our algorithm. We compare performance of

the algorithm with that of the QR algorithm and of bisection followed by

inverse iteration on an IBM SP2 and a cluster of Pentium PII's.
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1 Introduction

The divide and conquer algorithm is an important recent development for

solving the tridiagonal symmetric eigenvalue problem. The algorithm was

�rst developed by Cuppen [8] based on previous ideas of Golub [17] and

Bunch, Nielson and Sorensen [5] for the solution of the secular equation

and made popular as a practical parallel method by Dongarra and Sorensen

[14]. This simple and attractive algorithm was considered unstable for a

while because of a lack of orthogonality in the computed eigenvectors. It

was thought that extended precision arithmetic was needed in the solution

of the secular equation to guarantee that su�ciently orthogonal eigenvec-

tors are produced when there are close eigenvalues. Recently, however,

Gu and Eisenstat [20] have found a new approach that does not require

extended precision and we have used it in our implementation.

The divide and conquer algorithm has natural parallelism as the initial

problem is partitioned into several subproblems that can be solved inde-

pendently. Early parallel implementations had mixed success. Dongarra

and Sorensen [14] and later Darbyshire [9] wrote an implementation for

shared memory machines (Alliant FX/8, KSR1). They concluded that di-

vide and conquer algorithms, when properly implemented, can be many

times faster than traditional ones such as bisection followed by inverse it-

eration or the QR algorithm, even on serial computers. Hence, a version

has been incorporated in LAPACK [1]. Ipsen and Jessup [23] compared
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their parallel implementations of the divide and conquer algorithm and

the bisection algorithm on the Intel iPSC-1 hypercube. They found that

their bisection implementation was more e�cient than their divide and

conquer implementation because of the excessive amount of data that was

transferred between processors and also because of unbalanced work load

after the de
ation process. More recently, Gates and Arbenz [16] with an

implementation for the Intel Paragon and Fachin [15] with an implemen-

tation on a network of T800 transputers showed that good speed-up can

be achieved from distributed memory parallel implementations. However,

their implementations are not as e�cient as they could have been. They

did not use techniques described in [20] that guarantee the orthogonality

of the eigenvectors and that make good use of the de
ation in order to

speed the computation.

In this paper, we describe an e�cient, scalable, and portable parallel

implementation for distributed memory machines of a divide and conquer

algorithm for the symmetric tridiagonal eigenvalue problem.

Divide and conquer methods consist of an initial partition of the prob-

lem into subproblems and then, after some appropriate computations done

on these individual subproblems, results are joined together using rank-r

updates (r > 1). We chose to implement the rank-one update of Cuppen

[8] rather than the rank-two update used in [16], [20]. A priori, we see no

reason why one update should be more accurate than the other or faster

in general, but Cuppen's method, as reviewed in Section 2, appears to be

easier to implement.

In Section 3 we discuss several important issues to consider for parallel

implementations of a divide and conquer algorithm. Then, in Section 4,

we derive our algorithm. We have implemented our algorithm in Fortran

77 as production quality software in the ScaLAPACK model [4]. Our

algorithm is well suited to compute all the eigenvalues and eigenvectors of

large matrices with clusters of eigenvalues. For these problems, bisection

followed by inverse iteration as implemented in ScaLAPACK [4], [11] is

limited by the size of the largest cluster that �ts on one processor. The

QR algorithm is less sensitive to the eigenvalue distribution but is more

expensive in computation and communication and thus does not perform

as well as the divide and conquer method. Examples that demonstrate the
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e�ciency and numerical performance are presented in x6.

2 Cuppen's Method

Solving the symmetric eigenvalue problem consists, in general, in three

steps: the symmetric matrix A is reduced to tridiagonal form T , then one

computes the eigenvalues and eigenvectors of T and �nally, one computes

the eigenvectors of A from the eigenvectors of T .

In this section we consider the problem of determining the spectral

decomposition

T = W�WT

of a symmetric tridiagonal matrix T 2 Rn�n, where � is diagonal and W

is orthogonal.

Cuppen [8] divides the original problem into subproblems of smaller

size by introducing the decomposition:

T =

 k n�k

k T1 �eke
T
1

n�k �e1e
T
k T2

!
=

 bT1 0

0 bT2
!
+��

 
ek

��1e1

!�
eTk ��1eT

1

�
where 1 � k � n, ej represents the jth canonical vector of appropriate

dimension, � is the kth o�-diagonal element of T , and bT1 and bT2 di�er

from the corresponding submatrices of T only by their last and �rst di-

agonal coe�cient, respectively. This is the divide phase. Dongarra and

Sorensen [14] introduced the factor � to avoid cancellation when forming

the new diagonal elements of diag(bT1; bT2). We now have two independent

symmetric tridiagonal eigenvalue problems of order k and n� k. Let

bT1 = Q1D1Q
T
1
; bT2 = Q2D2Q

T
2

(2.1)

be their spectral decompositions and

z = diag(Q1; Q2)
T

 
ek

��1e1

!
: (2.2)

Then we get

T =

 
Q1 0

0 Q2

!( 
D1

D2

!
+ �zzT

) 
Q1 0

0 Q2

!T

; � = ��;(2.3)

= Q(D + �zzT )QT
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and the eigenvalues of T are therefore those of D + �zzT . Finding the

spectral decomposition

D + �zzT = U�UT

of a rank-one update is the heart of the divide and conquer algorithm.

