
LAPACK Working Note 117

A Fortran 90 Interface for LAPACK:

LAPACK90, version 1.0

L. Susan Blackford� Jack J. Dongarray Jeremy Du Crozz

Sven Hammarlingx Jerzy Wa�sniewski{

December 5, 1996

Abstract

The purpose of this report is to discuss the design of a Fortran 90 interface

to LAPACK. Our emphasis at this stage is on the design of an improved

user-interface to the package, taking advantage of the considerable sim-

pli�cations which Fortran 90 allows. The proposed design makes use of

assumed-shape arrays, optional arguments, and generic interfaces. The

Fortran 90 interface can be implemented initially by writing Fortran 90

jackets to call the existing Fortran 77 code, and can persist unchanged

even if the underlying Fortran 77 LAPACK code is rewritten to take

advantage of the new features of Fortran 90. We aim to maintain a com-

parable level of performance as with the Fortran 77 code. In this paper

we implement interfaces to the subset of LAPACK routines for solving

systems of linear equations AX = B with a general matrix A, and for

symmetric and Hermitian eigenproblems.

�(formerly L. S. Ostrouchov) Department of Computer Science, University of Tennessee,

107 Ayres Hall, Knoxville, TN 37996-1301, USA; email: susan@cs.utk.edu

y
Department of Computer Science, University of Tennessee, 107 Ayres Hall, Knoxville,

TN 37996-1301, USA and Mathematical Sciences Section, Oak Ridge National Laboratory,

P.O.Box 2008, Bldg. 6012, Oak Ridge, TN 37831-6367, USA; email: dongarra@cs.utk.edu

zNumerical Algorithms Group Ltd, Wilkinson House, Jordan Hill Road, Oxford OX2 8DR,

UK; email: jeremy@nag.co.uk

x
Numerical Algorithms Group Ltd, Wilkinson House, Jordan Hill Road, Oxford OX2 8DR,

UK; email: sven@nag.co.uk

{UNI�C, The Danish Computing Centre for Research and Education, DTU, Bldg. 304,

DK-2800 Lyngby, Denmark; Email: jerzy.wasniewski@uni-c.dk

1

Contents

1 Introduction 5

2 LAPACK 77 and Fortran 90 Compilers 5

2.1 Linking LAPACK 77 to Fortran 90 programs 5

2.2 Interface blocks for LAPACK 77 6

3 Proposed Design of the LAPACK 90 interface 7

4 Prototype LAPACK 90 Interfaces 10

4.1 Solution of Systems of Linear Equations for a General Matrix A 10

4.2 Symmetric and Hermitian Eigenproblem Routines 12

5 Documentation 13

6 Test Software 14

7 Performance Issues and Timings 14

8 Acknowledgments 15

A Solving Systems of Linear Equations AX = B with a General

Matrix A, Documentation 16

A.1 LA GESV . 16

A.1.1 Purpose . 16

A.1.2 Speci�cation . 16

A.1.3 Arguments . 16

A.2 LA GESVX . 17

A.2.1 Purpose . 17

A.2.2 Speci�cation . 17

A.2.3 Description . 18

A.2.4 Arguments . 19

A.3 LA GETRF . 22

A.3.1 Purpose . 22

A.3.2 Speci�cation . 23

A.3.3 Arguments . 23

A.4 LA GETRS . 24

A.4.1 Purpose . 24

A.4.2 Speci�cation . 24

A.4.3 Arguments . 24

A.5 LA GETRI . 25

A.5.1 Purpose . 25

A.5.2 Speci�cation . 25

A.5.3 Arguments . 25

2

A.6 LA GERFS . 26

A.6.1 Purpose . 26

A.6.2 Speci�cation . 26

A.6.3 Arguments . 26

A.6.4 Internal Parameters . 28

A.7 LA GEEQU . 28

A.7.1 Purpose . 28

A.7.2 Speci�cation . 28

A.7.3 Arguments . 28

B Symmetric and Hermitian Eigenvalue and Eigenvector Proce-

dures, Documentation 30

B.1 LA SYEV / LA HEEV . 30

B.1.1 Purpose . 30

B.1.2 Speci�cation . 30

B.1.3 Defaults . 30

B.1.4 Arguments . 30

B.2 LA SYEVD / LA HEEVD . 31

B.2.1 Purpose . 31

B.2.2 Speci�cation . 32

B.2.3 Defaults . 32

B.2.4 Arguments . 32

B.3 LA SYEVX / LA HEEVX . 33

B.3.1 Purpose . 33

B.3.2 Speci�cation . 33

B.3.3 Defaults . 34

B.4 Argument dependency . 34

B.4.1 Arguments . 34

B.5 LA SYGST / LA HEGST . 37

B.5.1 Purpose . 37

B.5.2 Speci�cation . 37

B.5.3 Defaults . 37

B.5.4 Arguments . 37

B.6 LA SYGV / LA HEGV . 38

B.6.1 Purpose . 38

B.6.2 Speci�cation . 39

B.6.3 Defaults . 39

B.6.4 Arguments . 39

B.7 LA SYTRD / LA HETRD . 41

B.7.1 Purpose . 41

B.7.2 Speci�cation . 41

B.7.3 Defaults . 41

B.7.4 Arguments . 41

B.7.5 Further Details . 42

3

B.8 LA ORGTR / LA UNGTR . 43

B.8.1 Purpose . 43

B.8.2 Speci�cation . 43

B.8.3 Defaults . 43

B.8.4 Arguments . 44

C Cholesky Factorization of a Real Symmetric or Complex Her-

mitian Positive De�nite Matrix A, Documentation 45

C.1 LA POTRF . 45

C.1.1 Purpose . 45

C.1.2 Speci�cation . 45

C.1.3 Defaults . 45

C.1.4 Arguments . 45

D Code for One Version of LA SYEV 47

D.1 Precision-dependencies . 47

D.2 Error-handling . 47

D.3 Accessing LAPACK 77 routines 48

D.4 The code . 48

D.5 Accessing LAPACK 90 procedures 50

4

1 Introduction

This paper is a follow on paper to LAPACK WN 101 [2] which proposed an inter-

face to some of the LAPACK [1] linear equation routines. Following comments

to that paper we have added some additional functionality to the interface. In

this paper we also consider the symmetric eigenproblem. We welcome comments

on the proposal given here. Our emphasis at this stage is on the design of an

improved user-interface to the package, taking advantage of the considerable

simpli�cations which Fortran 90 allows (see [3]).

The Fortran 90 interface can be implemented initially by writing Fortran 90

jackets to call the existing Fortran 77 code, and can persist unchanged even if

the underlying Fortran 77 LAPACK code is rewritten to take advantage of the

new features of Fortran 90.

Although we would like to maintain a comparable level of performance to

the Fortran 77 LAPACK code, due to the immaturity of many of the current

Fortran 90 compilers, we cannot usually at present achieve this same level of

performance. We reiterate that our goal is to provide a true Fortran 90 inter-

face to LAPACK. We are aware of certain modi�cations to the interface which

could enhance performance, but these modi�cations complicate the interface by

requiring Fortran 77-ish constructs. If performance is the main focus behind

the user's application, we recommend that the user call the Fortran 77 interface

directly.

For convenience we use the name \LAPACK 77" to denote the existing

Fortran 77 package, and \LAPACK 90" to denote the new Fortran 90 interface

which we are proposing.

2 LAPACK 77 and Fortran 90 Compilers

2.1 Linking LAPACK 77 to Fortran 90 programs

LAPACK 77 can be called from Fortran 90 programs in its present form |

with some quali�cations. The quali�cations arise only because LAPACK 77 is

not written entirely in standard Fortran 77; the exceptions are the use of the

COMPLEX*16 data type and related intrinsic functions, as listed in Section 6.1

of [1]; these facilities are provided as extensions to the standard language by

many Fortran 77 and Fortran 90 compilers. Equivalent facilities are provided

in standard Fortran 90, using the parameterized form of the COMPLEX data type

(see below).

To link LAPACK 77 to a Fortran 90 program (which must of course be

compiled by a Fortran 90 compiler), one of the following approaches will be

necessary, depending on the compilers available.

1. Link the Fortran 90 program to an existing LAPACK 77 library, compiled

by a Fortran 77 compiler. This approach can only work if the compilers

5

have been designed to allow cross-linking.

2. If such cross-linking is not possible, recompile and archive the LAPACK 77

library with the Fortran 90 compiler, provided that the compiler accepts

COMPLEX*16 and related intrinsics as extensions.

3. If these extensions are not accepted and the user requires this data type,

the LAPACK 77 code must be rewritten in standard Fortran 90 (see be-

low).

Some conversions needed to use the double precision complex data type

in standard Fortran 90 code from LAPACK 77 are:

COMPLEX*16) COMPLEX(KIND=Kind(0.0D0)

DCONJG(z) for COMPLEX*16 z) CONJG(z)

DBLE(z) for COMPLEX*16 z) REAL(z)

DIMAG(z) for COMPLEX*16 z) AIMAG(z)

DCMPLX(x,y) for DOUBLE PRECISION x, y) CMPLX(x,y,KIND=Kind(0.0D0))

One further obstacle may remain: it is possible that if LAPACK 77 has

been recompiled with a Fortran 90 compiler, it may not link correctly to an

optimized assembly-language BLAS library that has been designed to interface

with Fortran 77. Until this is recti�ed by the vendor of the BLAS library,

Fortran 77 code for the BLAS must be used.

2.2 Interface blocks for LAPACK 77

Fortran 90 allows one immediate extra bene�t to be provided to Fortran 90 users

of LAPACK 77, without making any further changes to the existing code: that

is a module of explicit interfaces for the routines. If this module is accessed by

a USE statement in any program unit which makes calls to LAPACK routines,

then those calls can be checked by the compiler for errors in the numbers or

types of arguments.

