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Abstract

We present a new fast and scalable matrix multiplication algorithm, called DIMMA
(Distribution-Independent Matrix Multiplication Algorithm), for block cyclic data distribu-
tion on distributed-memory concurrent computers. The algorithm is based on two new ideas;
it uses a modi�ed pipelined communication scheme to overlap computation and communi-
cation e�ectively, and exploits the LCM block concept to obtain the maximum performance
of the sequential BLAS routine in each processor even when the block size is very small as
well as very large. The algorithm is implemented and compared with SUMMA on the Intel
Paragon computer.



1. Introduction

A number of algorithms are currently available for multiplying two matrices A and B to
yield the product matrix C = A�B on distributed-memory concurrent computers [12, 16].
Two classic algorithms are Cannon's algorithm [4] and Fox's algorithm [11]. They are based
on a P � P square processor grid with a block data distribution in which each processor
holds a large consecutive block of data.

Two e�orts to implement Fox's algorithm on general 2-D grids have been made: Choi,
Dongarra and Walker developed `PUMMA' [7] for block cyclic data decompositions, and
Huss-Lederman, Jacobson, Tsao and Zhang developed `BiMMeR' [15] for the virtual 2-D
torus wrap data layout. The di�erences in these data layouts results in di�erent algorithms.
These two algorithms have been compared on the Intel Touchstone Delta [14].

Recent e�orts to implement numerical algorithms for dense matrices on distributed-
memory concurrent computers are based on a block cyclic data distribution [6], in which
an M � N matrix A consists of mb � nb blocks of data, and the blocks are distributed by
wrapping around both row and column directions on an arbitrary P �Q processor grid. The
distribution can reproduce most data distributions used in linear algebra computations. For
details, see Section 2.2. We limit the distribution of data matrices to the block cyclic data
distribution.

The PUMMA requires a minimum number of communications and computations. It
consists of only Q � 1 shifts for A, LCM(P;Q) broadcasts for B, and LCM(P;Q) local
multiplications, where LCM(P;Q) is the least common multiple of P and Q. It multiplies
the largest possible matrices of A and B for each computation step, so that performance of
the routine depends very weakly on the block size of the matrix. However, PUMMA makes
it di�cult to overlap computation with communication since it always deals with the largest
possible matrices for both computation and communication, and it requires large memory
space to store them temporarily, which makes it impractical in real applications.

Agrawal, Gustavson and Zubair [1] proposed another matrix multiplication algorithm by
e�ciently overlapping computation with communication on the Intel iPSC/860 and Delta
system. Van de Geijn and Watts [18] independently developed the same algorithm on the In-
tel paragon and called it SUMMA. Also independently, PBLAS [5], which is a major building
block of ScaLAPACK [3], uses the same scheme in implementing the matrix multiplication
routine, PDGEMM.

In this paper, we present a new fast and scalable matrix multiplication algorithm, called
DIMMA (Distribution-Independent Matrix Multiplication Algorithm) for block cyclic data
distribution on distributed-memory concurrent computers. The algorithm incorporates SUMMA
with two new ideas. It uses `a modi�ed pipelined communication scheme', which makes the
algorithm the most e�cient by overlapping computation and communication e�ectively. It
also exploits `the LCM concept', which maintains the maximum performance of the sequen-
tial BLAS routine, DGEMM, in each processor, even when the block size is very small as well
as very large. The details of the LCM concept is explained in Section 2.2.

DIMMA and SUMMA are implemented and compared on the Intel Paragon computer.



The parallel matrix multiplication requires O(N 3) ops and O(N 2) communications, i. e., it
is computation intensive. For a large matrix, the performance di�erence between SUMMA
and DIMMA may be marginal and negligible. But for small matrix of N = 1000 on a 16�16
processor grid, the performance di�erence is approximately 10%.

2. Design Principles

2.1. Level 3 BLAS

Current advanced architecture computers possess hierarchical memories in which access to
data in the upper levels of the memory hierarchy (registers, cache, and/or local memory) is
faster than to data in lower levels (shared or o�-processor memory). One technique to exploit
the power of such machines more e�ciently is to develop algorithms that maximize reuse
of data held in the upper levels. This can be done by partitioning the matrix or matrices
into blocks and by performing the computation with matrix-matrix operations on the blocks.
The Level 3 BLAS [9] perform a number of commonly used matrix-matrix operations, and
are available in optimized form on most computing platforms ranging from workstations up
to supercomputers.

