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Iterative Re�nement and LAPACK

Nicholas J. Higham�

September 29, 1995

Abstract

The technique of iterative re�nement for improving the computed solution

to a linear system was used on desk calculators and computers in the 1940s and

has remained popular. In the 1990s iterative re�nement is well supported in

software libraries, notably in LAPACK. Although the behaviour of iterative re-

�nement in oating point arithmetic is reasonably well understood, the existing

theory is not su�cient to justify the use of �xed precision iterative re�nement

in all the LAPACK routines in which it is implemented. We present analysis

that provides the theoretical support needed for LAPACK. The analysis covers

both mixed and �xed precision iterative re�nement with an arbitrary number

of iterations, makes only a general assumption on the underlying solver, and is

relatively short. We identify some remaining open problems.

Key words. iterative re�nement, rounding error analysis, backward error,

condition number, LAPACK

AMS subject classi�cations. primary 65F05, 65G05

1 Introduction

The technique of iterative re�nement for improving the computed solution to a linear
system was probably �rst used in a computer program by Wilkinson in 1948, during

the design and building of the ACE computer at the National Physical Laboratory

[15]. Iterative re�nement has achieved wide use ever since, and is exploited, for
example, by most of the linear system expert drivers in LAPACK [1].

The re�nement process for a computed solution bx to Ax = b, where A 2 IRn�n is

nonsingular, is simple to describe: compute the residual r = b�Abx, solve the system
Ad = r for the correction d, and form the updated solution y = bx+ d. If there is not

�Department of Mathematics, University of Manchester, Manchester, M13 9PL, England
(na.nhigham@na-net.ornl.gov). This work was supported by Engineering and Physical Sciences
Research Council grants GR/H5213 and GR/H/94528.
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a su�cient improvement in passing from bx to y the process can be repeated, with bx
replaced by y.

Intuition suggests that, since the residual r contains the crucial information that

enables bx to be improved, r should be computed as accurately as possible. In the early

application and analysis of iterative re�nement r was computed in extended precision

and then rounded to working precision. This mixed precision iterative re�nement was

analyzed by Wilkinson [16] and Moler [10]; they showed that, provided A is not too

ill conditioned, it produces a computed solution correct to working precision. Mixed

precision iterative re�nement contrasts with �xed precision iterative re�nement, in

which r is formed entirely in the working precision. In the late 1970s Skeel [12] proved

that, under certain conditions, just one step of �xed precision iterative re�nement

is su�cient to yield a small componentwise relative backward error for Gaussian

elimination with partial pivoting (GEPP) (the componentwise relative backward error

is de�ned below); Jankowski and Wo�zniakowski [9] had earlier shown that, again with

certain provisos, an arbitrary linear equation solver is made normwise backward stable
by �xed precision iterative re�nement (possibly with more than one iteration).

Skeel's analysis of �xed precision iterative re�nementwas generalized by Higham [4]
to an arbitrary linear equation solver satisfying certain stability assumptions. This
general analysis can be used to show that \one step is enough" for GEPP and for

solvers based on QR factorization computed by any of the standard methods; the
analysis also has applications to methods for solving the least squares problem. Un-
fortunately, Higham's analysis does not yield any useful conclusions about the com-
ponentwise relative backward error resulting from �xed precision iterative re�nement
applied with the Cholesky factorization or the diagonal pivoting method. In LA-

PACK, both these methods are implemented with the option of performing �xed
precision iterative re�nement, but there is no existing theory to prove that a small
componentwise relative backward error will usually be achieved.

The purpose of this work is to present a general analysis that �lls the gaps in our
understanding of iterative re�nement and yields positive conclusions for the Cholesky

factorization and the diagonal pivoting method.

In the rest of the introduction we present the required notions of stability and
conditioning.

We recall the de�nition of componentwise backward error for an approximate

solution y to a linear system Ax = b:

!E;f(y) = minf� : (A+�A)y = b+�b; j�Aj � �E; j�bj � �fg; (1.1)

where E and f are nonnegative matrices of tolerances. For E = jAj and f = jbj we
obtain the componentwise relative backward error. A computationally simple formula

exists for !E;f(y), as shown in the following result. We adopt the convention that �=0

is interpreted as zero if � = 0 and in�nity otherwise.
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Theorem 1.1 The componentwise backward error is given by

!E;f (y) = max
i

jrij

(Ejyj+ f)i
; (1.2)

where r = b�Ay.

Proof. See Oettli and Prager [11], or Higham [7, Th. 7.3].