The module can be constructed by extracting the necessary speci�cation

statements from the Fortran 77 code with a little modi�cation, as illustrated by

the following example containing an interface for the single routine SSYEV:

6

MODULE LA_SF77MOD

INTERFACE

SUBROUTINE SSYEV(JOBZ, UPLO, N, A, LDA, W, &

WORK, LWORK, INFO)

USE LA_PRECISION, ONLY: WP => SP

CHARACTER(LEN=1), INTENT(IN) :: JOBZ, UPLO

INTEGER, INTENT(IN) :: LDA, LWORK, N

INTEGER, INTENT(OUT) :: INFO

REAL(WP), INTENT(INOUT) :: A(LDA,*)

REAL(WP), INTENT(OUT) :: W(*), WORK(*)

END SUBROUTINE SSYEV

� � � � � � � � �

END INTERFACE

� � � � � � � � �

END MODULE LA_SF77MOD

A module containing interfaces for all of the routines in LAPACK 77 will be

required; here we provide one module per precision, for example LA SF77MOD,

LA DF77MOD, LA CF77MOD, and LA ZF77MOD, and one module for auxil-

iary routines, LA AUXMOD.

3 Proposed Design of the LAPACK 90 interface

In the design of a Fortran 90 interface to LAPACK, we propose to take advantage

of the features of the language listed below.

1. Assumed-shape arrays: All array arguments to LAPACK 90 routines

will be assumed-shape arrays. Arguments to specify problem dimensions

or array dimensions will not be required.

This implies that the actual arguments supplied to LAPACK routines

must have the exact shape required by the problem. The most convenient

ways to achieve this are:

� using allocatable arrays, for example:

REAL, ALLOCATABLE :: A(:,:), B(:)

. . .

ALLOCATE(A(N,N), B(N))

. . .

CALL LA_GESV(A, B)

� passing array sections, for example:

7

REAL :: A(NMAX,NMAX), B(NMAX)

. . .

CALL LA_GESV(A(:N,:N), B(:N))

Zero dimensions (empty arrays) will be allowed.

There are some grounds for concern about the e�ect of Fortran 77 assumed-

size arrays on performance because compilers cannot assume that their

storage is contiguous. The e�ect on performance will of course depend on

the compiler, and may diminish in time as compilers become more e�ective

in optimizing compiled code. See section 7.

2. Automatic allocation of work arrays: Workspace arguments and ar-

guments to specify their dimensions will not be needed. In simple cases,

automatic arrays of the required size can be declared internally. In other

cases, allocatable arrays may need to be declared and explicitly allocated.

Explicit allocation is needed in particular when the amount of workspace

required depends on the block-size to be used (which is not passed as an

argument).

3. Optional arguments: In LAPACK 77, character arguments are fre-

quently used to specify some choice of options. In Fortran 90, a choice

of options can sometimes be speci�ed naturally by the presence or ab-

sence of optional arguments: for example, options to compute the left or

right eigenvectors can be speci�ed by the presence of arguments VL or VR,

and the character arguments JOBVL and JOBVR which are required in the

LAPACK 77 routine DGEEV, are not needed in LAPACK 90.

In other routines, a character argument to specify options may still be

required, but can itself be made optional if there is a natural default

value: for example, in DGESVX the argument TRANS can be made optional,

with default value 'N'.

Optional arguments can also help to combine two or more routines into

one: for example, the functionality provided by the routine DGECON can

be made accessible by adding an optional argument RCOND to DGETRF.

4. Generic Interfaces: The systematic occurrence in LAPACK of analo-

gous routines for real or complex data, and for single or double precision

lends itself well to the de�nition of generic interfaces, allowing four di�er-

ent routines to be accessed through the same generic name.

Generic interfaces can also be used to cover routines whose arguments

di�er in rank, and thus provide a slight increase in
exibility over LA-

PACK 77. For example, in LAPACK 77, routines for solving a system

of linear equations (such as DGESV), allow for multiple right hand sides,

and so the arrays which hold the right hand sides and solutions are always

8

of rank 2. In LAPACK 90, we can provide alternative versions of the rou-

tines (covered by a single generic interface) in which the arrays holding

the right hand sides and solutions may either be of rank 1 (for a single

right hand side) or be of rank 2 (for several right hand sides).

5. Naming: For the generic routine names, we propose:

� the initial letter (S, C, D or Z) is simply omitted.

� the letters LA are pre�xed to all names to identify them as names of

LAPACK routines.

In other respects the naming scheme remains the same as described in

Section 2.1.3 of [1]: for example, LA GESV.

It would also be possible to de�ne longer, more meaningful names (which

could co-exist with the shorter names), but we have not attempted this

here.

We have not proposed the use of any derived types in this Fortran 90

interface. They could be considered | for example, to hold the details of

an LU factorization and equilibration factors. However, since LAPACK

routines are so frequently used as building blocks in larger algorithms or

applications, we feel that there are advantages in keeping the interface

simple, and avoiding possible loss of e�ciency.

6. Error-handling:

In LAPACK 77, all documented routines have a diagnostic output argu-

ment INFO. Three types of exit from a routine are allowed:

successful termination: the routine returns to the calling program with

INFO set to 0.

illegal value of one or more arguments, or error in store allocation:

the routine sets INFO < 0 and calls the auxiliary routine XERBLA; the

standard version of XERBLA issues an error message identifying the

�rst invalid argument, and stops execution.

failure in the course of computation: the routine sets INFO > 0 and

returns to the calling program without issuing any error message.

Only some LAPACK 77 routines need to allow this type of error-

exit; it is then the responsibility of a user to test INFO on return to

the calling program.

For LAPACK 90 we propose that the argument INFO becomes optional:

if it is not present and an error occurs, then the routine always issues an

error message and stops execution, even when INFO > 0 (in which case

the error message reports the value of INFO). If a user wishes to continue

9

execution after a failure in computation, then INFO must be supplied and

tested on return.

This behaviour simpli�es calls to LAPACK 90 routines when there is no

need to test INFO on return, and makes it less likely that users will forget

to test INFO when necessary.

If an invalid argument is detected, we propose that routines issue an error

message and stop, as in LAPACK 77. Note however that in Fortran 90

there can be di�erent reasons for an argument being invalid:

illegal value : as in LAPACK 77.

invalid shape (of an assumed-shape array): for example, a 2-dimensional

array is not square when it is required to be.

inconsistent shapes (of two or more assumed-shape arrays): for exam-

ple, arrays holding the right hand sides and solutions of a system of

linear equations must have the same shape.

No more core allocation needed for the LAPACK 77.

The speci�cation could be extended so that the error-message could dis-

tinguish between these cases. For more detail see in appendix section D.2.

4 Prototype LAPACK 90 Interfaces

We have implemented Fortran 90 jacket procedures to the subset of LAPACK 77

routines concerned with the solution of systems of linear equationsAX = B for a

general matrix A | that is, the driver routines xGESV and xGESVX, and the com-

putational routines xGETRF, xGETRS, xGETRI, xGECON, xGERFS and xGEEQU. We

also consider here the symmetric and Hermitian eigenproblem routines xSYTRD,

xSYGV, xSYGST, xORGTR, xSYEV, xSYEVD, xSYEVX and the factor routine xPOTRF

which is strongly connected with the xSYGST subroutines.

Here we present calling sequences for each of the proposed routines, the

�rst without using any of the optional arguments, the second using all the

arguments. For ease of comparison between LAPACK 77 and LAPACK 90,

we have retained the same names for the corresponding arguments, although of

course Fortran 90 o�ers the possibility of longer names (for example, IPIV could

become PIVOT INDICES). In this prototype implementation, we have assumed

that the code of LAPACK 77 is not modi�ed.

Detailed documentation of the proposed interfaces can be found in Appen-

dices A, B and C.

4.1 Solution of Systems of Linear Equations for a General
Matrix A

LA GESV (simple driver):

10

CALL LA_GESV(A, B)

CALL LA_GESV(A, B, IPIV, INFO)

Comments:

� The array B may have rank 1 (one right hand side) or rank 2 (several

right hand sides).

LA GESVX (expert driver):

CALL LA_GESVX(A, B, X)

CALL LA_GESVX(A, B, X, AF, IPIV, FACT, TRANS, EQUED, R, C, &

FERR, BERR, RCOND, RPVGRW, INFO)

Comments:

� The arrays B and X may have rank 1 (in which case FERR and BERR are

scalars) or rank 2 (in which case FERR and BERR are rank-1 arrays).

� RPVGRW returns the reciprocal pivot growth factor (returned in WORK(1)

in LAPACK 77).

� the presence or absence of EQUED is used to specify whether or not

equilibration is to be performed, instead of the option FACT = 'E'.

LA GETRF (LU factorization):

CALL LA_GETRF(A, IPIV)

CALL LA_GETRF(A, IPIV, RCOND, NORM, INFO)

Comments:

� instead of a separate routine LA GECON, we propose that optional ar-

guments RCOND and NORM are added to LA GETRF to provide the same

functionality in a more convenient manner. The argument ANORM

of xGECON is not needed, because LA GETRF can always compute the

norm of A if required.

LA GETRS (solution of equations using LU factorization):

CALL LA_GETRS(A, IPIV, B)

CALL LA_GETRS(A, IPIV, B, TRANS, INFO)

11

Comments:

� The array B may have rank 1 or 2.

LA GETRI (matrix inversion using LU factorization):

CALL LA_GETRI(A, IPIV)

CALL LA_GETRI(A, IPIV, INFO)

LA GERFS (re�ne solution of equations and optionally compute error bounds):

CALL LA_GERFS(A, AF, IPIV, B, X)

CALL LA_GERFS(A, AF, IPIV, B, X, TRANS, FERR, BERR, INFO)

Comments:

� The arrays B and X may have rank 1 (in which case FERR and BERR are

scalars) or rank 2 (in which case FERR and BERR are rank-1 arrays).