The Level 3 BLAS have been successfully used as the building blocks of a number of ap-
plications, including LAPACK [2], a software library that uses block-partitioned algorithms
for performing dense linear algebra computations on vector and shared memory computers.

On shared memory machines, block-partitioned algorithms reduce the number of times
that data must be fetched from shared memory, while on distributed-memory machines, they
reduce the number of messages required to get the data from other processors. Thus, there
has been much interest in developing versions of the Level 3 BLAS for distributed-memory
concurrent computers [5, 8, 10].

The most important routine in the Level 3 BLAS is DGEMM for performing matrix-matrix
multiplication. The general purpose routine performs the following operation:

C( � op(A) � op(B) + � C

where op(X) = X;XT or XH. And \�" denotes matrix-matrix multiplication. A, B and C
are matrices, and � and � are scalars. This paper focuses on the design and implementation
of the non-transposed matrix multiplication routine of C( �A �B+ �C, but the idea can
be easily extended to the transposed multiplication routines of C ( �A � BT + �C and
C( �AT �B+ �C.

2.2. Block Cyclic Data Distribution

For performing the matrix multiplicationC = A�B, we assume thatA, B andC areM�K,
K � N , and M � N , respectively. The distributed routine also requires a condition on the
block size to ensure compatibility. That is, if the block size of A is mb � kb, then that of
B and C must be kb � nb and mb � nb, respectively. So the number of blocks of matrices
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(b) processor point-of-view

Figure 1: Block cyclic data distribution. A matrix with 12 � 12 blocks is distributed over
a 2 � 3 processor grid. (a) The shaded and unshaded areas represent di�erent grids. (b) It
is easier to see the distribution from the processor point-of-view to implement algorithms.
Each processor has 6� 4 blocks.

A, B, and C are Mg � Kg, Kg � Ng, and Mg � Ng, respectively, where Mg = dM =mbe,
Ng = dN =nbe, and Kg = dK =kbe.

The way in which a matrix is distributed over the processors has a major impact on
the load balance and communication characteristics of the concurrent algorithm, hence,
largely determines its performance and scalability. The block cyclic distribution provides
a simple, general-purpose way of distributing a block-partitioned matrix on distributed-
memory concurrent computers.

Figure 1(a) shows an example of the block cyclic data distribution, where a matrix with
12 � 12 blocks is distributed over a 2 � 3 grid. The numbered squares represent blocks of
elements, and the number indicates the location in the processor grid { all blocks labeled
with the same number are stored in the same processor. The slanted numbers, on the left
and on the top of the matrix, represent indices of a row of blocks and of a column of blocks,
respectively. Figure 1(b) reects the distribution from a processor point-of-view, where each
processor has 6 � 4 blocks.

Denoting the least common multiple of P and Q by LCM , we refer to a square of LCM
� LCM blocks as an LCM block. Thus, the matrix in Figure 1 may be viewed as a 2 � 2
array of LCM blocks. Blocks belong to the same processor if their relative locations are
the same in each LCM block. A parallel algorithm, in which the order of execution can be
intermixed such as matrix multiplication and matrix transposition, may be developed for
the �rst LCM block. Then it can be directly applied to the other LCM blocks, which have
the same structure and the same data distribution as the �rst LCM block, that is, when an
operation is executed on the �rst LCM block, the same operation can be done simultaneously
on other LCM blocks. And the LCM concept is applied to design software libraries for dense
linear algebra computations with algorithmic blocking [17, 19].
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Figure 2: A snapshot of SUMMA. The darkest blocks are broadcast �rst, and lightest blocks
are broadcast later.

3. Algorithms

3.1. SUMMA

SUMMA is basically a sequence of rank-kb updates. In SUMMA, A and B are divided
into several columns and rows of blocks, respectively, whose block sizes are kb. Processors
multiply the �rst column of blocks of A with the �rst row of blocks of B. Then processors
multiply the next column of blocks of A and the next row of blocks of B successively.

As the snapshot of Figure 2 shows, the �rst column of processors P0 and P3 begins
broadcasting the �rst column of blocks of A (A(:; 0)) along each row of processors (here we
use MATLAB notation to simply represent a portion of a matrix.) At the same time, the
�rst row of processors, P0, P1, and P2 broadcasts the �rst row of blocks of B (B(0; :)) along
each column of processors. After the local multiplication, the second column of processors,
P1 and P4, broadcasts A(:; 1) rowwise, and the second row of processors, P3, P4, and P5,
broadcasts B(1; :) columnwise. This procedure continues until the last column of blocks of
A and the last row of blocks of B.