We introduce the condition numbers

cond(A;x) :=
k jA�1jjAjjxj k1

kxk1
;

cond(A) := cond(A; e) = k jA�1jjAj k1 � kA�1k1kAk1 = �1(A);

where e = [1; 1; : : : ; 1]T . The term \condition number" is used advisedly here. If we
de�ne the componentwise condition number

condE;f(A;x) := lim
�!0

sup
n
k�xk1

�kxk1
: (A+�A)(x+�x) = b+�b;

j�Aj � �E; j�bj � �f
o
;

then cond(A;x) is within a factor 2 of condjAj;jbj(A;x), and cond(A) di�ers from the
condition number corresponding to E = jAjeeT and f = jbj by at most a factor 2n
[7, Problem 7.6].

We will need a corollary of Theorem 1.1 in which x replaces y in the expression
Ejyj+ f . First, we state a trivial lemma, which involves a function  that measures
how badly a vector is scaled.

Lemma 1.2 For B 2 IRn�n and y 2 IRn we have

jBjjyj � kBk1 (y)jyj;

where

 (y) =
maxi jyij

mini jyij
:

Proof. We have

jBjjyj � kBk1kyk1e � kBk1 (y)jyj:

Corollary 1.3 The componentwise backward error satis�es

�

1 + kEjA�1j k1 (Ejxj+ f)�
� !E;f(y) �

�

1 � kEjA�1j k1 (Ejxj+ f)�
; (1.3)
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where

� = max
i

jrij

(Ejxj+ f)i
;

r = b�Ay, and the denominators are assumed to be positive.

Proof. Dividing numerator and denominator in (1.2) by (Ejxj + f)i, and using

the inequality Ejyj � Ejxj � Ejx� yj � Ejxj � EjA�1jjrj, we obtain the bound

!E;f(y) �

�
max

i

jrij

(Ejxj+ f)i

���
1�max

i

(EjA�1jjrj)i

(Ejxj+ f)i

�
:

Using Lemma 1.2 we have

EjA�1jjrj � � EjA�1j(Ejxj+ f)

� � kEjA�1j k1 (Ejxj+ f)(Ejxj+ f);

which gives the upper bound. The lower bound is proved similarly.

Finally, we note that our backward error results in x4 are cast in terms of  (jbj+

jAjjxj). This is related to the quantity  (jAjjxj) that appears in the analyses of Skeel
[12] and Higham [4] by the inequalities

1

2
 (jAjjxj) �  (jbj+ jAjjxj) � 2 (jAjjxj):

2 Basics

We work with the standard model of oating point arithmetic:

fl(x op y) = (x op y)(1 + �); j�j � u; op = +;�; �; =; (2.1)

where u is the unit roundo�. (In fact, our results hold, with minor changes to the
constants, under a weaker model that accommodates machines without a guard digit

[7, x2.4].) We will make use of the constant

n =
nu

1 � nu
:

As this notation suggests, we assume that nu < 1.

Consider a linear system Ax = b, where A 2 IRn�n is nonsingular. We suppose
that our solver produces a computed solution satisfying

(A+�A)bx = b; j�Aj � uW; (2.2)

where W is a nonnegative matrix depending on A, n and u (but not on b). We

invariably have W � jAj. Note that at this stage we make no assumption about
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the size or structure of W . All standard direct solvers satisfy (2.2), and iterative

solvers may, too, depending on the convergence test (see, for, example, [8]). Although

backward error results for solution of Ax = b by QR factorization methods are usually

stated with a perturbation of b, these results can be reworked so that only A is

perturbed (see [7, x18.3]). The advantage of perturbing only A in (2.2) is that we

obtain an algebraically simpler analysis of iterative re�nement.

Inevitably, our analysis requires A not to be too ill conditioned. We make an

initial assumption that

uk jA�1jW k1 <
1

2
; (2.3)

which guarantees that A+�A in (2.2) is nonsingular and enables us to bound (I �

ujA�1jW )�1 in x4.

To make the analysis as general as possible we allow for the use of extended

precision in calculating the residual. We de�ne x1 = bx (equivalently, x0 = 0) and
consider the following iterative re�nement process: ri = b� Axi (precision u), solve

Adi = ri (precision u), xi+1 = xi + di (precision u), i = 1; 2;. . . . For traditional
iterative re�nement, u = u2.