LA GEEQU (equilibration):

CALL LA_GEEQU(A, R, C)

CALL LA_GEEQU(A, R, C, ROWCND, COLCND, AMAX, INFO)

4.2 Symmetric and Hermitian Eigenproblem Routines

LA SYEV / LA HEEV (all eigenvalues and optionally eigenvectors):

CALL LA_SYEV / LA_HEEV(A, W)

CALL LA_SYEV / LA_HEEV(A, W, JOBZ, UPLO, INFO)

LA SYEVD / LA HEEVD (all eigenvalues and optionally eigenvectors using a di-

vide and conquer algorithm):

CALL LA_SYEVD / LA_HEEVD(A, W)

CALL LA_SYEVD / LA_HEEVD(A, W, JOBZ, UPLO, INFO)

LA SYEVX / LA HEEVX (selected eigenvalues and optionally eigenvectors):

12

CALL LA_SYEVX / LA_HEEVD(A, W)

CALL LA_SYEVX / LA_HEEVD(A, W, JOBZ, UPLO, VL, VU, IL, IU, &

M, IFAIL, ABSTOL, INFO)

LA SYGV / LA HEGV (all eigenvalues and optionally eigenvectors of the form

Ax = �Bx, ABx = �x, or BAx = �x

CALL LA_SYGV / LA_HEGV(A, B, W)

CALL LA_SYGV / LA_HEGV(A, B, W, ITYPE, JOBZ, UPLO, INFO)

LA SYGST / LA HEGST (reduction to standard form):

CALL LA_SYGST / LA_HEGST(A, B)

CALL LA_SYGST / LA_HEGST(A, B, ITYPE, UPLO, INFO)

LA SYTRD / LA HETRD (reduction to tridiagonal form):

CALL LA_SYTRD / LA_HETRD(A, TAU)

CALL LA_SYTRD / LA_HETRD(A, TAU, UPLO, INFO)

LA ORGTR / LA UNGTR (generates an orthogonal matrix):

CALL LA_ORGTR / LA_UNGTR(A, TAU)

CALL LA_ORGTR / LA_UNGTR(A, TAU, UPLO, INFO)

LA POTRF (generates an orthogonal matrix):

CALL LA_POTRF(A)

CALL LA_POTRF(A, UPLO, RCOND, NORM, INFO)

5 Documentation

In appendices A, B and C, we give a �rst attempt at draft documentation

for these routines. The style is somewhat similar to that of the LAPACK

Users' Guide, but with various obvious new conventions introduced to handle

the generic nature of the interfaces.

13

6 Test Software

Additional test software is being developed to test the new interfaces. At

present, the test software is a modi�ed version of the LAPACK 77 Test Suite.

7 Performance Issues and Timings

The present FORTRAN 90 compilers do not assume that array storage is con-

tiguous. The e�ect on performance will of course depend on their compiler.

The contents of arrays are copied to the temporary storage when calling FOR-

TRAN 77 subroutines (functions) from the FORTRAN 90 procedures. This

data copy results in a degradation in performance. As previously mentioned,

we are aware of performance enhancements to the interface which could be made

available through alternative interfaces to the routines. However, these enhance-

ments violate our goal to present a true Fortran 90 interface to the LAPACK

library by complicating the design of the interface through the use of Fortran 77

constructs. Our Fortran 90 interface is provided as a simpli�ed user interface to

the LAPACK library. If performance is the main focus of the user's application,

he should call the Fortran 77 interface directly.

We have performed timings to measure the extra overhead of the Fortran 90

interface. We timed LA GETRF on a single processor of an IBM SP-2 (in double

precision) and a single processor of a Cray YMP C90A (in single precision). All

timings are given in mega
ops.

IBM 1. Speed of LAPACK 90 calling LAPACK 77 and BLAS from the ESSL

library.

2. Speed of LAPACK 77, using BLAS from the ESSL library.

Array size 600 700 800 900 1000 1100 1200 1300 1400 1500

LAPACK90 187 180 182 170 172 172 176 177 181 182

LAPACK77 191 181 182 171 172 173 176 179 180 182

Cray 1. Speed of LAPACK 90 calling LAPACK 77 as provided by CRAY in

LIBSCI.

2. Speed of LAPACK 77 as provided by CRAY in LIBSCI.

Array size 600 700 800 900 1000 1100 1200 1300 1400 1500

LAPACK90 723 828 646 841 822 855 789 857 846 868

LAPACK77 778 834 649 845 825 860 794 864 848 873

The above tables show the LAPACK 90 results are a little slower (1 or 2%)

than the LAPACK 77 results.

14

8 Acknowledgments

This research was partially supported by the Danish Natural Science Research

Council through a grant for the EPOS project (E�cient Parallel Algorithms for

Optimization and Simulation).

References

[1] E. Anderson, Z. Bai, C. H. Bischof, J. Demmel, J. J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov and D. C.

Sorensen. LAPACK Users' Guide Release 2.0. SIAM, Philadelphia, 1995.

[2] J.J. Dongarra, J. Du Croz, S. Hammarling, J. Wa�sniewski and A. Zem la.

LAPACK Working Note 101, A Proposal for a Fortran 90 Interface for LA-

PACK. Report UNIC-95-9, UNI�C, Lyngby, Denmark, 1995. Report ut-cs-

95-295, University of Tennessee, Computer Science Department, Knoxville,

July, 1995.

[3] M. Metcalf and J. Reid. Fortran 90 Explained. Oxford, New York, Tokyo,

Oxford University Press, 1990.

15

A Solving Systems of Linear Equations AX = B

with a General Matrix A, Documentation

A.1 LA GESV

A.1.1 Purpose

LA GESV computes the solution to either a real or complex system of lin-

ear equations AX = B, where A is a square matrix and B and X are either

rectangular matrices or vectors.

The LU decomposition with partial pivoting and row interchanges is used

to factor A as A = PLU , where P is a permutation matrix, L is unit lower

triangular, and U is upper triangular. The factored form of A is then used to

solve the system of equations AX = B.

A.1.2 Speci�cation

SUBROUTINE LA GESV(A, B, IPIV, INFO)

type(wp), INTENT(INOUT) :: A(:,:), rhs

INTEGER, INTENT(OUT), OPTIONAL :: IPIV(:)

INTEGER, INTENT(OUT), OPTIONAL :: INFO

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

rhs ::= B(:,:) j B(:)

A.1.3 Arguments

A { (input/output) REAL or COMPLEX array, shape (:; :), size(A; 1) =

size(A; 2).

� On entry, the matrix A.

� On exit, the factors L and U from the factorization A = PLU ; the

unit diagonal elements of L are not stored.

B { (input/output)REAL orCOMPLEX array, shape (:; :) or (:), and size(B; 1)

or size(B) = size(A; 1).

� On entry, the right hand side vector(s) of matrix B for the system of

equations AX = B.

� On exit, if there is no error, the matrix of solution vector(s) X .

IPIV { Optional (output) INTEGER array, shape (:), size(IPIV) = size(A; 1).

16

� If IPIV is present, it contains indices that de�ne the permutation

matrix P ; row i of the matrix was interchanged with row IPIV (i).

INFO { Optional (output) INTEGER.

� If INFO is present

= 0 : successful exit

< 0 : if INFO = �i, the i-th argument had an illegal value

� 0 : if INFO = i, U(i; i) is exactly zero. The factorization has been

completed, but the factor U is exactly singular, so the solution

could not be computed.

� If INFO is not present and an error occurs, then the program is

terminated with an error message.

A.2 LA GESVX

A.2.1 Purpose

LA GESVX computes the solution to a real or complex system of linear equa-

tions AX = B, where A is a square matrix and B and X are either rectangular

matrices or vectors.

LA GESVX is an expert driver routine, which can also optionally perform

the following functions:

� solve ATX = B or AHX = B,

� estimate the condition number of A

� return the pivot growth factor

� re�ne the solution and compute forward and backward error bounds

� equilibrate the system if A is poorly scaled.

A.2.2 Speci�cation

SUBROUTINE LA GESVX (A, B, X, AF, IPIV, FACT, TRANS, EQUED, &

R, C, FERR, BERR, RCOND, RPVGRW, INFO)

type(wp), INTENT(INOUT) :: A(:,:), rhs

type(wp), INTENT(OUT) :: sol

type(wp), INTENT(INOUT), OPTIONAL :: AF(:,:)

INTEGER, INTENT(INOUT), OPTIONAL :: IPIV(:)

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: FACT, TRANS

CHARACTER(LEN=1), INTENT(INOUT), OPTIONAL :: EQUED

REAL(wp), INTENT(INOUT), OPTIONAL :: R(:), C(:)

REAL(wp), INTENT(OUT), OPTIONAL :: err, RCOND, RPVGRW

17

INTEGER, INTENT(OUT), OPTIONAL :: INFO

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

rhs ::= B(:,:) j B(:)

sol ::= X(:,:) j X(:)

err ::= FERR(:), BERR(:) j FERR, BERR

A.2.3 Description

The following steps are performed:

1. If FACT is not present or FACT = 0N 0, and EQUED is present, real

scaling factors are computed to equilibrate the system:

TRANS = 'N' : diag(R) A diag(C) (diag(C))�1 X = diag(R) B

TRANS = 'T' : (diag(R) A diag(C))T (diag(R))�1 X = diag(C) B

TRANS = 'C' : (diag(R) A diag(C))H (diag(R))�1 X = diag(C) B

Whether or not the system will be equilibrated depends on the scal-

ing of the matrix A, but if equilibration is used, A is overwritten by

diag(R) A diag(C) and B by diag(R) B (if TRANS = 0N 0) or diag(C) B

(if TRANS = 0T 0 or 0C 0).

2. If FACT = 0N 0, the LU decomposition is used to factor the matrix A

(after equilibration if EQUED is present) as A = PLU , where P is a

permutation matrix, L is a unit lower triangular matrix, and U is upper

triangular.

3. The factored form of A is used to estimate the condition number of the

matrix A. If the reciprocal of the condition number is less than machine

precision, steps 4 { 6 are skipped.

4. The system of equations is solved for X using the factored form of A.

5. Iterative re�nement is applied to improve the computed solution matrix

and calculate error bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(C) (if

TRANS = 0N 0) or diag(R) (if TRANS = 0T 0 or 0C 0) so that it solves the

original system before equilibration.

18

A.2.4 Arguments

A { (input/output) REAL or COMPLEX array, shape (:; :), size(A; 1) =

size(A; 2).

If FACT is not present or FACT = 0N 0,

� On entry, the matrix A.

� On exit, if EQUED is present, the matrix A may have been

overwritten by the equilibrated matrix (see EQUED).