This is the conquer phase. Then it follows that

T = W�WT with W = QU: (2.4)

A recursive application of the strategy described above on the two

tridiagonal matrices in (2.1) leads to the divide and conquer method for

the symmetric tridiagonal eigenvalue problem.

2.1 Computing the Spectral Decomposition of a

Rank-One Perturbed Matrix

An updating technique as described in [5], [8], [17] can be used to compute

the spectral decomposition of a rank-one perturbed matrix

D + �zzT = U�UT (2.5)

where D = diag(d1; d2; : : : ; dn), z = (z1; z2; : : : ; zn) and � is a nonzero

scalar. By setting equal to zero the characteristic polynomial of D+ �zzT

we �nd that the eigenvalues f�ig
n
i=1 of D + �zzT are the roots of

f(�) = 1 + �

nX
i=1

z2i
di � �

; (2.6)

which is called the secular equation.

Many methods have been suggested for solving the secular equation (see

Melman [27] for a survey). Each eigenvalue is computed in O(n) 
ops. A

corresponding normalized eigenvector u can be computed from the formula

u =
(D� �I)�1z

jj(D� �I)�1zjj
=

�
z1

d1 � �
; : : : ;

zn
dn � �

�,vuut nX
j=1

z2j
(dj � �)2

(2.7)

in only O(n) 
ops. Thus, the spectral decomposition of a rank-one per-

turbed matrix can be computed in O(n2) 
ops. Unfortunately, calculation

of eigenvectors using (2.7) can lead to a loss of orthogonality for close

eigenvalues. We discuss solutions to this problem in Section 4.2.
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2.2 De
ation

Dongarra and Sorensen showed [14] that the problem (2.5) can potentially

be reduced in size. If zi = 0 for some i, we see from (2.3) that di is an

eigenvalue of D + �zzT with eigenvector ei. Moreover, if D has an eigen-

value di of multiplicity m > 1, we can rotate the eigenvector basis in order

to zero out the component of z corresponding to the repeated eigenvalues.

Then, we can remove rows and columns from D + �zzT corresponding to

zero components of z.

When working in �nite precision arithmetic, we must deal with the

problem of the zi's nearly equal to zero and nearly equal di's. Then,

in order to precisely describe when we can de
ate, we need to de�ne a

tolerance �. Let � = "kD + �zzTk2 where " is the machine precision.

We say that the �rst type of de
ation arises when j�zij � �. Now

assume that kzk2 = 1. We have

k(D+ �zzT )ei � dieik2 = j�zijkzk2 � �:

Then (di; ei) may be considered as an approximate eigenpair for D+ �zzT

and zi is set to zero.

The second type of de
ation comes from a Givens rotation applied to

D + �zzT in order to set a component of z equal to zero. Suppose that

jzizj jjdi � dj j=
q
z2i + z2j � �. Let Gij be the Givens rotation de�ned by

[ei; ej ]
TGij [ei; ej] =

 
c s

�s c

!

with c = zi=r; s = zj=r; r =
q
z2i + z2j and c2 + s2 = 1. Then

Gi(D+ �zzT )GT
i = eD + �~z~zT +Eij ; kEijk2 � �;

where ~zi = r2; ~zj = 0; ~di = dic
2+djs2; ~dj = dis

2+djc2 and Eij = (di�dj)cs.

The result of recognizing all these de
ations is to replace the rank-

one update problem D + �zzT with one of smaller size. Hence, if G is

the product of all the rotations used to zero out certain components of z

and if P is the accumulation of permutations used to translate the zero

components of z to the bottom of z, the result is

PG(D + �zzT )GTPT =

 eD + �~z~zT 0

0 �

!
+E; kEk2 � c�
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with c a constant of order unity. The matrix eD + �~z~zT has only simple

eigenvalues and all the elements of ~z are nonzero.

The de
ation process is essential for the success of the divide and con-

quer algorithm. In practice, the dimension of eD+�~z~zT is usually consider-

ably smaller than the dimension of D+ �zzt reducing the number of 
ops

when computing the eigenvector matrix of T in (2.4). Cuppen [8] showed

that de
ation are more likely to take place when the matrix is diagonally

dominant.

2.3 Algorithm and Complexity

The divide and conquer algorithm is naturally expressed in recursive form

as follows.

Procedure dc�eigendecomposition(T;W;�)

n� From input T compute output W;� such that T = W�WT . �n

if T is 1-by-1

return Q = 1; � = T

else

Express T =

 
T1 0

0 T2

!
+ �vvT

call dc�eigendecomposition(T1;W1; �1)

call dc�eigendecomposition(T2;W2; �2)

Form D + �zzT from �1;W1; �2;W2

Find eigenvalues � and eigenvectors U of D + �zzT

Form W =

 
W1 0

0 W2

!
U

return W , �

end

The recursion can be carried on until we reach a 2�2 or 1�1 eigenvalue

problem or it can be terminated with an n0 � n0 problem and we can use

the QR algorithm or some other method to solve the tridiagonal problem.

Note that we have not speci�ed the dimensions of T1 and T2. We refer to

Section 4.1 for details of how we choose the size of the subproblems in our

parallel implementation.
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Pb0 Pb1 Pb2 Pb3 Pb4 Pb5 Pb6 Pb7

Level 0

Level 1

Level 2

Level 3

Figure 3.1: A divide and conquer tree.