There are two stages in the calculation of ri. First, si = fl(b�Abxi) = b�Abxi+�si
is formed in the (possibly) extended precision u. Standard results [7, x3.5] show that
j�sij � n+1(jbj+ jAjjbxij), where k � ku=(1 � ku). Second, the residual is rounded

to the working precision: bri = fl(si) = si + fi, where jfij � ujsij. Hence

bri = ri +�ri; j�rij � ujrij+ (1 + u)n+1(jbj+ jAjjbxij): (2.4)

3 Forward Error Analysis

We begin by analyzing the behaviour of the forward error of bxi, namely, kx �

bxik1=kxk1. The analysis in this section is a slightly rewritten version of the analysis
in Higham [7, x11.1].

By writing bxi = x+ (bxi � x) and ri = A(x� bxi) we obtain from (2.4) the bound

j�rij � [u+ (1 + u)n+1]jAjjx� bxij+ 2(1 + u)n+1jAjjxj: (3.1)

For the computation of di we have, by (2.2), (A+�Ai)bdi = bri, where j�Aij � uW .
Now write

(A+�Ai)
�1 =

�
A(I +A�1�Ai)

��1
=: (I + Fi)A

�1;

where

jFij � ujA�1jW +O(u2): (3.2)

Hence bdi = (I + Fi)A
�1bri = (I + Fi)(x� bxi +A�1�ri): (3.3)
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The updated vector satis�es

bxi+1 = bxi + bdi +�bxi;
j�bxij � ujbxi + bdij � u(jx� bxij+ jxj+ jbdij):

Using (3.3) we have

bxi+1 � x = Fi(x� bxi) + (I + Fi)A
�1�ri +�bxi:

Hence

jbxi+1 � xj � jFijjx� bxij+ (I + jFij)jA
�1
jj�rij+ ujx� bxij+ ujxj+ ujbdij

� jFijjx� bxij+ (I + jFij)jA
�1
jj�rij+ ujx� bxij+ ujxj

+ u(I + jFij)(jx� bxij+ jA�1jj�rij)

=
�
(1 + u)jFij+ 2uI

�
jx� bxij+ (1 + u)(I + jFij)jA

�1
jj�rij+ ujxj:

Substituting the bound for j�rij from (3.1) gives

jbxi+1 � xj �
�
(1 + u)jFij+ 2uI

�
jx� bxij

+ (1 + u)
�
u+ (1 + u)n+1

�
(I + jFij)jA

�1
jjAjjx� bxij

+ 2(1 + u)2n+1(I + jFij)jA
�1
jjAjjxj+ ujxj

=: Gijx� bxij+ gi: (3.4)

Using (3.2), we estimate

Gi � jFij+ (u+ n+1)(I + jFij)jA
�1
jjAj

<
� ujA�1jW + (u+ n+1)(I + ujA�1jW )jA�1jjAj;

gi � 2n+1(I + jFij)jA
�1
jjAjjxj+ ujxj

<
� 2n+1(I + ujA�1jW )jA�1jjAjjxj+ ujxj:

Recall that we are assuming (2.3) holds. As long as A is not too ill conditioned

(cond(A) is not too large) we have kGik1 < 1, which means that the error contracts

until we reach a point at which the gi term becomes signi�cant. The limiting normwise
accuracy, that is, the minimum size of kx � bxik1=kxk1, is roughly kgik1=kxk1 �

2nu cond(A;x) + u. Moreover, if 2nu(I + ujA�1jW )jA�1jjAjjxj � �ujxj for some �,

then we can expect to obtain a componentwise relative error of order �u, that is,

mini jx � bxij <� �ujxj. Note that Gi is essentially independent of u, which suggests
that the rate of convergence of mixed and �xed precision iterative re�nement will be

similar; it is only the limiting accuracy that di�ers.
In the traditional use of iterative re�nement, u = u2, and one way to summarize

our �ndings is as follows.
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Theorem 3.1 (Mixed precision iterative re�nement) Let iterative re�nement

be applied to the nonsingular linear system Ax = b, using a solver satisfying (2.2)

and with residuals computed in double the working precision. Let � = uk jA�1j(jAj+

W ) k1. Then, provided � is su�ciently less than 1, iterative re�nement reduces the

forward error by a factor approximately � at each stage, until kx� bxik1=kxk1 � u.

For LU factorization we can take

uW � 2nj
bLjjbU j (3.5)

[7, Th. 9.3], where bL and bU are the computed LU factors. In this case Theorem 3.1

is stronger than the standard results in the literature, which have �1(A)u in place of

� � uk jA�1j(jAj+2njbLjjbU j) k1. For we can have �� �1(A)u, since � is independent
of the row scaling of A (modulo changes in the pivot sequence). For example, if

jbLjjbU j � jAj then � � 2n cond(A)u, and cond(A) can be arbitrarily smaller than
�1(A).