If FACT is present and FACT = 0F 0,

� On entry, the matrix A, possibly equilibrated in a previous call

to LA GESVX (see EQUED).

� On exit, A is unchanged.

B { (input/output)REAL orCOMPLEX array, shape (:; :) or (:), and size(B; 1)

or size(B) = size(A; 1).

� On entry, the right hand side vector(s) of matrix B for the system of

equations AX = B.

� On exit, if EQUED is present, B may have been scaled in accor-

dance with the equilibration of A (see EQUED); otherwise, B is

unchanged.

X { (output) REAL or COMPLEX array, shape (:; :) or (:), size(X; 1) or

size(X) = size(A; 1).

If INFO = 0, the solution matrix (vector) X to the original system of

equations. Note that X always returns the solution to the original system

of equations; if equilibration has been performed (EQUED is present and

EQUED 6= 0N 0), this does not correspond to the scaled A and B.

AF { Optional (input/output)REAL orCOMPLEX array, shape (:; :), size(AF; 1) =

size(AF; 2) = size(A; 1).

If FACT is not present or FACT = 0N 0, then AF is an output argument

and returns the factors L and U from the factorization A = PLU of

the original matrix A, possibly equilibrated if EQUED is present.

If FACT is present and FACT = 0F 0, then AF is an input argument

(and must be present); on entry, it must contain the factors L and

U of A (possibly equilibrated if EQUED is present), returned by a

previous call to LA GESVX.

IPIV { Optional (input/output) INTEGER array, shape (:), size(IPIV) =

size(A; 1).

19

If FACT is not present or FACT = 0N 0, then IPIV is an output argu-

ment and returns the pivot indices from the factorization A = PLU

of the original matrix A, possibly equilibrated if EQUED is present.

If FACT is present and FACT = 0F 0, then IPIV is an input argu-

ment (and must be present); on entry, it must contain the pivot

indices from the factorization of A (possibly equilibrated if EQUED

is present), returned by a previous call to LA GESVX.

TRANS { Optional (input) CHARACTER*1.

� If TRANS is present, it speci�es the form of the system of equations:

= 0N 0 : AX = B (No transpose)

= 0T 0 : ATX = B (Transpose)

= 0C 0 : AHX = B (Conjugate transpose)

� otherwise TRANS = 0N 0 is assumed.

FACT { Optional (input) CHARACTER*1.

Speci�es whether or not the factored form of the matrix A is supplied on

entry.

� If FACT is present then:

= 0N 0 : the matrix A will be equilibrated if EQUED is present,

then copied to AF and factored.

= 0F 0 : on entry, AF and IPIV must contain the factored form of

A (possibly equilibrated if EQUED is present).

� otherwise FACT = 0N 0 is assumed.

EQUED { Optional (input/output) CHARACTER*1.

If FACT is not present or FACT = 0N 0, then EQUED is an output

argument. If it is present, then the matrix is equilibrated, and on

exit EQUED speci�es the scaling of A which has actually been per-

formed:

= 0N 0 : No equilibration.

= 0R0 : Row equilibration, i.e., A has been premultiplied by diag(R);

also B has been premultiplied by diag(R) if TRANS = 0N 0.

= 0C 0 : Column equilibration, i.e., A has been postmultiplied by

diag(C); also B has been premultiplied by diag(C) if TRANS

= 0T 0 or 0C 0.

= 0B0 : Both row and column equilibration: combines the e�ects of

EQUED = 0R0 and EQUED = 0C 0.

20

If FACT is present and FACT = 0F 0, then EQUED is an input ar-

gument; if it is present, it speci�es the equilibration of A which was

performed in a previous call to LA GESVX with FACT not present

or FACT = 0N 0.

R { Optional (input/output) REAL array, shape (:), size(R) = size(A; 1).

R must be present if EQUED is present and EQUED = 0R0 or 0B0; R is

not referenced if EQUED = 0N 0 or 0C 0.

If FACT is not present or FACT = 0N 0, then R is an output argu-

ment. If EQUED = 0R0 or 0B0, R returns the row scale factors for

equilibrating A.

If FACT is present and FACT = 0F 0, then R is an input argument.

If EQUED = 0R0 or 0B0, R must contain the row scale factors for

equilibrating A, returned by a previous call to LA GESVX; each

element of R must be positive.

C { Optional (input/output) REAL array, shape (:), size(C) = size(A; 1).

C must be present if EQUED is present and EQUED = 0C 0 or 0B0; C is

not referenced if EQUED = 0N 0 or 0R0.

If FACT is not present or FACT = 0N 0, then C is an output argument.

If EQUED = 0C 0 or 0B0, C returns the column scale factors for

equilibrating A.

If FACT is present and FACT = 0F 0, then C is an input argument. If

EQUED = 0C 0 or 0B0, C must contain the column scale factors for

equilibrating A, returned by a previous call to LA GESVX; each

element of C must be positive.

FERR { Optional (output) REAL array of shape (:) or REAL scalar.

If it is an array, size(FERR) = size(X; 2). The estimated forward error

bound for each solution vector X(j) (the j-th column of the solution ma-

trix X). If XTRUE is the true solution corresponding to X(j), FERR(j)

is an estimated upper bound for the magnitude of the largest element in

(X(j) � XTRUE) divided by the magnitude of the largest element in

X(j). The estimate is as reliable as the estimate for RCOND, and is

almost always a slight overestimate of the true error.

BERR { Optional (output) REAL array of shape (:) or REAL scalar.

If it is an array, size(BERR) = size(X; 2). The componentwise relative

backward error of each solution vector X(j) (i.e., the smallest relative

change in any element of A or B that makes X(j) an exact solution).

RCOND { Optional (output) REAL.

The estimate of the reciprocal condition number of the matrix A after

equilibration (if done). If RCOND is less than the machine precision (in

21

particular, if RCOND = 0), the matrix is singular to working precision.

This condition is indicated by a return code of INFO > 0, and the solution

and error bounds are not computed.

RPVGRW { Optional (output) REAL.

The reciprocal pivot growth factor kAk1=kUk1. If RPV GRW is much

less than 1, then the stability of the LU factorization of the (equilibrated)

matrix A could be poor. This also means that the solution X , condition

estimator RCOND, and forward error bound FERR could be unreliable.

If factorization fails with 0 < INFO � size(A; 1), then RPV GRW con-

tains the reciprocal pivot growth factor for the leading INFO columns of

A.

INFO { Optional (output) INTEGER.

� If INFO is present

= 0 : successful exit

< 0 : if INFO = �i, the i-th argument had an illegal value

> 0 : if INFO = i, and i is

� N : U(i; i) is exactly zero. The factorization has been com-

pleted, but the factor U is exactly singular, so the solution

and error bounds could not be computed.

= N + 1 : RCOND is less than machine precision. The fac-

torization has been completed, but the matrix is singular to

working precision, and the solution and error bounds have

not been computed.

� If INFO is not present and an error occurs, then the program is

terminated with an error message.

A.3 LA GETRF

A.3.1 Purpose

LA GETRF computes an LU factorization of a general rectangular matrix A

using partial pivoting with row interchanges.

The factorization has the form A = PLU where P is a permutation matrix,

L is lower triangular with unit diagonal elements (lower trapezoidal if m > n),

and U is upper triangular (upper trapezoidal if m < n), where m = size(A; 1)

and n = size(A; 2).

When A is square (m = n), LA GETRF optionally estimates the reciprocal

of the condition number of the matrix A, in either the 1-norm or the 1-norm.

An estimate is obtained for kA�1k, and the reciprocal of the condition number

is computed as RCOND = 1=(kAk kA�1k).

22

A.3.2 Speci�cation

SUBROUTINE LA GETRF(A, IPIV, RCOND, NORM, INFO)

type(wp), INTENT(INOUT) :: A(:,:)

INTEGER, INTENT(OUT) :: IPIV(:)

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: NORM

REAL(wp), INTENT(OUT), OPTIONAL :: RCOND

INTEGER, INTENT(OUT), OPTIONAL :: INFO

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

A.3.3 Arguments

A { (input/output) REAL or COMPLEX array, shape (:; :).

� On entry, the matrix A.

� On exit, the factors L and U from the factorization A = PLU ; the

unit diagonal elements of L are not stored.

IPIV { (output) INTEGER array, shape (:), size(IPIV) = min(size(A; 1); size(A; 2)).

Indices that de�ne the permutation matrix P ; row i of the matrix was in-

terchanged with row IPIV (i).

RCOND { Optional (output) REAL.

The reciprocal of the condition number of the matrix A for the case m = n,

computed as RCOND = 1=(kAk kA�1k). RCOND should be present if

NORM is present. If m 6= n then RCOND is returned as zero.

NORM { Optional (input) CHARACTER*1.

Speci�es whether the 1-norm condition number or the 1-norm condition

number is required:

� = '1', 'O' or 'o': 1-norm;

� = 'I ', 'i': 1-norm.

If NORM is not present, the 1-norm is used.

INFO { Optional (output) INTEGER.

� If INFO is present

= 0 : successful exit

< 0 : if INFO = �i, the i-th argument had an illegal value

23

> 0 : if INFO = i, U(i; i)] is exactly zero. The factorization has

been completed, but the factor U is exactly singular, so the so-

lution could not be computed.

� If INFO is not present and an error occurs, then the program is

terminated with an error message.

A.4 LA GETRS

A.4.1 Purpose

LA GETRS solves a system of linear equationsAX = B, ATX = B orAHX =

B with a general square matrix A, using the LU factorization computed by

LA GETRF.

A.4.2 Speci�cation

SUBROUTINE LA GETRS (A, IPIV, B, TRANS, INFO)

type(wp), INTENT(IN) :: A(:,:)

INTEGER, INTENT(IN) :: IPIV(:)

type(wp), INTENT(INOUT) :: rhs

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS

INTEGER, INTENT(OUT), OPTIONAL :: INFO

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

rhs ::= B(:,:) j B(:)

A.4.3 Arguments

A { (input) REAL or COMPLEX array, shape (:; :), size(A; 1) = size(A; 2).

The factors L and U from the factorization A = PLU as computed by

LA GETRF.

IPIV { (input) INTEGER array, shape (:), size(IPIV) = size(A; 1).