We count as one 
op, an elementary 
oating point operation +;�; =

or �. Assuming no de
ation and ignoring the terms in O(n2), the number

of 
ops t(n) to run dc�eigendecomposition for an n � n T satis�es the

recursion

t(n) = n3 + 2t(n=2);

which has the solution

t(n) �
4

3
n3 +O(n2):

In practice, because of de
ation, it appears that the algorithm takes only

O(n2:3) 
ops on average and the cost can even be as low as O(n2) for some

special cases (see [10]).
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3 Parallelization Issues

Divide and conquer algorithms have been successfully implemented on

shared memory multiprocessors for solving the symmetric tridiagonal eigen-

value problem and for the computation of the singular value decomposition

of bidiagonal matrices [14], [24]. By contrast, the implementation of these

algorithms on distributed memory machines poses di�culties. Several is-

sues need to be addressed and several implementations are possible.

The �rst issue is how to split the work among the processors. As shown

in Figure 3.1, the recursive matrix splitting leads to a hierarchy of sub-

problems with a data dependency graph in the form of a binary tree. This

structure suggests a natural way to split the work among the processes. If

P is the number of processes, the smallest subproblems are chosen to be of

dimension n=P , lying at the leaves of the tree. At the top of the tree, all

processes cooperate. At each branch of the tree, the task is naturally split

in two sets of processes where, in each set, processes cooperate. At the

leaves of the tree, each process solves its subproblem independently. This

is the way previous implementations have been done [15], [16], [23]. This

approach o�ers a natural parallelism for the update of the subproblems.

Ipsen and Jessup [23] report unbalanced work load among the processes

when the de
ations are not evenly distributed across the sets of processes

involved at the branches of the tree. In this case, the faster set of processes

(those that experience de
ation) will have to wait for the other set of pro-

cesses before beginning the next merge. This reduces the speedup gained

though the use of the tree. Gates and Arbenz [16] showed that if we as-

sume that the work corresponding to any node in the tree is well balanced

among the processors, then the implementation should still have 85% ef-

�ciency even in the worst case of bad distribution of de
ations. However,

it is worth considering this problem for our implementation. A possible

issue is dynamic splitting versus static splitting [6]. A task list is used

to keep track of the various parts of the matrix during the decomposition

process and make use of data and task parallelism. This approach has

been investigated1 for the parallel implementation of the spectral divide

and conquer algorithm for the unsymmetric eigenvalue problem using the

1A ScaLAPACK prototype code is available at http://www.netlib.org/scalapack/prototype/
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matrix sign function [2]. We did not choose this approach because in the

symmetric case the partitioning of the matrix can be done arbitrarily and

we prefer to take advantage of this opportunity. By contrast with previ-

ous implementations we use a splitting di�erent from the natural splitting

associated with the binary tree. We explain our approach in Section 4.1.

The second issue is to maintain orthogonality between eigenvectors in

the presence of close eigenvalues. There are two approaches: the extra

precision approach of Sorensen and Tang [30], used by Gates and Arbenz

[16] in their implementation, and the L�owner Theorem approach proposed

by Gu and Eisenstat [19] and adopted for LAPACK [1], [29]. There are

trade-o�s that we shall discuss in Section 4.2 between these two approaches.

The third issue is the back transformation process, which is of great

importance for the success of divide and conquer algorithms because it

reduces the cost of forming the eigenvector matrix of the tridiagonal form.

We explain in Section 4.3 the idea of Gu and Eisenstat for reorganizing the

data structure of the orthogonal matrices before the back transformation

and we propose a parallel implementation of this approach. While used

in the serial LAPACK divide and conquer code, this idea has never been

considered in any current parallel implementation of the divide and conquer

algorithm.

The last issue, and perhaps the most critical step when writing a paral-

lel program, is how to distribute the data. Previous implementations used

a one-dimensional distribution [16], [23]. Gates and Arbenz [16] used a

one-dimensional row block distribution for Q, the matrix of eigenvectors

and a one-dimensional column block distribution for U , the eigenvector

matrix of the rank-one updates. This distribution simpli�es their parallel

matrix-matrix multiplication used for the back transformation QU . How-

ever, their matrix multiplication routine grows in communication with the

number of processes, making it not scalable. By contrast, our implemen-

tation uses a two dimensional block cyclic distribution of the data in the

style of ScaLAPACK. We use the PBLAS (Parallel BLAS) routine PxGEMM

to perform our parallel matrix multiplications. This routine has a commu-

nication cost that grows with the square root of the number of processes,

leading to good e�ciency and scalability.
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4 Implementation Details

We now describe a parallel implementation of the divide and conquer algo-

rithm that addresses the issues discussed in previous the section. Our goal

was to write an e�cient, reliable, portable and scalable code that follows

the conventions of the ScaLAPACK software [4].

On shared-memory concurrent computers, LAPACK seeks to make ef-

�cient use of the memory hierarchy by maximizing data reuse. Speci�cally,

LAPACK casts linear algebra computations in terms of block-oriented

matrix-matrix operations whenever possible, enabling maximal use of Level

3 BLAS (matrix-matrix operations). An analogous approach has been

taken by ScaLAPACK for distributed-memory machines. ScaLAPACK

uses block partitioned algorithms in order to reduce the frequency with

which data must be transferred between processes and thereby to reduce

the �xed startup cost incurred each time a message is sent.