Agrawal, Gustavson and Zubair [1], and van de Geijn and Watts [18] obtained high
e�ciency on the Intel Delta and Paragon, respectively, by exploiting the pipelined commu-
nication scheme, where broadcasting is implemented as passing a column (or row) of blocks
around the logical ring that forms the row (or column).

3.2. DIMMA

We show a simple simulation in Figure 3. It is assumed that there are 4 processors, each
has 2 sets of data to broadcast, and they use blocking send and non-blocking receive. In
the �gure, the time to send a data set is assumed to be 0.2 seconds, and the time for local
computation is 0.6 seconds. Then the pipelined broadcasting scheme takes 8.2 seconds as in
Figure 3(a) .
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(b) DIMMA

Figure 3: Communication characteristics of SUMMA and DIMMA. It is assumed that block-
ing send and non-blocking receive are used.

A careful investigation of the pipelined communication shows there is an extra waiting
time between two communication procedures. If the �rst processor broadcasts everything
it contains to other processors before the next processor starts to broadcast its data, it is
possible to eliminate the unnecessary waiting time. The modi�ed communication scheme in
Figure 3(b) takes 7.4 seconds. That is, the new communication scheme saves 4 communi-
cation times (8:2 � 7:4 = 0:8 = 4 � 0:2). Figures 4 and 5 show a Paragraph visualization
[13] of SUMMA and DIMMA on the Intel Paragon computer, respectively. Paragraph is a
parallel programming tool that graphically displays the execution of a distributed-memory
program. These �gures include spacetime diagrams, which show the communication pattern
between the processes, and utilization Gantt charts, which show when each process is busy
or idle. The dark gray color signi�es idle time for a given process, and the light gray color
signals busy time. DIMMA is more e�cient in communication than SUMMA as shown in
these �gures. The details of analysis of the algorithms is shown in Section 4.

With this modi�ed communication scheme, DIMMA is implemented as follows. After the
�rst procedure, that is, broadcasting and multiplying A(:; 0) and B(0; :), the �rst column



Figure 4: Paragraph visualization of SUMMA

Figure 5: Paragraph visualization of DIMMA



of processors, P0 and P3, broadcasts A(:; 6) along each row of processors, and the �rst row
of processors, P0, P1, and P2 sends B(6; :) along each column of processors, as shown in
Figure 6. The value 6 appears since the LCM of P = 2 and Q = 3 is 6.

For the third and fourth procedures, the �rst column of processors, P0 and P3, broadcasts
rowwise A(:; 3) and A(:; 9), and the second row of processors, P3, P4, and P5, broadcasts
columnwise B(3; :) and B(9; :), respectively. After the �rst column of processors, P0 and
P3, broadcasts all of their columns of blocks of A along each row of processors, the second
column of processors, P1 and P4, broadcasts their columns of A.

The basic computation of SUMMA and DIMMA in each processor is a sequence of rank-
kb updates of the matrix. The value of kb should be at least 20 (Let kopt be the optimal block
size for the computation, then kopt = 20) to optimize performance of the sequential BLAS
routine, DGEMM, in the Intel Paragon, which corresponds to about 44 Mops on a single node.
The vectors of blocks to be multiplied should be conglomerated to form larger matrices to
optimize performance if kb is small.

DIMMA is modi�ed with the LCM concept. The basic idea of the LCM concept is to
handle simultaneously several thin columns of blocks of A, and the same number of thin
rows of blocks of B so that each processor multiplies several thin matrices of A and B

simultaneously in order to obtain the maximum performance of the machine. Instead of
broadcasting a single column of A and a single row of B, a column of processors broadcasts
several (MX = dkopt=kbe) columns of blocks ofA along each row of processors, whose distance
is LCM blocks in the column direction. At the same time, a row of processors broadcasts the
same number of blocks ofB along each column of processors, whose distance is LCM blocks in
the row direction as shown in Figure 7. Then each processor executes its own multiplication.
The multiplication operation is changed from `a sequence (= Kg) of rank-kb updates' to `a
sequence (= dKg =MXe) of rank-(kb �MX) updates' to maximize the performance.
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Figure 6: Snapshot of a simple version of DIMMA. The darkest blocks are broadcast �rst.