The pivot indices from LA GETRF; for 1 � i � size(A; 1), row i of the

matrix was interchanged with row IPIV (i).

B { (input/output)REAL orCOMPLEX array, shape (:; :) or (:), and size(B; 1)

or size(B) = size(A; 1).

� On entry, the right hand side vector(s) of matrix B for the system of

equations AX = B.

� On exit, if there is no error, the matrix of solution vector(s) X .

24

TRANS { Optional (input) CHARACTER*1.

� If TRANS is present, it speci�es the form of the system of equations:

= 0N 0 : AX = B (No transpose)

= 0T 0 : ATX = B (Transpose)

= 0C 0 : AHX = B (Conjugate transpose)

� otherwise TRANS = 0N 0 is assumed.

INFO { Optional (output) INTEGER.

� If INFO is present

= 0 : successful exit

< 0 : if INFO = �i, the i-th argument had an illegal value

� If INFO is not present and an error occurs, then the program is

terminated with an error message.

A.5 LA GETRI

A.5.1 Purpose

LA GETRI computes the inverse of a matrix using the LU factorization com-

puted by LA GETRF.

A.5.2 Speci�cation

SUBROUTINE LA GETRI (A, IPIV, INFO)

type(wp), INTENT(INOUT) :: A(:,:)

INTEGER, INTENT(IN) :: IPIV(:)

INTEGER, INTENT(OUT), OPTIONAL :: INFO

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

A.5.3 Arguments

A { (input/output) REAL or COMPLEX array, shape (:; :), size(A; 1) =

size(A; 2).

� On entry contains the factors L and U from the factorization A =

PLU as computed by LA GETRF.

� On exit, if INFO = 0, the inverse of the original matrix A.

25

IPIV { (input) INTEGER array, shape (:), size(IPIV) = size(A; 1).

The pivot indices from LA GETRF; for 1 � i � size(A; 1), row i of the

matrix was interchanged with row IPIV (i).

INFO { Optional (output) INTEGER.

� If INFO is present

= 0 : successful exit

< 0 : if INFO = �i, the i-th argument had an illegal value

> 0 : if INFO = i, U(i,i) is exactly zero; the matrix is singular and

its inverse could not be computed.

� If INFO is not present and an error occurs, then the program is

terminated with an error message.

A.6 LA GERFS

A.6.1 Purpose

LA GERFS improves the computed solution X of a system of linear equations

AX = B or ATX = B and provides error bounds and backward error estimates

for the solution. LA GERFS uses the LU factors computed by LA GETRF.

A.6.2 Speci�cation

SUBROUTINE LA GERFS (A, AF, IPIV, B, X, &

TRANS, FERR, BERR, INFO)

type(wp), INTENT(IN) :: A(:,:), AF(:,:), rhs

INTEGER, INTENT(IN) :: IPIV(:)

type(wp), INTENT(INOUT) :: sol

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS

REAL(wp), INTENT(OUT), OPTIONAL :: err

INTEGER, INTENT(OUT), OPTIONAL :: INFO

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

rhs ::= B(:,:) j B(:)

sol ::= X(:,:) j X(:)

err ::= FERR(:), BERR(:) j FERR, BERR

A.6.3 Arguments

A { (input) REAL or COMPLEX array, shape (:; :), size(A; 1) = size(A; 2).

The original matrix A.

26

AF { (input)REAL orCOMPLEX array, shape (:; :), size(AF; 1) = size(AF; 2) =

size(A; 1).

The factors L and U from the factorization A = PLU as computed by

LA GETRF.

IPIV { (input) INTEGER array, shape (:), size(IPIV) = size(A; 1).

The pivot indices from LA GETRF; for 1 � i � size(A; 1), row i of the

matrix was interchanged with row IPIV (i).

B { (input) REAL or COMPLEX array, shape (:; :) or (:), size(B; 1) or

size(B) = size(A; 1).

The right hand side vector(s) of matrix B for the system of equations

AX = B.

X { (input/output) REAL or COMPLEX array, shape (:; :) or (:), size(X; 1)

or size(X) = size(A; 1).

� On entry, the solution matrix X , as computed by LA GETRS.

� On exit, the improved solution matrix X .

TRANS { Optional (input) CHARACTER*1.

� If TRANS is present, it speci�es the form of the system of equations:

= 0N 0 : AX = B (No transpose)

= 0T 0 : ATX = B (Transpose)

= 0C 0 : AHX = B (Conjugate transpose)

� otherwise TRANS = 0N 0 is assumed.

FERR { Optional (output) REAL array of shape (:) or REAL scalar.

If it is an array, size(FERR) = size(X; 2). The estimated forward error

bound for each solution vector X(j) (the j-th column of the solution ma-

trix X). If XTRUE is the true solution corresponding to X(j), FERR(j)

is an estimated upper bound for the magnitude of the largest element in

(X(j) � XTRUE) divided by the magnitude of the largest element in

X(j). The estimate is as reliable as the estimate for RCOND, and is

almost always a slight overestimate of the true error.

BERR { Optional (output) REAL array of shape (:) or REAL scalar.

If it is an array, size(BERR) = size(X; 2). The componentwise relative

backward error of each solution vector X(j) (i.e., the smallest relative

change in any element of A or B that makes X(j) an exact solution).

INFO { Optional (output) INTEGER.

� If INFO is present

27

= 0 : successful exit

< 0 : if INFO = �i, the i-th argument had an illegal value

� If INFO is not present and an error occurs, then the program is

terminated with an error message.

A.6.4 Internal Parameters

ITMAX { is the maximum number of steps of iterative re�nement. It is set

to 5 in the LAPACK 77 subroutines (see [1]).

A.7 LA GEEQU

A.7.1 Purpose

LA GEEQU computes row and column scalings intended to equilibrate a rect-

angle matrix A and reduce its condition number. R returns the row scale factors

and C the column scale factors, chosen to try to make the largest entry in each

row and column of the matrix B with elements Bij = RiAijCj have absolute

value 1.

Ri and Cj are restricted to be between SMLNUM = smallest safe num-

ber and BIGNUM = largest safe number. Use of these scaling factors is not

guaranteed to reduce the condition number of A but works well in practice.

A.7.2 Speci�cation

SUBROUTINE LA GEEQU (A, R, C, ROWCND, COLCND, &

AMAX, INFO)

type(wp), INTENT(IN) :: A(:,:)

REAL(wp), INTENT(OUT) :: R(:), C(:)

REAL(wp), INTENT(OUT), OPTIONAL :: ROWCND, &

COLCND, AMAX

INTEGER, INTENT(OUT), OPTIONAL :: INFO

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

A.7.3 Arguments

A { (input) REAL or COMPLEX array, shape (:; :).

The matrix A, whose equilibration factors are to be computed.

28

R { (output) REAL array, shape (:), size(R) = size(A; 1).

If INFO = 0 or INFO > size(A; 1), R contains the row scale factors for

A.

C { (output) REAL array, shape (:), size(C) = size(A; 2).

If INFO = 0, C contains the column scale factors for A.

ROWCND { Optional (output) REAL.

If INFO = 0 or INFO > size(A; 1), ROWCND contains the ratio of

the smallest R(i) to the largest R(i). If ROWCND � 0:1 and AMAX is

neither too large nor too small, it is not worth scaling by R.

COLCND { Optional (output) REAL.

If INFO = 0, COLCND contains the ratio of the smallest C(i) to the

largest C(i). If COLCND � 0:1, it is not worth scaling by C.

AMAX { Optional (output) REAL.

Absolute value of largest matrix element. If AMAX is very close to over-

ow or very close to under
ow, the matrix should be scaled.

INFO { Optional (output) INTEGER.

� If INFO is present

= 0 : successful exit

< 0 : if INFO = �i, the i-th argument had an illegal value

> 0 : if INFO = i, and i is

� m : the i-th row of A is exactly zero

> m : the (i�m)-th column of A is exactly zero

where m = size(A; 1).

� If INFO is not present and an error occurs, then the program is

terminated with an error message.

29

B Symmetric and Hermitian Eigenvalue and Eigen-

vector Procedures, Documentation

B.1 LA SYEV / LA HEEV

B.1.1 Purpose

LA SYEV / LA HEEV computes all eigenvalues and, optionally, eigenvec-

tors of a real symmetric or complex Hermitian matrix A.

B.1.2 Speci�cation

SUBROUTINE LA SYEV / LA HEEV(A, W, JOBZ, UPLO, INFO)

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: JOBZ, UPLO

INTEGER, INTENT(OUT), OPTIONAL :: INFO

type(wp), INTENT(INOUT) :: A(:,:)

type(wp), INTENT(OUT) :: W(:)

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

B.1.3 Defaults

� If JOBZ is not present then JOBZ = 'N' is assumed.

� If UPLO is not present then UPLO = 'U' is assumed.

B.1.4 Arguments

A { (input/output) REAL or COMPLEX array, shape (:,:)

� On entry, the symmetric (Hermitian) matrix A.

{ If UPLO = 'U', the upper triangular part of A contains the upper

triangular part of the matrix A.

{ If UPLO = 'L', the lower triangular part of A contains

{ the lower triangular part of the matrix A.

� On exit:

{ If JOBZ = 'V', then if INFO = 0, A contains the orthonormal

eigenvectors of the matrix A.

{ If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') or

the upper triangle (if UPLO='U') of A, including the diagonal,

is destroyed.

W { (output) REAL array, shape (:), size(W) = size(A,1) � 0.

30

� If INFO = 0, the eigenvalues in ascending order.

JOBZ { Optional, (input) CHARACTER*1

� If JOBZ is present then:

{ = 'N': Compute eigenvalues only;

{ = 'V': Compute eigenvalues and eigenvectors.

� otherwise JOBZ = 'N' is assumed.

UPLO { Optional, (input) CHARACTER*1

� If UPLO is present then:

{ = 'U': Upper triangle of A is stored;

{ = 'L': Lower triangle of A is stored.

� otherwise UPLO = 'U' is assumed.

INFO { Optional, (output) INTEGER

� If INFO is present:

{ = 0: successful exit

{ < 0: if INFO = �i, the i-th argument had an illegal value

{ > 0: if INFO = i, the algorithm failed to converge; i form did

not converge to zero.