Consider now �xed precision iterative re�nement, in which u = u. We have the

following analogue of Theorem 3.1, which refutes claims in some textbooks that for
iterative re�nement to improve the accuracy it is necessary to compute the residual
in extra precision.

Theorem 3.2 (Fixed precision iterative re�nement) Let iterative re�nement in

�xed precision be applied to the nonsingular linear system Ax = b of order n, using a

solver satisfying (2.2). Let � = uk jA�1j(jAj+W ) k1. Then, provided � is su�ciently

less than 1, iterative re�nement reduces the forward error by a factor approximately

� at each stage, until kx� bxik1=kxk1 <
� 2n cond(A;x)u.

The key di�erence between mixed and �xed precision iterative re�nement is that
in the latter case a relative error of order u is no longer ensured. But we do have a

relative error bound of order cond(A;x)u. This is a stronger bound than holds for
the original computed solution bx, for which we can say only that

kx� bxk1
kxk1

<
� u

k jA�1jW jxj k1

kxk1
:

In fact, a relative error bound of order cond(A;x)u is the best we can possibly expect
if we do not use higher precision, because it corresponds to the uncertainty introduced

by making componentwise relative perturbations to A of size u. This level of uncer-
tainty is often present in the problem as it is given, because of errors in computing

A or in rounding its elements to oating point form.
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4 Backward Error Analysis

We now turn to the backward error. The analysis in this section generalizes that of

Skeel [12] by applying to any solver satisfying (2.2), rather than just GEPP, and it

generalizes the analysis of Higham [4] by applying to both mixed and �xed precision

iterative re�nement with an arbitrary number of steps, rather than just one step of

�xed precision re�nement.

In the analysis we endeavour to obtain bounds containing terms that are multiples

of jAjjxj. To this end, we make frequent use of the following trivial inequality:

jAjjbxij � jAjjxj+ jAjjx� bxij
� jAjjxj+ jAjjA�1jjb�Abxij
= jAjjxj+ jAjjA�1jjrij: (4.1)

For later use we note that, from (2.4),

j�rij � ujrij+ (1 + u)n+1(jbj+ jAjjbxij)
�
�
uI + (1 + u)n+1jAjjA

�1
j
�
jrij+ (1 + u)n+1(jbj+ jAjjxj)

= C1jrij+ (1 + u)n+1(jbj+ jAjjxj); (4.2)

where
C1 = uI + (1 + u)n+1jAjjA

�1
j:

Then
jbrij �M1jrij+ (1 + u)n+1(jbj+ jAjjxj); (4.3)

where
M1 = I + C1:

For the solution of the correction equation we have

Abdi = bri + f1; jf1j � uW jbdij; (4.4)

and the updated vector satis�es

bxi+1 = bxi + bdi + f2; jf2j � ujbxi + bdij: (4.5)

We have

b�Abxi+1 = b�Abxi �Abdi �Af2

= bri ��ri �Abdi �Af2

= �f1 ��ri �Af2:
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Hence, using (4.4), (4.2), (4.5), and (4.1) we have

jb�Abxi+1j � uW jbdij+ C1jrij+ (1 + u)n+1(jbj+ jAjjxj) + ujAj(jbxij+ jbdij)
� uW jbdij+ (C1 + ujAjjA�1j)jrij

+ (1 + u)n+1(jbj+ jAjjxj) + ujAj(jxj+ jbdij)
= u(W + jAj)jbdij+ C2jrij+ (1 + u)n+1(jbj+ jAjjxj) + ujAjjxj; (4.6)

where

C2 = C1 + ujAjjA�1j:

Our aim is to bound !
jAj;jbj(bxi+1) using Corollary 1.3, so we need to bound (W +

jAj)jbdij by multiples of jrij and jbj+ jAjjxj. From (4.4) and (4.3),

jbdij � jA�1j(jbrij+ uW jbdij)
� jA�1j

�
M1jrij+ (1 + u)n+1(jbj+ jAjjxj) + uW jbdij�; (4.7)

that is,

(I � ujA�1jW )jbdij � jA�1j
�
M1jrij+ (1 + u)n+1(jbj+ jAjjxj)

�
:

In view of the assumption (2.3) we have

jbdij �M2jA
�1
j
�
M1jrij+ (1 + u)n+1(jbj+ jAjjxj)