4.1 Data Distribution

In contrast to all previous parallel implementations for distributed memory

machines [15], [16], [23], we use a two-dimensional block cyclic distribution

for U , the eigenvector matrix of the rank-one update, and Q, the matrix

of the back transformation. For linear algebra routines and matrix multi-

plications, two-dimensional block cyclic distribution has been shown to be

e�cient and scalable [7],[21], [28]. The ScaLAPACK software has adopted

this data layout.

The block-cyclic distribution is a generalization of the block and the

cyclic distributions. The processes of the parallel computer are �rst mapped

onto a two-dimensional rectangular grid of size P �Q. Any general m� n

dense matrix is decomposed into mb � nb blocks starting at its upper left

corner. These blocks are then uniformly distributed in each dimension of

the P �Q process grid as illustrated in Figure 4.1. In our implementation,

we impose the block size to be equal in each direction: mb = nb.

Previous parallel implementations gave a subproblem of size n2=(Q�P )

to each processor. As we use the two-dimensional block cyclic distribution,

it is now natural to partition the original problem into subproblems of

size nb. At the leaves of the tree, processes that hold a diagonal block
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Figure 4.1: Global (left) and the distributed (right) views of the matrix (P =

2; Q = 3).

solve their own subproblems of size nb � nb using the QR algorithm or

the serial divide and conquer algorithm. Some processes may hold several

subproblems and some of them none. As the computational cost of this

�rst step is negligible compared with the computational cost of the whole

algorithm, it does not matter if the work is not well distributed there.

However, good load balancing of the work is assured when the grid P �Q

of processes is such that lcm(P;Q) = 1. In this case, at the leaves of the

tree, all the processes hold a subproblem [28]. The worst case happens

when lcm(P;Q) = P or lcm(P;Q) = Q.

For a given rank-one update Q(D+�zzT )QT the processes that collab-

orate are those that hold a part of the global matrix Q. By contrast with

previous implementations, with the two dimensional block cyclic distribu-

tion all the processes collaborate before reaching the top of the tree. We

illustrate this in Figures 4.2 and 4.3 where the eigenvector matrix is dis-

tributed over 4 processes, using �rstly a one-dimensional block distribution

and secondly a two-dimensional block cyclic distribution. Suppose that,

at level 1, all the de
ations occur in the �rst submatrix, which is held by

processes P0 and P1 for a one-dimensional block distribution and processes

P0; P1; P2; P3 for a two-dimensional block distribution. With a one dimen-
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Figure 4.2: Active part of the matrix Q held by each process.
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Figure 4.3: Active part of the matrix Q held by each process.

sional block distribution, processors P0 and P1 will have little computation

to perform and then will have to wait for processes P2 and P3 before begin-

ning the last rank-one update (level 0). With the two-dimensional block

cyclic distribution, the computation is distributed among the 4 processes.

This solves some of the load balancing problems that may appear when

de
ations are not evenly distributed among the processes.

Moreover, the two-dimensional block cyclic distribution is particularly

well adapted for e�cient and scalable parallel matrix-matrix multiplica-

tions. These operations are the main computational cost of this algorithm.

In our parallel implementation, we use PxGEMM, as included in ScaLAPACK.

13



4.2 Orthogonality

Let �̂ be an approximate root of the secular equation (2.6). When we

approximate the eigenvector u by replacing � in (2.7) by its approximation

�̂ then when dj � �, even if �̂ is close to �, the ratio zi=(dj � �̂) can be

very far from the exact one zj=(dj � �). As a consequence, the computed

eigenvector is very far from the true one and the resulting eigenvector

matrix is far from being orthogonal.

Sorensen and Tang [30] proposed using extended precision to compute

the di�erences dj � �̂i. However, this approach is hard to implement

portably across all the usual architectures. There are many machine-

dependent tricks to make the implementation of extended precision go

faster, but on some machines, such as Crays, these tricks do not help and

performance su�ers.

The Gu and Eisenstat approach based on the L�owner Theorem can

easily be implemented portably on IEEE machines and Crays using only

working precision arithmetic throughout, with a trivial bit of extra work in

one place to compensate for the lack of a guard digit in Cray add/subtract.

By contrast, the L�owner approach may require more communication than

the extra precision approach, depending on how the parallelization is done.

The reason is that the L�owner approach uses a formula that requires infor-

mation about all the eigenvalues, requiring a broadcast, whereas the extra

precision approach is \embarrassingly" parallel, with each eigenvalue and

eigenvector computed without communication. However the extra com-

munication the L�owner approach uses is trivial compared with the com-

munication of eigenvectors elsewhere in the computation.