� If INFO is not present and an error occurs, then the program is

terminated with an error message.

B.2 LA SYEVD / LA HEEVD

B.2.1 Purpose

LA SYEVD / LA HEEVD computes all eigenvalues and, optionally, eigen-

vectors of a real symmetric or complex Hermitian matrix A. If eigenvectors are

desired, it uses a divide and conquer algorithm.

The divide and conquer algorithm makes very mild assumptions about
oat-

ing point arithmetic. It will work on machines with a guard digit in add/subtract,

or on those binary machines without guard digits which subtract like the Cray

X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadec-

imal or decimal machines without guard digits, but we know of none.

31

B.2.2 Speci�cation

SUBROUTINE LA SYEVD / LA HEEVD(A, W, JOBZ, UPLO, INFO)

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: JOBZ, UPLO

INTEGER, INTENT(OUT), OPTIONAL :: INFO

type(wp), INTENT(INOUT) :: A(:,:)

type(wp), INTENT(OUT) :: W(:)

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

B.2.3 Defaults

� If JOBZ is not present then JOBZ = 'N' is assumed.

� If UPLO is not present then UPLO = 'U' is assumed.

B.2.4 Arguments

A { (input/output) REAL or COMPLEX array, shape (:,:).

� On entry, the symmetric (Hermitian) matrix A.

{ If UPLO = 'U', the upper triangular part of A contains the upper

triangular part of the matrix A.

{ If UPLO = 'L', the lower triangular part of A contains

{ the lower triangular part of the matrix A.

� On exit:

{ If JOBZ = 'V', then if INFO = 0, A contains the orthonormal

eigenvectors of the matrix A.

{ If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') or

the upper triangle (if UPLO='U') of A, including the diagonal,

is destroyed.

W { (output) REAL array, shape (:), size(W) = size(A,1) � 0.

� If INFO = 0, the eigenvalues in ascending order.

JOBZ { Optional, (input) CHARACTER*1

� If JOBZ is present then:

{ = 'N': Compute eigenvalues only;

{ = 'V': Compute eigenvalues and eigenvectors.

� otherwise JOBZ = 'N' is assumed.

32

UPLO { Optional, (input) CHARACTER*1

� If UPLO is present then:

{ = 'U': Upper triangle of A is stored;

{ = 'L': Lower triangle of A is stored.

� otherwise UPLO = 'U' is assumed.

INFO { Optional, (output) INTEGER

� If INFO is present:

{ = 0: successful exit

{ < 0: if INFO = �i, the i-th argument had an illegal value

{ > 0: if INFO = i, the algorithm failed to converge; i

form did not converge to zero.

� If INFO is not present and an error occurs, then the program is

terminated with an error message.

B.3 LA SYEVX / LA HEEVX

B.3.1 Purpose

LA SYEVX / LA HEEVX computes selected eigenvalues and, optionally,

eigenvectors of a real symmetric or complex Hermitian matrix A. Eigenvalues

and eigenvectors can be selected by specifying either a range of values or a range

of indices for the desired eigenvalues.

B.3.2 Speci�cation

SUBROUTINE LA SYEVX / LA HEEVX (A, W, JOBZ, UPLO, VL, VU, &

IL, IU, M, IFAIL, ABSTOL, INFO)

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: JOBZ, UPLO

INTEGER, INTENT(IN), OPTIONAL :: IL, IU

INTEGER, INTENT(OUT), OPTIONAL :: INFO, M

REAL(wp), INTENT(IN), OPTIONAL :: ABSTOL, VL, VU

INTEGER, INTENT(OUT), OPTIONAL :: IFAIL(:)

type(wp), INTENT(INOUT) :: A(:,:)

REAL(wp), INTENT(OUT) :: W(:)

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

33

B.3.3 Defaults

� If JOBZ and IFAIL are not present then JOBZ = 'N' is assumed.

� If JOBZ is not present and IFAIL is present then JOBZ = 'V' is assumed.

� If UPLO is not present then UPLO = 'U' is assumed.

� If IL or IU are not present and VL or VU are not present then all eigen-

values are computed (M = size(A,1)).

� If IL is present and IU is not present then IU = size(A,1) is assumed. If

IL is not present and IU is present then IL = 1 is assumed.

� If VL is present and VU is not present then VU = +in�nity is assumed.

If VL is not present and VU is present then VL = -in�nity is assumed.

� If ABSTOL is not present then ABSTOL = 2*SLAMCH('S') is assumed.

In this case the eigenvalues are computed most accurately.

B.4 Argument dependency

� If either IL or IU are present then neither VL or VU are present.

� If either VL or VU are present then neither IL or IU are present.

� If JOBZ = 'N' then IFAIL must not be present.

B.4.1 Arguments

A { (input/output) REAL or COMPLEX array, shape (:,:), size(A,1) =

size(A,2) � 0.

� On entry, the symmetric (Hermitian) matrix A.

{ If UPLO = 'U', the upper triangular part of A contains the upper

triangular part of the matrix A.

{ If UPLO = 'L', the lower triangular part of A contains the lower

triangular part of the matrix A.

� On exit:

{ If JOBZ = 'V', then if INFO = 0, A contains the orthonor-

mal eigenvectors of the matrix A corresponding to the selected

eigenvalues, with the i-th column of A holding the eigenvector

associated with W(i). If an eigenvector fails to converge, then

that column of A contains the latest approximation to the eigen-

vector, and the index of the eigenvector is returned in IFAIL.

34

{ If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') or

the upper triangle (if UPLO='U') of A, including the diagonal,

is destroyed.

W { (output) REAL array, shape (:), size(W) = size(A,1) � 0.

� On normal exit, the �rst M elements contain the selected eigenvalues

in ascending order.

JOBZ { Optional, (input) CHARACTER*1

� If JOBZ is present then:

{ =0 N 0: Compute eigenvalues only;

{ =0 V 0: Compute eigenvalues and eigenvectors.

� otherwise JOBZ = 'N' is assumed.

UPLO { Optional, (input) CHARACTER*1

� If UPLO is present then:

{ =0 U 0: Upper triangle of A is stored;

{ =0 L0: Lower triangle of A is stored.

� otherwise UPLO =0 U 0 is assumed.

VL { Optional, (input) REAL.

VU { Optional, (input) REAL.

� If VL and VU are present (V L < V U) then the lower and upper

bounds of the interval to be searched for eigenvalues. All eigenvalues

in the half-open interval (VL,VU] will be found.

IL { Optional, (input) INTEGER.

IU { Optional, (input) INTEGER.

� If IL and IU are present (1 � IL � IU � size(A; 1)) then the

indices (in ascending order) of the smallest and largest eigenvalues

to be returned. The ILth through IU th eigenvalues will be found.

M { Optional, (output) INTEGER.

� The total number of eigenvalues found (0 �M � size(A; 1)).

� If IL and IU are present then M = IU � IL+ 1.

IFAIL { Optional, (output) INTEGER array, shape (:),

size(IFAIL) = size(A; 1) � 0.

35

� If IFAIL is present then JOBZ =0 V 0 is assumed and eigenvectors

are computed.

{ If INFO = 0, the �rst M elements of IFAIL are zero.

{ If INFO > 0, then IFAIL contains the indices of the eigenvectors

that failed to converge.

ABSTOL { Optional, (input) REAL.

� The absolute error tolerance for the eigenvalues. An approximate

eigenvalue is accepted as converged when it is determined to lie in an

interval [a,b] of width less than or equal to

ABSTOL+EPS �max(jaj; jbj)

,

where EPS is the machine precision. If ABSTOL is less than or

equal to zero, then EPS � jT jr will be used in its place, where jT j

is the 1-norm of the tridiagonal matrix obtained by reducing A to

tridiagonal form.

� Eigenvalues will be computed most accurately when ABSTOL is set

to twice the under
ow threshold 2�SLAMCH(0S0), not zero. If this

routine returns with INFO > 0, indicating that some eigenvectors

did not converge, try setting ABSTOL to 2� SLAMCH(0S0).

� See "Computing Small Singular Values of Bidiagonal Matrices with

Guaranteed High Relative Accuracy," by Demmel and Kahan, LA-

PACK Working Note #3.

� If ABSTOL is not present then ABSTOL = 2 � SLAMCH(0S0) is

assumed.

INFO { Optional, (output) INTEGER

� If INFO is present:

{ = 0: successful exit

{ < 0: if INFO = �i, the i-th argument had an illegal value

{ > 0: if INFO = i, then i eigenvectors failed to converge. Their

indices are stored in array IFAIL.

� If INFO is not present and an error occurs, then the program is

terminated with an error message.

36

B.5 LA SYGST / LA HEGST

B.5.1 Purpose

LA SYGST / LA HEGST reduces a real symmetric-de�nite or complex

Hermitian-de�nite generalized eigenproblem to standard form.

� If ITY PE = 1, the problem is Ax = �Bx, and A is overwritten by

(UH)�1AU�1 or L�1A(LH)�1

� If ITY PE = 2 or 3, the problem is ABx = �x or BAx = �x, and A is

overwritten by UAUH or LHAL.

� B must have been previously factorized as UHU or LLH by LA POTRF.

B.5.2 Speci�cation

SUBROUTINE LA SYGST / LA HEGST(A, B, ITYPE, UPLO, INFO)

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO

INTEGER, INTENT(IN), OPTIONAL :: ITYPE

INTEGER, INTENT(OUT), OPTIONAL :: INFO

type(wp), INTENT(IN) :: B(:,:)

type(wp), INTENT(INOUT) :: A(:,:)

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

B.5.3 Defaults

� If ITYPE is not present then ITY PE = 1 is assumed.

� If UPLO is not present then UPLO = 'U' is assumed.

B.5.4 Arguments

A { (input/output) REAL or COMPLEX array, shape (:,:),

size(A; 1) = size(A; 2) � 0.

� On entry, the symmetric (Hermitian) matrix A.

{ If UPLO =0 U 0, the upper triangular part of A contains the

upper triangular part of the matrix A, and the strictly lower

triangular part of A is not referenced.