�
; (4.8)

where
M2 = (I � ujA�1jW )�1 � 0; kM2k1 � 2:

Substituting into (4.6) gives

jri+1j � u(W + jAj)M2jA
�1
j
�
M1jrij+ (1 + u)n+1(jbj+ jAjjxj)

�
+ C2jrij

+ (1 + u)n+1(jbj+ jAjjxj) + ujAjjxj

�
�
C2 + u(W + jAj)M2jA

�1
jM1

�
jrij

+
�
(u+ (1 + u)n+1)I + u(1 + u)n+1(W + jAj)M2jA

�1
j
�
(jbj+ jAjjxj)

=: Gjrij+ g: (4.9)

Note that kC2k1 = O(u cond(A�1)) and Mi = I + O(u), i = 1: 2. As long as A is

not too ill conditioned and the solver is not too unstable we have kGk1 < 1. Then,

solving the recurrence, we �nd that

jri+1j � Gi
jr1j+ (I +G+ � � � +Gi�1)g:

Writing g := (�I + �H)(jbj+ jAjjxj) and applying Lemma 1.2 we obtain

j(I +G + � � �+Gi�1)gj �
�
�+

�
�kGk1(1 � kGk1)

�1 + �kHk1(1� kGk1)
�1
�

�  (jbj+ jAjjxj)
�
(jbj+ jAjjxj):

We summarize our �ndings in a theorem.
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Theorem 4.1 Let iterative re�nement be applied to the nonsingular linear system

Ax = b of order n, using a solver satisfying (2.2). There are matrices Mi = I+O(u),

i = 1: 2, such that if

Gi
jr1j � max(u; n+1)(jbj+ jAjjxj) (4.10)

and

u+ (1 + u)n+1 + (1 � kGk1)
�1
�
(u+ (1 + u)n+1)kGk1 + (1 + u)n+1kHk1

�
�  (jbj+ jAjjxj) � 2max(u; n+1);

where

H = u(W + jAj)M2jA
�1
j; G = uI + (u+ (1 + u)n+1)jAjjA

�1
j+HM1;

then

!jAj;jbj(bxi+1) � 3max(u; n+1)

1� 3 cond(A�1) (jbj+ jAjjxj)max(u; n+1)
:

The gist of this result is that iterative re�nement yields a small componentwise
relative backward error provided that the solver is not too unstable (kWk1 is not
too large), A is not too ill conditioned (cond(A�1) is not too large), and the vector
jbj + jAjjxj is not too badly scaled. The condition (4.10) is a necessary assumption

that can fail to be satis�ed for su�ciently large i only if jbj+ jAjjxj has zero elements.
Note that, roughly, kGk1 � max(u; n+1)k (W + jAj)jA�1j k1, and the residual is
multiplied by a matrix of norm at most kGk1 on each iteration.

Theorem 4.1 suggests that the only advantage of mixed precision iterative re�ne-
ment over �xed precision iterative re�nement for achieving a componentwise relative

backward error of order u is that it tolerates a greater degree of instability, ill con-
ditioning and bad scaling. The dependence of G on u is minor, as for the forward
error analysis, so the theorem does not predict any signi�cant di�erence in the rates
of convergence of iterative re�nement in mixed and �xed precision.

We turn our attention now to analyzing one step of �xed precision iterative re-

�nement. From (4.9) and the inequality jr1j = jb � Abx1j � uW jbx1j, from (2.2), we
have

jb�Abx2j � uGW jbx1j+ g: (4.11)

By considering the forms of G and g, we can glean a useful piece of insight immediately

from (4.11): iterative re�nement works because after just one step the matrix W
occurring in the backward error bound for the solver is multiplied by u2 in the residual

bound; in other words, any instability in the solver is relegated to a second order term
by the re�nement process.

It is not possible to deduce a useful bound on !
jAj;jbj(bx2) without making further

assumptions on W . The most natural and useful assumption is that

W = Y jAj;
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where, ideally, Y is of modest norm. Using this assumption we can derive a modi�ed

form of (4.11) that leads to a cleaner result. The trick is to bound jAjjbdij directly.
From (4.7) we have

jAjjbdij � jAjjA�1j
�
M1jrij+ (1 + u)n+1(jbj+ jAjjxj) + uY jAjjbdij�;

or

(I � ujAjjA�1jY )jAjjbdij � jAjjA�1j
�
M1jrij+ (1 + u)n+1(jbj+ jAjjxj)

�
:

Hence, provided uk jAjjA�1jY k1 � 1=2, we have

jAjjbdij �M3jAjjA
�1
j
�
M1jrij+ (1 + u)n+1(jbj+ jAjjxj)

�
; (4.12)

where M3 = (I � ujAjjA�1jY )�1 � 0 and kM3k1 � 2. The bene�t of (4.12) is that

it leads to a term M3jAjjA
�1j in the bound instead of jAjM3jA

�1j, and the norm of
the former term is independent of the row scaling of A. Now, using (4.1) and (4.3)
we have

jr1j � uY jAjjbx1j � uY (jAjjxj+ jAjjA�1jjr1j);

which implies
jr1j � uM4Y jAjjxj;

where M4 = (I � uY jAjjA�1j)�1 with kM4k1 � 2 if cond(A�1)kY k1u � 1=2. From
(4.6) and (4.12) we have

jb�Abx2j � u(Y + I)M3jAjjA
�1
j
�
uM1M4Y jAjjxj+ (1 + u)n+1(jbj+ jAjjxj)

�
+ uC2M4Y jAjjxj+ (1 + u)n+1(jbj+ jAjjxj) + ujAjjxj

�
�
u+ (1 + u)n+1 + u(Y + I)M3jAjjA

�1
j(uM1M4Y + (1 + u)n+1)

+ uC2M4Y
�
(jbj+ jAjjxj):

On invoking Lemma 1.2 and Corollary 1.3 we obtain the following result, which,
in the special case where u = u2, is essentially Theorem 2.2 of Higham [4].

Theorem 4.2 Let iterative re�nement be applied to the nonsingular linear system

Ax = b of order n, using a solver satisfying (2.2) with W = Y jAj. There is a

function

f(u; kY k1) � q(u2kY k21 +max(u; n+1)kY k1);

where q is a modest integer constant, such that if

cond(A�1)f(u; kY k1) (jbj+ jAjjxj) < 1

then

!
jAj;jbj(bx2) � 3max(u; n+1):

11



5 Practical Implications and LAPACK

We now discuss the implications of the results of the previous two sections for practical

computation, with particular reference to LAPACK.

Mixed precision iterative re�nement (MPIR) is relatively little used nowadays

because it cannot be implemented in a portable manner in a double precision Fortran

code. The main results are that as long as the solver is not too unstable, the matrix

A is not too ill conditioned, and jbj+ jAjjxj is not too badly scaled, MPIR yields a

forward error of order u (Theorem 3.1) and a componentwise relative backward error

of order u (Theorem 4.1). It is interesting to note that a componentwise relative

backward error of order u does not imply a forward error of order u, but merely a

forward error bound of order cond(A;x)u, and neither does the reverse implication

hold; therefore both the forward error analysis and the backward error analysis are

needed.
Fixed precision iterative re�nement (FPIR) is implemented in LAPACK by rou-

tines whose names end -RFS, which are called by the expert drivers (whose names end
-SVX). FPIR is available in conjunction with LU-type factorizations for all the stan-
dard matrix types except triangular matrices, for which the original computed solution

already has a componentwise relative backward error of order u. The -RFS routines
terminate the re�nement if the componentwise relative backward error ! = !

jAj;jbj(bxi)
satis�es

1. ! � u,

2. ! has not decreased by a factor of at least 2 during the current iteration, or

3. �ve iterations have been performed.

These criteria were chosen to be robust in the face of di�erent BLAS implementations
and machine arithmetics. To justify the criteria we note that all the factorizations
used in LAPACK are known to satisfy (2.2) with a reasonable bound onW (for proofs,
see [7], for example). Theorem 4.1 therefore implies that FPIR will converge in all the

-RFS routines provided A is not too ill conditioned and the vector jbj+ jAjjxj is not

too badly scaled. The second and third convergence criteria perform the practical
necessity of terminating the re�nement if convergence is not su�ciently fast. We
mention that large or in�nite values of  (jbj+ jAjjxj) can occur when aijxj = 0 for

many i and j, as is most likely in sparse problems. Some possible ways to modify ! in

the LAPACK stopping criterion in such situations are described by Arioli, Demmel
and Du� [2].