The L�owner approach [19], [26] considers that the computed eigenvalues

are the exact eigenvalues of a new rank-one modi�cation D + �~z~zT . By

de�nition we have that

det(D + �~z~zT � �I) =
nY

j=1

(�̂j � �) (4.1)

and also

det(D+ �~z~zT � �I) =

0@1 + �

nX
j=1

~z2j
dj � �

1A nY
j=1

(dj � �): (4.2)

14



Then, combining (4.1) and (4.2) and setting � = di leads to

~zi =

vuuut(�̂i � di)
i�1Y
j=1
j 6=i

�̂j � di
dj � di

; i = 1; : : : ; n:

If all the quantities �̂j � di are computed to high relative accuracy

then ~zi can be computed to high relative accuracy. Substituting the exact

eigenvalues f�̂ig
n
i=1 and the computed ~z into (2.7) gives

ûi =

�
~z1

d1 � �̂i
; : : : ;

~zn

dn � �̂i

�,vuut nX
j=1

~z2j

(dj � �̂i)2
:

Evaluating this formula, we obtain approximations of high componen-

twise accuracy to the eigenvectors ûi of D+ ~z~zT . Provided that the eigen-

values �̂i are su�ciently accurate, which is assured by the used of a suitable

stopping criterion when solving the secular equation, it can be shown (see

[19]) that we obtain a numerical eigendecomposition T � bU b�bUT , that is,

a decomposition with a relative residual of order " and with bU orthogonal

to working precision.

There are several ways to parallelize this approach. Either we consider

it as an O(n2) operations cost, which means we can justify redundant

computation in order to avoid communications, or we consider that the

size of the data to communicate is negligible compare with what is sent

for the back transformation and then we can justify communications for

distributing the work among the processes. We chose the latter approach.

Let S denote the set of processes that cooperate for a given rank-one

update and k be the number of roots to approximate. Then each process

of S computes k=S roots labeled f�̂ig
iks
i=i0

; the corresponding quantities

�̂i � dj ; i0 � i � iks; j = 1; : : : ; k and a part of each component of ~z:

�zj =

iksY
i=i0

(�̂i � dj)

iksY
i=i0;j 6=i

(di � dj)
�1:

Results are broadcast over S and processes update their ~z:

~zj =
Y
S

�zj :

Each process of S then holds the necessary information to compute its

local part of Û and no more communication is needed.
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To compute the approximate eigenvalues and the quantities �̂j � di

stably and e�ciently, we use the hybrid scheme for the rational interpola-

tion of f(x) as developed by Li [25]. The hybrid scheme keeps the peak

number of iterations relatively small for solving the secular equation. For

our parallel implementation, this is helpful because the execution time for

this part is determined by whichever eigenvalue takes the largest number

of iterations.

4.3 Back Transformation

The main cost in the divide and conquer algorithm is in computing the

product QU (see (2.4)). The e�ciency of the whole implementation relies

on a proper implementation of this back transformation. The goal is to

reduce the size of the matrix-matrix multiplication when transforming the

eigenvectors of the perturbed diagonal matrix to the eigenvectors of the

tridiagonal matrix.

In this section, we explain a permutation strategy originally suggested

by Gu [18] and used in the serial LAPACK divide and conquer code. Then

we derive a permutation strategy more suitable for our parallel implemen-

tation. This new strategy is one of the major contributions of our work.

After the de
ation process, we denote bt G the product of all the Givens

rotations used to set to zero component of z corresponding to nearly equal

diagonal elements of D and by P the accumulation of permutations used

to translate the zero components of z to the bottom of z:

PG(D + �zzt)GTPT =

 eD + �~z~zT 0

0 ��

!
: (4.3)

Let (eU; e�) be the spectral decomposition of eD + �~z~zT . Then eD + �~z~zT 0

0 ��

!
=

 eU 0

0 I

! e� 0

0 ��

! eU 0

0 I

!T

= U�UT ;

and the spectral decomposition of the tridiagonal matrix T = Q(D +

�zzT )Q is obtained from

T = Q(PG)TPG(D + �zzT )(PG)TPGQT

= Q(PG)TU�UTPGQT

= W�WT
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with W = Q(PG)TU .

When not properly implemented, the computation of W can be very

expensive. To simplify the explanation, we illustrate it with a 4�4 example:

we suppose that d1 = d3 and that G is the Givens rotation used to set to

zero the third component of z. The matrix P is a permutation that moves

z3 to the bottom of z. We indicate by a \ �" that a value has changed.

There are two way of applying the transformation (PG)T , either on the

left, that is on Q, or on the right, that is on U . Note that Q = diag(Q1; Q2)

is block diagonal (see(2.3)) and so we would like to to take advantage of

this structure. It would halve the cost of the matrix multiplication if Q1,Q2

are of the same size. To preserve the block diagonal form of Q, we need to

apply (PG)T on the right:

Q � (PG)TU =

0BBBBB@
� �

� �

� �

� �

1CCCCCA (PG)T

0BBBBB@
� � �

� � �

� � �

1

1CCCCCA

=

0BBBBB@
� �

� �

� �

� �

1CCCCCAG

0BBBBB@
� � �

� � �

1

� � �

1CCCCCA

=

0BBBBB@
� �

� �

� �

� �

1CCCCCA

0BBBBB@
� � � �

� � � 0

� � � �

� � � 0

1CCCCCA
The product between the two last matrices is performed with 64 
ops

instead of the 2n3 = 128 
ops of a full matrix product. However, if we apply

(PG)T on the left, we can reduce further the number of 
ops. Consider

again the 4� 4 example:

Q(PG)T � U =

0BBBBB@
� �

� �

� �

� �

1CCCCCAGTPT

0BBBBB@
� � �

� � �

� � �

1

1CCCCCA
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=

0BBBBB@
� � �

� � �

� � �

� � �

1CCCCCAP

0BBBBB@
� � �

� � �

� � �

1

1CCCCCA

=

0BBBBB@
� � �

� � �

� � �

� � �

1CCCCCA

0BBBBB@
� � �

� � �

� � �

1

1CCCCCA = eQU
At this step, a permutation is used to group the columns of Q according

to their sparsity structure:

eQU =

0BBBBB@
� � �

� � �

� � �

� � �

1CCCCCA �P �PT

0BBBBB@
� � �

� � �

� � �

1

1CCCCCA

=

0BBBBB@
� � �

� � �

� � �

� � �

1CCCCCA

0BBBBB@
� � �

� � �

� � �

1

1CCCCCA = �Q �U:

Then, three matrix multiplications are performed with 48 
ops involving

the matrices �Q(1: 2; 1); �Q(3: 4; 2); �Q(1: 4; 3) and �U(1: 3; 1: 3). This organi-

zation allows the BLAS to perform three matrix multiplies of minimal size.

In parallel, this strategy is hard to implement e�ciently. One needs to

rede�ne the permutation �P in order to avoid communication between pro-

cess columns. In our parallel implementation, �P groups the column of Q

according to their local sparsity structure, that is, �P permutes columns of

Q belonging to the same process column. More precisely, locally, �P puts to-

gether columns of Q with zero components in the lower part, then columns

of Q without zero components, columns of Q with zero components in the

upper part and �nally columns of Q that are already eigenvectors. The

resultant matrix �Q has the following global structure: 
�Q11

�Q12 0 �Q13

0 �Q21
�Q22

�Q23

!
:

�Q11 contains n1 columns of Q1 that have not been a�ected by de
ation,

�Q22 contains n2 columns of Q2 that have not been a�ected by de
ation,

18



( �Q13; �Q23)
T contains k

0

columns of Q2 that correspond to de
ated eigen-

values (they are eigenvectors of T ),

( �Q12; �Q21)
T contains the n � (n1 + n2 + k

0

) remaining columns of Q.

The matrix �U has the structure

�U =

 n�k
0

k
0

n�k
0 �U1 0

k
0 0 I

!
:

Then, for the computation of the product �Q �U , we use two calls to the paral-

lel BLAS PxGEMM involving parts ofU1 and the matrices ( �Q11; �Q12); ( �Q21; �Q22).

Unlike in the serial implementation, we can not assume that k
0

= k, that is,

that ( �Q13; �Q23)T contains all the columns corresponding to de
ated eigen-

values. This is due to the fact that �P acts only on columns of Q that belong

to the same process column. Let k(q) bet the number of de
ated eigenval-

ues held by the process column q, 0 � q � Q�1. Then, k
0

= min
0�q�Q�1

k(q).

So, even if we can not perform matrix multiplies of minimal sizes as in the

serial case, we still get good speed-up on many matrices.

5 The Divide and Conquer Code

The code is composed of 7 parallel routines PxSTEDC, PxLAED0, PxLAED1,

PxLAEDZ, PxLAED2, PxLAED3, PxLASRT and it uses LAPACK's serial rou-

tines whenever possible.

PxSTEDC scales the tridiagonal matrix, calls PxLAED0 to solve the tridiago-

nal eigenvalue problem, scales back when �nished and sorts the eigenvalues

and corresponding eigenvectors in ascending order by calling PxLASRT.

PxLAED0 is the driver of the divide and conquer algorithm. It splits the

tridiagonal matrix T into TSUBPBS = (N-1)/NB +1 submatrices using rank-

one modi�cation. NB is the size of the block used for the two dimensional

block cyclic distribution. It calls the serial divide and conquer code xSTEDC

to solve each eigenvalue problem at the leaves of the tree. Then, each rank-

one modi�cation is merged by a call to PxLAED1:

TSUBPBS = (N-1)/NB +1

19



while (TSUBPBS > 1 )

for i = 1:TSUBPBS/2

call PxLAED1(i,TSUBPBS,D,Q, ...)

end

TSUBPBS = TSUBPBS / 2

end

PxLAED1 is the routine that combines eigensystems of adjacent submatrices

into an eigensystem for the corresponding larger matrix. It calls PxLAEDZ

to form z as in (2.2), then calls PxLAED2 to de
ate eigenvalues and to group

columns of Q following their sparsity structure as described in Section 4.3.

Then, it calls PxLAED3, which distributes the work among the processes

in order to compute the roots of the secular equation, solve the L�owner

inverse eigenvalue problem and compute the eigenvectors of the rank-one

update eD+�~z~zT (see (4.3)). Each root of the secular equation is computed

by the serial LAPACK routine xLAED4. Finally, the eigenvector matrix of

the rank-one update is multiplied into the larger matrix that holds the

collective results of all the previous eigenvector calculations via the use of

two calls to the parallel matrix multiplication PxGEMM.

6 Numerical Experiments

This section concerns accuracy tests, execution times and performance re-

sults. We compare our parallel implementation of the divide and conquer

algorithm with the two parallel algorithms for solving the symmetric tridi-

agonal eigenvalue problem available in ScaLAPACK [4]:

� B/II: Bisection followed by inverse iteration (subroutines PxTEBZ and

PxHEIN). The inverse iteration algorithm can be used with two op-

tions:

II-1: Inverse iteration without a reorthogonalization process.

II-2: Inverse iteration with a reorthogonalization process when the

eigenvalues are separated by less than 10�3 in absolute value.