{ If UPLO =0 L0, the lower triangular part of A contains the lower

triangular part of the matrix A, and the strictly upper triangular

part of A is not referenced.

37

� On exit, if INFO = 0, the transformed matrix, stored in the same

format as A.

B { (input) REAL or COMPLEX array, shape (:,:), size(B; 1) = size(A; 1).

� The triangular factor from the Cholesky factorization of B, as re-

turned by LA POTRF.

ITYPE { Optional, (input) INTEGER

� If ITYPE is present then:

{ = 1: compute (UH)�1AU�1 or L�1A(LH)�1;

{ = 2 or 3: compute UAUH or LHAL.

� otherwise ITY PE = 1 is assumed.

UPLO { Optional, (input) CHARACTER*1

� If UPLO is present then:

{ =0 U 0: Upper triangle of A is stored and B is factored as UHU ;

{ =0 L0: Lower triangle of A is stored and B is factored as LLH .

� otherwise UPLO =0 U 0 is assumed.

INFO { Optional, (output) INTEGER

� If INFO is present:

{ = 0: successful exit

{ < 0: if INFO = �i, the i-th argument had an illegal value

� If INFO is not present and an error occurs, then the program is

terminated with an error message.

B.6 LA SYGV / LA HEGV

B.6.1 Purpose

LA SYGV / LA HEGV computes all the eigenvalues, and optionally, the

eigenvectors of a real generalized symmetric-de�nite or complex Hermitian-

de�nite eigenproblem, of the form Ax = �Bx, ABx = �x, or BAx = �x.

Here A and B are assumed to be symmetric (Hermitian) and B is also positive

de�nite.

38

B.6.2 Speci�cation

SUBROUTINE LA SYGV / LA HEGV(A, B, W, ITYPE, JOBZ, UPLO, &

INFO)

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: JOBZ, UPLO

INTEGER, INTENT(IN), OPTIONAL :: ITYPE

INTEGER, INTENT(OUT), OPTIONAL :: INFO

type(wp), INTENT(INOUT) :: A(:,:), B(:,:)

REAL(wp), INTENT(OUT) :: W(:)

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

B.6.3 Defaults

� If ITYPE is not present then ITY PE = 1 is assumed.

� If JOBZ is not present then JOBZ =0 N 0 is assumed.

� If UPLO is not present then UPLO =0 U 0 is assumed.

B.6.4 Arguments

A { (input/output) REAL or COMPLEX array, shape (:,:),

size(A; 1) = size(A; 2) � 0.

� On entry, the symmetric (Hermitian) matrix A.

{ If UPLO =0 U 0, the upper triangular part of A contains the

upper triangular part of the matrix A.

{ If UPLO =0 L0, the lower triangular part of A contains the lower

triangular part of the matrix A.

� On exit:

{ If JOBZ =0 V 0, then if INFO = 0, A contains the matrix Z of

eigenvectors. The eigenvectors are normalized as follows:

� if ITY PE = 1 or 2, ZHBZ = I ;

� if ITY PE = 3, ZHB�1Z = I .

{ If JOBZ =0 N 0, then on exit the upper triangle (if UPLO =0

U 0) or the lower triangle (if UPLO =0 L0) of A, including the

diagonal, is destroyed.

B { (input) REAL or COMPLEX array, shape (:,:), size(B; 1) = size(A; 1).

� On entry, the symmetric (Hermitian) matrix B.

39

{ If UPLO =0 U 0, the upper triangular part of B contains the

upper triangular part of the matrix B.

{ If UPLO =0 L0, the lower triangular part of B contains the lower

triangular part of the matrix B.

� On exit, if INFO � size(A; 1), the part of B containing the matrix

is overwritten by the triangular factor U or L from the Cholesky

factorization B = UHU or B = LLH .

W { (output) REAL array, shape (:), size(W) = size(A; 1).

� If INFO = 0, the eigenvalues in ascending order.

ITYPE { Optional, (input) INTEGER.

Speci�es the problem type to be solved.

� If ITYPE is present then:

{ = 1: Ax = �Bx

{ = 2: ABx = �x

{ = 3: BAx = �x

� otherwise ITY PE = 1 is assumed.

JOBZ { Optional, (input) CHARACTER*1

� If JOBZ is present then:

{ = 'N': Compute eigenvalues only;

{ = 'V': Compute eigenvalues and eigenvectors.

� otherwise JOBZ =0 N 0 is assumed.

UPLO { Optional, (input) CHARACTER*1

� If UPLO is present then:

{ = 'U': Upper triangle of A is stored and B is factored as UHU ;

{ = 'L': Lower triangle of A is stored and B is factored as LLH .

� otherwise UPLO =0 U 0 is assumed.

INFO { Optional, (output) INTEGER

� If INFO is present:

{ = 0: successful exit

{ < 0: if INFO = �i, the i-th argument had an illegal value

{ > 0: LA POTRF or LA SYEV / LA HEEV returned an error

code:

40

� � size(A; 1): if INFO = i, LA SYEV / LA HEEV failed to

converge; i o�-diagonal elements of an intermediate tridiag-

onal form did not converge to zero;

� > size(A; 1): if INFO = size(A; 1) + i � 2size(A; 1), then

the leading minor of order i of B is not positive de�nite. The

factorization of B could not be completed and no eigenvalues

or eigenvectors were computed.

� If INFO is not present and an error occurs, then the program is

terminated with an error message.

B.7 LA SYTRD / LA HETRD

B.7.1 Purpose

LA SYTRD / LA HETRD reduces a real symmetric or complex Hermitian

matrix A to real symmetric tridiagonal form T by an orthogonal or unitary

similarity transformation: QHAQ = T .

B.7.2 Speci�cation

SUBROUTINE LA SYTRD / LA HETRD(A, TAU, UPLO, INFO)

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO

INTEGER, INTENT(OUT), OPTIONAL :: INFO

type(wp), INTENT(INOUT) :: A(:,:)

type(wp), INTENT(OUT) :: TAU(:)

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

B.7.3 Defaults

� If UPLO is not present then UPLO = 'U' is assumed.

B.7.4 Arguments

A { (input/output) REAL or COMPLEX array, shape (:,:),

size(A; 1) = size(A; 2) � 0.

� On entry, the symmetric (Hermitian) matrix A.

{ If UPLO = 'U', the upper triangular part of A contains the upper

triangular part of the matrix A.

{ If UPLO = 'L', the lower triangular part of A contains the lower

triangular part of the matrix A.

41

� On exit:

{ If UPLO = 'U', the diagonal and �rst superdiagonal of A are

overwritten by the corresponding elements of the tridiagonal ma-

trix T , and the elements above the �rst superdiagonal, with the

array TAU , represent the unitary matrix Q as a product of ele-

mentary re
ectors.

{ If UPLO = 'L', the diagonal and �rst subdiagonal of A are over-

written by the corresponding elements of the tridiagonal matrix

T , and the elements below the �rst subdiagonal, with the array

TAU , represent the unitary matrix Q as a product of elementary

re
ectors.

� See Further Details.

TAU { (output)REAL orCOMPLEX array, shape (:), size(TAU) = size(A; 1)�

1.

� The scalar factors of the elementary re
ectors.

� See Further Details.

UPLO { Optional, (input) CHARACTER*1

� If UPLO is present then:

{ = 'U': Upper triangle of A is stored

{ = 'L': Lower triangle of A is stored

� otherwise UPLO = 'U' is assumed.

INFO { Optional, (output) INTEGER

� If INFO is present:

{ = 0: successful exit

{ < 0: if INFO = �i, the i-th argument had an illegal value

� If INFO is not present and an error occurs, then the program is

terminated with an error message.

B.7.5 Further Details

� If UPLO = 'U', the matrix Q is represented as a product of elementary

re
ectors Q = Hn�1 � � �H2H1. Each Hi has the form Hi = I � �vv0,

where � is a complex scalar, and v is a complex vector with vi+1:n = 0

and vi = 1; v1:i�1 is stored on exit in A(1 : i� 1; i+ 1), and � in TAU(i).

� If UPLO = 'L', the matrix Q is represented as a product of elementary

re
ectors Q = H1H2 � � �Hn�1. Each Hi has the form Hi = I��vv0, where

� is a complex scalar, and v is a complex vector with v1:i = 0 and vi+1 = 1;

vi+2:n is stored on exit in A(i + 2 : n; i), and � in TAU(i).

42

The contents of A on exit are illustrated by the following examples with

n = 5:

if UPLO = 'U': if UPLO = 'L':

(d e v2 v3 v4) (d)

(d e v3 v4) (e d)

(d e v4) (v1 e d)

(d e) (v1 v2 e d)

(d) (v1 v2 v3 e d)

where d and e denote diagonal and o�-diagonal elements of T , and vi denotes

an element of the vector de�ning Hi.

B.8 LA ORGTR / LA UNGTR

B.8.1 Purpose

LA ORGTR / LA UNGTR generates a real orthogonal / complex unitary

matrix Q which is de�ned as the product of elementary re
ectors, as returned

by LA SYTRD / LA HETRD:

� if UPLO = 'U', Q = Hn�1 � � �H2H1,

� if UPLO = 'L', Q = H1H2 � � �Hn�1.

B.8.2 Speci�cation

SUBROUTINE LA ORGTR / LA UNGTR(A, TAU, UPLO, INFO)

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO

INTEGER, INTENT(OUT), OPTIONAL :: INFO

type(wp), INTENT(IN) :: TAU(:)

type(wp), INTENT(INOUT) :: A(:,:)

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

B.8.3 Defaults

� If UPLO is not present then UPLO = 'U' is assumed.

43

B.8.4 Arguments

A { (input/output) REAL or COMPLEX array, shape (:,:),

size(A; 1) = size(A; 2) � 0.

� On entry, the vectors which de�ne the elementary re
ectors, as re-

turned by LA SYTRD or LA HETRD.

� On exit the orthogonal or unitary matrix Q.

TAU { (input)REAL orCOMPLEX array, shape (:), size(TAU) = size(A; 1)�

1.

� TAU(i) must contain the scalar factor of the elementary re
ector Hi,

as returned by LA SYTRD or LA HETRD.