An interesting question that remains is whether a single step of FPIR guaran-
tees that !

jAj;jbj(bxi) � u. Theorem 4.2 gives a positive answer for solvers for which

W = Y jAj with a modestly normed Y , with the usual provisos that A is not too
ill conditioned and the vector jbj + jAjjxj is not too badly scaled. Such solvers in-

clude those based on a QR factorization computed by Householder transformations,

12



Givens rotations, or the modi�ed Gram-Schmidt method (see [7, Ch. 18]). For an LU

factorization with computed LU factors bL and bU we have, from (3.5),

uW � 2nj
bLjjbU j � 2nj

bLjjbL�1Aj � uY jAj; Y � 2njbLjjbL�1j: (5.1)

Without pivoting, kY k1 can be arbitrarily large. With partial pivoting we have

jlijj � 1, and although k jbLjjbL�1j k1 can be as large as 2n�1, it is typically of order n in

practice [13]. We can summarize by saying that for Gaussian elimination with partial

pivoting one step of FPIR will usually be enough to yield a small componentwise

relative backward error as long as A is not too ill conditioned and jbj+ jAjjxj is not

too badly scaled, which, of course, is Skeel's main result from [12].

The other two factorizations for which LAPACK supports FPIR are Cholesky

factorization and the block LDLT factorization computed by the diagonal pivot-

ing method. For the Cholesky factorization A = RTR, where R is upper triangu-
lar with positive diagonal elements, we can take uW = 2n+1j

bRT jj bRj in (2.2) [7,

Th. 10.4]. If we bound W � Y jAj using the same approach as in (5.1) we �nd that

Y � 2n(j bR�1jj bRj)T , which is unbounded. However, for the Cholesky factorization
with complete pivoting, �TA� = RTR, the pivoting causes R to satisfy inequalities
that imply k jR�1jjRj k1 � 2n � 1 [7, Lem. 8.6], so we have a similar result as for
GEPP. Interestingly, our practical experience is that complete pivoting in Cholesky

factorization has little e�ect on the performance of iterative re�nement.
The diagonal pivoting method computes a factorization PAP T = LDLT , where

L is unit lower triangular, D is block diagonal with 1� 1 and 2� 2 diagonal blocks,
and P is a permutation matrix. LAPACK uses the partial pivoting strategy of Bunch
and Kaufman [3], for which the backward error result (2.2) holds with

uW = p(n)u
�
jAj+ P T

jbLjj bDjjbLT
jP
�
+O(u2);

and, furthermore, kuWk1 � p(n)u�nkAk1, where p is a quadratic and � is the growth
factor; see Higham [5]. Attempting to bound W � Y jAj using the approach in (5.1)
does not give a useful bound for kY k1.

In conclusion, we are not able to guarantee that \one step of FPIR is enough"
for Cholesky factorization or for the diagonal pivoting method, but LAPACK's use

of FPIR with these factorizations is, nevertheless, justi�ed by Theorem 4.1.

6 Numerical Experiments

We give two numerical examples to illustrate some of the salient features of mixed and

�xed precision iterative re�nement. The computations were performed in Matlab,

using simulated IEEE single precision arithmetic in which we rounded the result of

every arithmetic operation to 24 signi�cant bits; therefore u = 2�24 � 5:96 � 10�8.

To implement MPIR we simply computed residuals usingMatlab's double precision
arithmetic.
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The �rst example is for Gaussian elimination (GE) without pivoting, applied to the

scaled 15�15 orthogonal matrixA1 with aij = di(2=(n+1))1=2 sin(ij�=(n+1)), where

d(1:n) = �i, with �n = 10�5. (This matrix is a row-scaled version of orthog(15)

from the Test Matrix Toolbox [6], which is the eigenvector matrix for the second

di�erence matrix.) The right-hand side b is generated as b = A[1; 2; : : : ; 15]T .

The second example applies Gaussian elimination with partial pivoting (GEPP)

to a random 10 � 10 matrix A2 with �2(A) = 106. (This matrix is generated

as randn('seed',1); A = randsvd(10, 1e6), using the Test Matrix Toolbox [6].)

The right-hand side is selected as in the �rst example.

The results are shown in Tables 6.1{6.2. For the matrix W we take 2nP T jbLjjbU j,
where PA � bLbU is the computed LU factorization (P = I for GE). We make several

observations.

1. In the �rst example, GE yields a moderately large componentwise relative
backward error, partly because the growth factor �15 � 3112. FPIR achieves
!
jAj;jbj � u after 3 iterations, even though the product cond(A�1) (jbj+ jAjjxj)

exceeds u�1, so that the conditions in Theorem 4.1 are not satis�ed. This
is a common occurrence: iterative re�nement often works well even for prob-
lems that are so extreme that the analysis does not guarantee success. Since

cond(A;x) is of order 1, the forward error matches the behaviour of the com-
ponentwise relative backward error. Note that MPIR is no more e�ective than
FPIR at achieving !

jAj;jbj � u, though the !
jAj;jbj values do converge for MPIR,

unlike for FPIR.