� QR: The QR algorithm (subroutine PxSTEQR2).
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PxSYEVX is the name of the expert driver2 associated with B/II and

PxSYEV is the simple driver associated with QR. We have written a driver

called PxSYEVD that computes all the eigenvalues and eigenvectors of a

symmetric matrix using our parallel divide and conquer routine PxSTEDC.

We use two types of test matrices. The �rst are symmetric matrices

with random entries from a uniform distribution on [�1; 1]. The second

type are generated by the ScaLAPACK subroutine PxLATMS. The matrix

A = UTDU; where U is orthogonal and D = diag(si; ti) with ti � 0 and

si = �1 chosen randomly with equal probability. Matrix 1 has equally

spaced entries from " to 1, matrix 2 has geometrically spaced entries from

" to 1,

di = �"
i�1
n�1 ; i = 1 : n;

and matrix 3 has clustered entries

di = �"; i = 1 : n� 1; dn = 1:

The type 3 matrices are designed to illustrate how B/II can fail to compute

orthogonal eigenvectors.

Let bQ b� bQT be the computed spectral decomposition of A. To determine

the accuracy of our results, we measure the scaled residual error and the

scaled departure from orthogonality, de�ned by

R =
kA bQ� bQT b�k1

n"kAk1
and O =

kI � bQT bQk1
n"

:

When both quantities are small, the computed spectral decomposition is

the exact spectral decomposition of a slight perturbation of the original

problem.

The tests were run on an IBM SP2 in double precision arithmetic. On

this machine, " = 2�53 � 1:1� 10�16:

Table 6.1 shows the greatest residual and departure from orthogonality

measured for matrices of type 1, 2 and 3 solved by B/II-1, B/II-2, QR and

divide and conquer. The matrices are of order n = 1500 with a block size

nb = 60 on a 2 � 4 processor grid. For eigenvalues with equally spaced

2\Driver" refers to the routine that solves the eigenproblem for a full symmetric matrix

by reducing the matrix to tridiagonal form, solving the tridiagonal eigenvalue problem, and

transforming the eigenvectors back to those of the original matrix.
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Matrix Eigensolvers

type B/II-1 B/II-2 QR D&C

Uniform R 3 � 10�4 3 � 10�4 3 � 10�4 2 � 10�4

distribution O 0:20 0:17 0:55 0:27

[�; 1] Time 52 52 120 58

Geometrical R 3 � 10�4 3 � 10�4 5 � 10�4 4 � 10�4

distribution O � 1; 000 88:03 0:23 0:20

[�; 1] Time 53 137 95 51

R 4 � 10�4 4 � 10�4 4 � 10�4 4 � 10�4

Clustered O � 1; 000 � 1; 000 0:50 0:16

at " Time 52 139 120 47

Table 6.1: Normalized residual, normalized eigenvector orthogonality, and tim-

ing for a matrix of size n = 1500 on an IBM-SP2 (2x4 processor grid) for bi-

section/inverse iteration without and with reorthogonization, QR algorithm, and

divide and conquer algorithm.

modulus, bisection followed by inverse iteration gives good numerical re-

sults and is slightly faster than the divide and conquer algorithm. This

is due to the absence of communication when computing the eigenvectors,

both for B/II-1 and B/II-2. However, as illustrated by matrices of type 2,

if no reorthogonalization is used, numerical orthogonality can be lost with

inverse iteration when the eigenvalues are poorly separated. It is clear that

the reorthogonalization process greatly increases the execution time of the

inverse iteration algorithm. For large clusters, the reorthogonalization pro-

cess in PxHEIN is limited by the size of the largest cluster that �ts on one

processor. Unfortunately, in this case, orthogonality is not guaranteed.

This phenomenon is illustrated by matrices of type 3. In the remaining

experiments, we always use B/II with reorthogonalization.

We compared the relative performance of B/II, QR and divide and

conquer. In our �gures, the horizontal axis is matrix dimension and the

vertical axis is time divided by the time for divide and conquer, so that the
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Figure 6.1: Execution times of PDTEBZ+PDSTEIN (B/II) and PDSTEQR2 (QR) rel-

ative to PDSTEDC (D&C), on an IBM SP2, using 8 nodes. Tridiagonal matrices,

eigenvalues of equally spaced modulus.
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Figure 6.2: Execution times of PDSYEVX (B/II), PDSYEV (QR) and PDSYTRD (tridi-

agonalization) relative to PDSYEVD (D&C), on an IBM SP2, using 8 nodes. Full

matrices, eigenvalues of equally spaced modulus.
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Figure 6.3: Execution times of PDSYEVX (B/II), PDSYEV (QR) and PDSYTRD (tridi-

agonalization) relative to PDSYEVD (D&C), on an IBM SP2, using 8 nodes. Full

matrices, eigenvalues of geometrically spaced modulus.
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Figure 6.4: Execution times of PDSTEQR2 (QR), PDSYTRD (tridiagonalization)

and PDORMTR (back transformation) relative to PDSTEDC (D&C). Measured on

an IBM SP2, using 8 nodes. Tridiagonal matrices, eigenvalues of geometrically

spaced modulus.
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Figure 6.5: Speedups of PDSYEVD(D&C) over PDSYEV(QR) with several types of

full matrices. Tests done on an IBM SP2 using 12 nodes.

divide and conquer curve is constant at 1. It is clear from Figures 6.1 and

6.2, which correspond to the spectral decomposition of the tridiagonal ma-

trix T and the symmetric matrix A, respectively, that divide and conquer

competes with bisection followed by inverse iteration when the eigenvalues

of the matrices in question are well separated. For inverse iteration, this

situation is good since no reorthogonalization of eigenvectors is required.