UPLO { Optional, (input) CHARACTER*1

� If UPLO is present then:

{ = 'U': Upper triangle of A is stored

{ = 'L': Lower triangle of A is stored

� otherwise UPLO = 'U' is assumed.

INFO { Optional, (output) INTEGER

� If INFO is present:

{ = 0: successful exit

{ < 0: if INFO = �i, the i-th argument had an illegal value

� If INFO is not present and an error occurs, then the program is

terminated with an error message.

44

C Cholesky Factorization of a Real Symmetric

or Complex Hermitian Positive De�nite Ma-

trix A, Documentation

C.1 LA POTRF

C.1.1 Purpose

LA POTRF computes the Cholesky factorization of a real symmetric or com-

plex Hermitian positive de�nite matrix A.

The factorization has the form

� A = UHU , if UPLO = 'U', or

� A = LLH , if UPLO = 'L',

where U is an upper triangular matrix and L is lower triangular.

This is the block version of the algorithm, calling Level 3 BLAS.

LA POTRF optionally estimates the reciprocal of the condition number (in

the 1-norm) of a real symmetric or complex Hermitian positive de�nite matrix

A. An estimate is obtained for kA�1k, and the reciprocal of the condition

number is computed as RCOND = 1=kAkkA�1k.

C.1.2 Speci�cation

SUBROUTINE LA POTRF(A, UPLO, RCOND, NORM, INFO)

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: NORM, UPLO

INTEGER, INTENT(OUT), OPTIONAL :: INFO

REAL(wp), INTENT(OUT), OPTIONAL :: RCOND

type(wp), INTENT(INOUT) :: A(:,:)

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

C.1.3 Defaults

� If UPLO is not present then UPLO = 'U' is assumed.

C.1.4 Arguments

A { (input/output) REAL or COMPLEX array, shape (:,:),

size(A; 1) = size(A; 2) � 0.

� On entry, the symmetric (Hermitian) matrix A.

45

{ If UPLO = 'U', the upper triangular part of A contains the upper

triangular part of the matrix A, and the strictly lower triangular

part of A is not referenced.

{ If UPLO = 'L', the lower triangular part of A contains the lower

triangular part of the matrix A, and the strictly upper triangular

part of A is not referenced.

� On exit, if INFO = 0, the factor U or L from the Cholesky factor-

ization A = UHU or A = LLH .

UPLO { Optional, (input) CHARACTER*1

� If UPLO is present then:

{ = 'U': Upper triangle of A is stored;

{ = 'L': Lower triangle of A is stored.

� otherwise UPLO = 'U' is assumed.

RCOND { Optional (output) REAL

� The reciprocal of the condition number of the matrix A computed as

RCOND = 1=kAkkA�1k.

NORM { Optional (input) CHARACTER*1

Speci�es whether the 1-norm condition number or the in�nity-norm con-

dition number is required:

� If NORM is present then:

{ = '1', 'O' or 'o': 1-norm;

{ = 'I' or 'i': in�nity-norm.

� otherwise NORM = '1' is used.

INFO { Optional, (output) INTEGER

� If INFO is present:

{ = 0: successful exit

{ < 0: if INFO = �i, the i-th argument had an illegal value

{ > 0: if INFO = i, the leading minor of order i is not positive

de�nite, and the factorization could not be completed.

� If INFO is not present and an error occurs, then the program is

terminated with an error message.

46

D Code for One Version of LA SYEV

We illustrate here the sort of code that is needed to implement one of the

Fortran 90 jacket procedures. The procedure shown is the real single precision

version of LA SYEV.

D.1 Precision-dependencies

To handle di�erent precisions, we use a module LA PRECISION to de�ne named

constants SP and DP for the kind values of single and double precision, respec-

tively.

MODULE LA_PRECISION

INTEGER, PARAMETER :: SP=KIND(1.0), DP=KIND(1.0D0)

END MODULE LA_PRECISION

Within the LAPACK 90 code, all real and complex constructs are expressed

in terms of a symbolic kind value WP, which is de�ned by reference to the module

LA PRECISION | in single precision:

USE LA_PRECISION :: WP => SP

and in double precision:

USE LA_PRECISION :: WP => DP

These are the only precision-dependent changes in the code, apart from

changes to the procedure-names.

D.2 Error-handling

To handle errors, as described in Section 4, we use a simple procedure ERINFO,

which is assumed to be accessed from a module LA AUXMOD:

SUBROUTINE ERINFO(LINFO, SRNAME, INFO, ISTAT)

! .. Scalar Arguments ..

CHARACTER(LEN = *), INTENT(IN) :: SRNAME

INTEGER , INTENT(IN) :: LINFO

INTEGER , INTENT(OUT), OPTIONAL :: INFO

INTEGER , INTENT(IN), OPTIONAL :: ISTAT

!

! .. Executable Statements ..

!

IF((LINFO < 0 .AND. LINFO > -200) .OR. &

(LINFO > 0 .AND. .NOT.PRESENT(INFO)))THEN

WRITE (*,*) 'Program terminated in LAPACK_90 subroutine ',SRNAME

47

WRITE (*,*) 'Error indicator, INFO = ',LINFO

IF(PRESENT(ISTAT))THEN

IF(ISTAT /= 0) THEN

IF(LINFO == -100)THEN

WRITE (*,*) 'The statement ALLOCATE causes STATUS = ', ISTAT

ELSE

WRITE (*,*) 'LINFO = ', LINFO, ' not expected'

END IF

END IF

END IF

STOP

ELSE IF(LINFO <= -200) THEN

WRITE(*,*) '++'

WRITE(*,*) '*** WARNING, INFO = ', LINFO, ' WARNING ***'

IF(LINFO == -200 THEN

WRITE(*,*) 'Could not allocate sufficient workspace for the optimum'

WRITE(*,*) 'blocksize, hence the routine may not have performed as'

WRITE(*,*) 'efficiently as possible'

ELSE

WRITE(*.*) 'Unexpected warning'

END IF

WRITE(*,*) '++'

END IF

IF(PRESENT(INFO)) INFO = LINFO

END SUBROUTINE ERINFO

A more elaborate error-handling mechanism could of course be devised.

D.3 Accessing LAPACK 77 routines

We assume that interface-blocks for all the LAPACK 77 routines are accessible

from modules LA SF77MOD, LA DF77MOD, LA CF77MOD, and LA ZF77MOD. Note that

we do not use generic interfaces for the LAPACK 77 routines, since that would

impose some restrictions on the way in which LAPACK 77 routines could be

called.

However, we rename the routine in the USE statement, so that the precision-

dependent name-change is localized in the USE statement.

D.4 The code

MODULE LA_SSYEV

CONTAINS

!

SUBROUTINE SSYEV_F90(A, W, JOBZ, UPLO, INFO)

48

! .. Use Statements ..

USE LA_PRECISION, ONLY: WP => SP

USE LA_AUXMOD, ONLY: ERINFO, LSAME

USE LA_AUF77MOD, ONLY: ILAENV_F77 => ILAENV

USE LA_SF77MOD, ONLY: SYEV_F77 => SSYEV

! .. Implicit Statement ..

IMPLICIT NONE

! .. Character Arguments ..

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: JOBZ, UPLO

! .. Scalar Arguments ..

INTEGER, INTENT(OUT), OPTIONAL :: INFO

! .. Array Arguments ..

REAL(WP), INTENT(INOUT) :: A(:,:)

REAL(WP), INTENT(OUT) :: W(:)

! .. Local Parameters ..

CHARACTER(LEN=7), PARAMETER :: SRNAME = 'LA_SYEV'

CHARACTER(LEN=6), PARAMETER :: BSNAME = 'SSYTRD'

! .. Local Scalars ..

CHARACTER(LEN=1) :: LJOBZ, LUPLO

INTEGER :: N, LINFO, LD, ISTAT, ISTAT1, LWORK, NB

! .. Local Arrays ..

REAL(WP), POINTER :: WORK(:)

! .. Intrinsic Functions ..

INTRINSIC MAX, PRESENT

! .. Executable Statements ..

N = SIZE(A, 1); LINFO = 0; ISTAT = 0; LD = MAX(1,N)

IF(PRESENT(JOBZ)) THEN

LJOBZ = JOBZ

ELSE

LJOBZ = 'N'

END IF

IF(PRESENT(UPLO)) THEN

LUPLO = UPLO

ELSE

LUPLO = 'U'

END IF

! .. Test the arguments

IF(SIZE(A, 2) /= N .OR. N < 0)THEN

LINFO = -1

ELSE IF(SIZE(W) /= N)THEN

LINFO = -2

ELSE IF(.NOT.LSAME(LJOBZ,'N') .AND. .NOT.LSAME(LJOBZ,'V'))THEN

LINFO = -3

ELSE IF(.NOT.LSAME(LUPLO,'U') .AND. .NOT.LSAME(LUPLO,'L'))THEN

49

LINFO = -4

ELSE IF(N > 0)THEN

! .. Determine the workspace

NB = ILAENV_F77(1, BSNAME, LUPLO, N, -1, -1, -1)

IF(NB <= 1 .OR. NB >= N)THEN

NB = 1

END IF

LWORK = (2+NB)*N

ALLOCATE(WORK(LWORK), STAT=ISTAT)

IF(ISTAT /= 0)THEN

LWORK = 3*N-1

ALLOCATE(WORK(LWORK), STAT=ISTAT)

IF(ISTAT /= 0) THEN

LINFO = - 100

ELSE

LINFO = - 200

ENDIF

ENDIF

!

IF(LINFO == 0 .OR. LINFO <= -200)THEN

! .. Call LAPACK77 routine

CALL SYEV_F77(LJOBZ, LUPLO, N, A, LD, W, WORK, LWORK, LINFO)

ENDIF

DEALLOCATE(WORK, STAT=ISTAT1)

ENDIF

CALL ERINFO(LINFO,SRNAME,INFO,ISTAT)

END SUBROUTINE SSYEV_F90

!

END MODULE LA_SSYEV

D.5 Accessing LAPACK 90 procedures

We assume that interface-blocks (module-procedures) for all the LAPACK 90

routines are accessible from module LA SCDZF90MOD.

50