For example, if P = 2; Q = 3; kb = 10 and kopt = 20, the processors deal with 2 columns
of blocks of A and 2 rows of blocks of B at a time (MX = dkb=kopte = 2). The �rst column
of processors, P0 and P3, copies two columns of A(:; [0; 6]) (that is, A(:; 0) and A(:; 6)) to TA,
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Figure 7: A snapshot of DIMMA

and broadcasts them along each row of processors. The �rst row of processors, P0, P1 and
P2, copies two rows of B([0; 6]; :) (that is, B(0; :) and B(6; :)) to TB and broadcasts them
along each column of processors. Then all processors multiply TA with TB to produce C.
Next, the second column of processors, P1 and P4, copies the next two columns of A(:; [1; 7])
to TA and broadcasts them again rowwise, and the second row of processors, P3, P4 and P5,
copies the next two rows of B([1; 7]; :) to TB and broadcasts them columnwise. The product
of TA and TB is added to C in each processor.

The value of MX can be determined by the block size, available memory space, and
machine characteristics such as processor performance and communication speed. If it is
assumed that kopt = 20, the value of MX should be 4 if the block size is 5, and the value of
MX should be 2 if the block size is 10.

If kb is much larger than the optimal value (for example, kb = 100), it may be di�cult
to obtain good performance since it is di�cult to overlap the communication with the com-
putation. In addition, the multiplication routine requires a large amount of memory to send
and receiveA and B. It is possible to divide kb into smaller pieces. For example, if kb = 100,
processors divide a column of blocks of A into �ve thin columns of blocks, and divide a row
of blocks of B into �ve thin rows of blocks. Then they multiply each thin column of blocks
of A with the corresponding thin row of blocks of B successively. The two cases, in which kb
is smaller and larger than kopt, are combined, and the pseudocode of the DIMMA is shown
in Figure 8.

4. Analysis of Multiplication Algorithms

We analyze the elapsed time of SUMMA and DIMMA based on Figure 3. It is assumed
that kb = kopt throughout the computation. Then, for the multiplicationCM�N ( CM�N +
AM�K�BK�N , there are Kg = dK=kbe columns of blocks of A and Kg rows of blocks of B.

At �rst, it is assumed that there are P linearly connected processors, in which a column



C = 0 (C(:; :) = 0)
MX = dkopt=kbe
DO L1 = 0; Q� 1

DO L2 = 0;LCM=Q � 1
LX = LCM �MX

DO L3 = 0; dKg=LXe � 1
DO L4 = 0; dkb=kopte � 1
Lm = L1 + L2 �Q+ L3 � LX + [L4] : LCM : (L3 + 1) � LX � 1
[Copy A(:; Lm) to TA and broadcast it along each row of processors]
[Copy B(Lm; :) to TB and broadcast it along each column of processors]
C(:; :) = C(:; :) + TA � TB

END DO
END DO

END DO
END DO

Figure 8: The pseudocode of DIMMA. The DO loop of L3 is used if kb is smaller than kopt,
where the routine handles MX columns of blocks of A and MX rows of blocks of B, whose
block distance are LCM, simultaneously, Lm is used to select them correctly. The innermost
DO loop of L4 is used if kb is larger than kopt, and the bracket in [L4] represents the L4-th
thin vector.

of blocks of A (= TA) is broadcast along P processors at each step and a row of blocks of
B (= TB) always stays in each processor. It is also assumed that the time for sending a
column TA to the next processor is tc, and the time for multiplying TA with TB and adding
the product to C is tp. Actually tc = � + (M kb) � � and tp = 2M N

P
kb � , where � is a

communication start-up time, � is a data transfer time, and  is a time for multiplication
or addition.

For SUMMA, the time di�erence between successive two pipelined broadcasts of TA is
2tc + tp. The total elapsed time of SUMMA with Kg columns of blocks on an 1-dimensional
processor grid, t1Dsumma, is

t1Dsumma = Kg (2tc + tp)� tc + (P � 2) tc = Kg (2tc + tp) + (P � 3) tc:

For DIMMA, the time di�erence between the two pipelined broadcasts is tc + tp if the
TAs are broadcast from the same processor. However, the time di�erences is 2tc + tp if they
are in di�erent processors. The total elapsed time of DIMMA, t1Ddimma , is

t1Ddimma = Kg (tc + tp) + (P � 1)tc + (P � 2) tc = Kg (tc + tp) + (2P � 3) tc:



On a 2-dimensional P�Q processor grid, the communication time of SUMMA is doubled
in order to broadcast TB as well as TA. Assume again that the time for sending a column TA
and a row TB to the next processor are tca and tcb, respectively, and the time for multiplying
TA with TB and adding the product toC is tp. Actually tca = �+(M