2. The �rst example emphasizes how FPIR can overcome the e�ects of poor scaling.

The standard condition number �1(A) is of order 10
5 due to the bad row scaling

of A, while cond(A) and cond(A;x) are of order 1. FPIR produces a solution
with forward error of order u, as we would hope in view of Theorem 3.2, even
though the theorem is not strictly applicable since � > 1. (If we use GEPP
instead of GE in the �rst example, the behaviour is broadly the same.)

3. For the second example, GEPP achieves a componentwise relative backward
error of order u, so FPIR is not worthwhile. MPIR is bene�cial, however: it

reduces the forward error to order u, as predicted by Theorem 3.1. This example

shows how the convergence test must be chosen to reect the desired bene�ts of

iterative re�nement, for if the iteration were terminated when !
jAj;jbj � u then

MPIR would not be performed at all.

7 Concluding Remarks

The analysis we have presented is su�ciently general to cover all existing applications

of iterative re�nement for linear systems|-in mixed or �xed precision, with one or
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Table 6.1: Result for GE with orthogonal matrix A1.

cond(A) = 1:26e1, cond(A;x) = 6:72e0, �1(A) = 1:81e5

cond(A�1) = 1:65e5,  (jbj+ jAjjxj) = 1:98e5

uk jA�1j(jAj+W ) k1 = 3:89e0.

FPIR: Iteration !
jAj;jbj(bxi) kx� bxik1=kxk1

0 9.85e-3 1.34e-2

1 4.04e-5 4.38e-5
2 5.16e-8 9.75e-8
3 1.43e-8 2.35e-8
4 1.54e-8 3.75e-8
5 2.78e-8 7.02e-8
6 1.65e-8 4.72e-8

7 2.52e-8 6.14e-8
8 1.55e-8 2.74e-8
9 2.31e-8 4.68e-8

MPIR: Iteration !
jAj;jbj(bxi) kx� bxik1=kxk1

0 9.85e-3 1.34e-2
1 3.26e-5 3.91e-5

2 1.05e-7 1.39e-7

3 1.06e-8 2.35e-8
4 1.06e-8 2.35e-8
5 1.06e-8 2.35e-8
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Table 6.2: Result for GEPP with random, ill conditioned matrix A2.

cond(A) = 1:04e6, cond(A;x) = 5:62e5, �1(A) = 2:38e6

cond(A�1) = 1:30e6,  (jbj+ jAjjxj) = 8:29e0

uk jA�1j(jAj+W ) k1 = 3.86e-1.

FPIR: Iteration !
jAj;jbj(bxi) kx� bxik1=kxk1

0 2.34e-8 2.79e-3

1 3.66e-8 3.59e-3
2 2.11e-8 1.33e-3
3 4.71e-8 9.38e-3
4 3.95e-8 2.49e-3
5 2.49e-8 3.07e-3

6 3.42e-8 4.12e-3
7 1.88e-8 2.33e-3
8 2.81e-8 7.17e-4
9 2.45e-8 5.27e-3

MPIR: Iteration !
jAj;jbj(bxi) kx� bxik1=kxk1

0 2.34e-8 2.79e-3
1 1.73e-8 1.49e-5

2 1.94e-8 7.37e-8
3 2.30e-8 2.85e-8

4 2.30e-8 2.85e-8
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more iterations|and it fully supports the use of iterative re�nement in LAPACK. One

interesting question remains: is one step of �xed precision iterative re�nement enough

for Cholesky factorization to produce a small componentwise relative backward error?

It seems to be generally true that any result for LU factorization has an analogue

for Cholesky factorization that is at least as strong, yet our analysis does not give a

\one step is enough" result for Cholesky factorization. A scaling argument can be

used to replace A in the bounds by H = D�1AD, where hii = 1, and a result of Van

der Sluis [14] implies that �2(H) � nminf�2(FAF ) : F diagonal g; however, �2(H)

can still be large and the scaling changes the term  (jbj+ jAjjxj). Therefore we pose

the open problem: prove that \one step is enough" for Cholesky factorization, or �nd

a numerical counterexample (with cond(A�1)f(u; kY k1) (jbj + jAjjxj) su�ciently

less than 1, in the notation of Theorem 4.2). The corresponding problem for the

factorization produced by the diagonal pivoting method is also open.
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