For divide and conquer it is bad since this means there is little de
ation

within intermediate problems. Note that the execution times of QR are

much larger. This distinction in speed between QR or B/II and divide

and conquer is more noticeable in Figure 6.1 (speed-up up to 6.5) than

in Figure 6.2 (speed-up up to 2) because Figure 6.2 includes the overhead

due to the tridiagonalization and back transformation processes.

As illustrated in Figure 6.3, divide and conquer runs faster than B/II

as soon as eigenvalues are poorly separated or in clusters.

We also compare execution times of the tridiagonalization, QR, B/II-2

and back transformation relative to the execution time of divide and con-

quer. >From Figure 6.4, it appears that when using the QR algorithm

27



1 2 3 4 5 6 8 10 12 16 18
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of processes

Performance results of PDSYEVD, IBM SP2.

 Constant memory per processes

G
flo

ps
/s

8 Mbytes.
18MBytes.

Figure 6.6: Performance of PDSTEDC, IBM SP2.
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Figure 6.7: Performance of PDSEDC, cluster of 300 MHz Intel PII processors using

a 100 Mbit Switch Ethernet connection.
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for the computing all the eigenvalues and eigenvectors of a symmetric ma-

trix, the bottleneck is the spectral decomposition of the tridiagonal matrix.

This is not true any more when using our parallel divide and conquer algo-

rithm: spectral decomposition of the tridiagonal matrix is now faster than

the tridiagonalization and back transformation of the eigenvectors. Ef-

fort as in [22] should be made to improve the tridiagonalization and back

transformation.

We measured the performances of PDSTEDC on an IBM SP2 (Figure 6.6)

and on a cluster of 300 MHz Intel PII processors using a 100 Mbit Switch

Ethernet connection (Figure 6.7). In our �gures, the horizontal axis is the

number of processors and the vertical axis is the number of 
ops per second

obtained when the size of the problem is maintained constant on each

process. The performance increases with the number of processors, which

illustrates the scalability of our parallel implementation. These measures

have been done using the Level 3 BLAS of ATLAS (Automatically Tuned

Linear Algebra Software) [32], which run at a peak of 440 M
op/s on the

SP2 and 190 M
op/s on the PII. On the SP2, our code runs at 50% of the

peak performance of matrix multiplication and 40% on the cluster of PII's.

Note that these percentages take into account the time spent at the end

of the computation to sort the eigenvalues and corresponding eigenvectors

into increasing order.

7 Conclusions

For serial and shared memory machines, divide and conquer is one of the

fastest available algorithms for �nding all the eigenvalues and eigenvec-

tors of a large dense symmetric matrix. By contrast, implementations of

this algorithm on distributed memory machines have in the past posed

di�culties.

In this paper, we showed that divide and conquer can be e�ciently

parallelized on distributed memory machines. By using the L�owner the-

orem approach, good numerical eigendecompositions are obtained in all

situations. From the point of view of execution time, our results seem to

be better for most cases when compared with the parallel execution time

of QR and bisection followed by inverse iteration available in the ScaLA-
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PACK library.

Performance results on the IBM SP2 and a cluster of PC PII demon-

strate the scalability and portability of our algorithm. Good e�ciency is

mainly obtained by exploiting the data parallelism inherent to this algo-

rithm rather than its task parallelism. For this, we concentrated our e�orts

on a good implementation of the back transformation process in order to

reach maximum speed-up for the matrix multiplications. Unlike in previ-

ous implementations, the number of processes is not required to be a power

of two. This implementation will be incorporated in the ScaLAPACK li-

brary.

Recent work [12] has been done on an algorithm based on inverse iter-

ation which may provide a faster and more accurate algorithm and should

also yield an embarrassingly parallel algorithm. Unfortunately, there is no

parallel implementation available at this time, so we could not compare

this new method with divide and conquer.

We showed that in contrast to the ScaLAPACK QR algorithm imple-

mentation, the spectral decomposition of the tridiagonal matrix is no longer

the bottleneck. E�orts should be made to improve the tridiagonalization

and the back transformation of the eigenvector matrix of the tridiagonal

form to the original one.

The main limitation of this proposed parallel algorithm is the amount

of storage needed. Compared with the ScaLAPACK QR implementation,

2n2 extra storage locations are required to perform the back transforma-

tion in the last step of the divide and conquer algorithm. This is the price

we pay for using level 3 BLAS operations. It is worth noting that in most of

the cases, not all this storage is used, because of de
ation. Unfortunately,

ideas as developed in [31] for the sequential divide and conquer seem hard

to implement e�ciently in parallel as they require a lot of communication.

As in many algorithms, there is a trade o� between good e�ciency and

workspace [3], [13]. Such a trade-o� appears also in parallel implementa-

tions of inverse iteration when reorthogonalization of the eigenvectors is

performed.

In future work, the authors plan to use ideas developed in this paper

for the development of a parallel implementation of the divide and conquer

algorithm for the singular value decomposition.
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