P
kb)��, tcb = �+(N

Q
kb)��,

and tp = 2 M
P

N
Q
kb � . So,

t2Dsumma = Kg (2tca + 2tcb + tp) + (Q� 3) tca + (P � 3) tcb: (1)

For DIMMA, each column of processors broadcasts TA until everything is sent. Mean-
while, rows of processors broadcast TB if they have the corresponding TB with the TA. For
a column of processors, which currently broadcasts A, P=GCD rows of processors, whose
distance is GCD, have rows of blocks of B to broadcast along with the TA, where GCD is
the greatest common divisor of P and Q. The extra idle wait, caused by broadcasting two
TBs when they are in di�erent processors, is GCD � tcb. Then the total extra waiting time to
broadcast TBs is Q (P=GCD)GCD � tcb = P Q � tcb.

However, if GCD = P , only one row of processors has TB to broadcast corresponding to
the column of processors, and the total extra waiting time is P � tcb. So,

t2Ddimma = Kg (tca + tcb + tp) + (2Q � 3)tca + (P +Q� 3)tcb if GCD = P

= Kg (tca + tcb + tp) + (2Q � 3)tca + (PQ+ P � 3)tcb otherwise: (2)

The time di�erence between SUMMA and DIMMA is

t2Dsumma � t2Ddimma = (Kg � Q) tca + (Kg � P ) tcb if GCD = P;

= (Kg � Q) tca + (Kg � PQ) tcb otherwise: (3)

5. Implementation and Results

We implemented three algorithms, called them SUMMA0, SUMMA and DIMMA, and com-
pared their performance on the 512 node Intel Paragon at the Oak Ridge National Labora-
tory, Oak Ridge, U.S.A., and the 256 node Intel Paragon at Samsung Advanced Institute
of Technology, Suwon, Korea. SUMMA0 is the original version of SUMMA, which has the
pipelined broadcasting scheme and the �xed block size, kb. The local matrix multiplication
in SUMMA0 is the rank-kb update. SUMMA is a revised version of SUMMA0 with the LCM
block concept for the optimized performance of DGEMM, so that the local matrix multiplication
is a rank-kapprox update, where kapprox is computed in the implementation as follows:

kapprox = bkopt = kbc � kb ifkopt � kb;

= bkb = dkb=koptec otherwise:

First of all, we changed the block size, kb, and observed how the block size a�ects the



P �Q Matrix Size Block Size SUMMA0 SUMMA DIMMA

1 � 1 1:135 2:678 2:735
5 � 5 2:488 2:730 2:735

8 � 8 2000 � 2000 20� 20 2:505 2:504 2:553
50� 50 2:633 2:698 2:733
100 � 100 1:444 1:945 1:948
1 � 1 1:296 2:801 2:842
5 � 5 2:614 2:801 2:842

8 � 8 4000 � 4000 20� 20 2:801 2:801 2:842
50� 50 2:674 2:822 2:844
100 � 100 2:556 2:833 2:842
1 � 1 1:842 3:660 3:731
5 � 5 3:280 3:836 3:917

12 � 8 4000 � 4000 20� 20 3:928 3:931 4:006
50� 50 3:536 3:887 3:897
100 � 100 2:833 3:430 3:435

Table 1: Dependence of performance on block size (Unit: Gops)

performance of the algorithms. Table 1 shows the performance of A = B = C = 2000�2000
and 4000�4000 on 8�8 and 16�8 processor grids with block sizes kb = 1; 5; 20; 50, and 100.
At �rst SUMMA0 and SUMMA are compared. With the extreme case of kb = 1, SUMMA
with the modi�ed blocking scheme performed at least 100% better than SUMMA0. When
kb = 5, SUMMA shows 7 - 10% enhanced performance. If the block size is much larger
than the optimal block size, that is, kb = 50, or 100, SUMMA0 becomes ine�cient again
and it has a di�culty in overlapping the communications with the computations. SUMMA
outperformed SUMMA0 about 5 � 10% when A = B = C = 4000 � 4000 and kb = 50 or
100 on 8� 8 and 12 � 8 processor grids.

Note that on an 8 � 8 processor grid with 2000 � 2000 matrices, the performance of
kb = 20 or 100 is much slower than that of other cases. When kb = 100, the processors in
the top half have 300 rows of matrices, while those in the bottom half have just 200 rows.
This leads to load imbalance among processors, and the processors in the top half require
50% more local computation.

Now SUMMA and DIMMA are compared. Figures 9 and 10 show the performance of
SUMMA and DIMMA on 16 � 16 and 16 � 12 processor grids, respectively, with the �xed
block size, kb = kopt = 20. DIMMA always performs better than SUMMA on the 16 � 16
processor grid. These matrix multiplication algorithms require O(N 3) ops and O(N 2)
communications, that is, the algorithms are computation intensive. For a small matrix of
N = 1000, the performance di�erence between the two algorithms is about 10%. But for
a large matrix, these algorithms require much more computation, so that the performance
di�erence caused by the di�erent communication schemes becomes negligible. For N = 8000,
the performance di�erence is only about 2 � 3%. On the 16 � 12 processor grid, SUMMA
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Figure 9: Performance of SUMMA and DIMMA on a 16�16 processor grid. (kopt = kb = 20).
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Figure 10: Performance of SUMMA and DIMMA on a 16 � 12 processor grid.
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Figure 11: Predicted Performance of SUMMA and DIMMA on a 16 � 16 processor grid.
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Figure 12: Predicted Performance of SUMMA and DIMMA on a 16 � 12 processor grid.



performs slightly better than DIMMA for small size of matrices, such as N = 1000 and 2000.
If P = 16 and Q = 12, GCD = 4 ( 6= P ). For the problem of M = N = K = 2000 and
kopt = kb = 20, Kg = K=kb = 100. From Eq. 3,

t2Dsumma � t2Ddimma = (100 � 12) tca + (100 � 16 � 12) tcb = 88tca � 92tcb:

From the result, it is expected that the SUMMA is faster than DIMMA for the problem if
tca = tcb.

We predicted the performance on the Intel Paragon using Eqs 1 and 2. Figures 11 and
12 show the predicted performance of SUMMA and DIMMA corresponding to Figures 9 and
10, respectively. We used � = 94:75�sec, � = 0:02218 (45 Mbytes/sec),  = 22:88nsec (43.7
Mops per node) for the predicted performance. (Those values are observed in practice.)

In Eq. 2, the idle wait, (2Q � 3)tca + (PQ + P � 3)tcb when GCD 6= P , can be reduced
by a slight modi�cation of the communication scheme. For example, when P = 4; Q = 8
(that is, GCD = Q) if a column of processors sends all columns of blocks of B instead of a
row of processors send all rows of blocks of A as in Figure 8, the waiting time is reduced to
(P +Q � 3)tca + (2P � 3)tcb.

The following example has another communication characteristic. After the �rst column
and the �rst row of processors send their ownA and the correspondingB, respectively, then,
for the next step, the second column and the second row of processors send their A and B,
respectively. The communication resembles that of SUMMA, but the processors send all
corresponding blocks of A and B. The waiting time is (LCM+Q�3)tca+(LCM+P �3)tcb.
This modi�cation is faster if 2 � GCD < MIN(P;Q).

The performance per node of SUMMA and DIMMA is shown in Figures 13 and 14,
respectively, when memory usage per node is held constant. Both algorithms show good
performance and scalability, but DIMMA is always better. If each processor has a local
problem size of more than 200 � 200, the DIMMA always reaches 40 Mops per processor,
but the SUMMA obtained about 38 Mops per processor.

Currently the modi�ed blocking scheme in DIMMA uses the rank-kapprox update. How-
ever it is possible to modify the DIMMA with the exact rank-kopt update by dividing the
virtually connected LCM blocks in each processor. The modi�cation complicates the algo-
rithm implementation, and since the performance of DGEMM is not sensitive to the value of
kopt (if it is larger than 20), there would be no improvement in performance.

6. Conclusions

We present a new parallel matrix multiplication algorithm, called DIMMA, for block cyclic
data distribution on distributed-memory concurrent computers. DIMMA is the most e�-
cient and scalable matrix multiplication algorithm. DIMMA uses the modi�ed pipelined
broadcasting scheme to overlap computation and communication e�ectively, and exploits
the LCM block concept to obtain the maximum performance of the sequential BLAS routine
regardless of the block size. DIMMA always shows the same high performance even when
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Figure 13: Performance per node of SUMMA where memory use per node is held constant.
The �ve curves represent 100 � 100, 200 � 200, 300 � 300, 400 � 400, and 500 � 500 local
matrices per node from the bottom.
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Figure 14: Performance per node of DIMMA.



the block size kb is very small as well as very large if the matrices are evenly distributed
among processors.
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