
LAPACK Working Note 101

A Proposal for a Fortran 90 Interface for LAPACK

Jack J. Dongarra� Jeremy Du Crozy Sven Hammarlingy

Jerzy Wa�sniewskiz Adam Zem lax

December 7, 1995

1 Introduction

The purpose of this paper is to initiate discussion of the design of a Fortran 90 interface to

LAPACK [1]. Our emphasis at this stage is on the design of an improved user-interface to

the package, taking advantage of the considerable simpli�cations which Fortran 90 allows.

The new interface can be implemented initially by writing Fortran 90 jackets to call the

existing Fortran 77 code.

Eventually we hope that the LAPACK code will be rewritten to take advantage of the new

features of Fortran 90, but this will be an enormous task. We aim to design an interface

which can persist unchanged while the underlying code is rewritten.

For convenience we use the name \LAPACK 77" to denote the existing Fortran 77 package,

and \LAPACK 90" to denote the new Fortran 90 interface which we are proposing.

2 LAPACK 77 and Fortran 90 Compilers

2.1 Linking LAPACK 77 to Fortran 90 programs

LAPACK 77 can be called from Fortran 90 programs in its present form | with some

quali�cations. The quali�cations arise only because LAPACK 77 is not written entirely in

standard Fortran 77; the exceptions are the use of the COMPLEX*16 data type and related

�Department of Computer Science, University of Tennessee, 107 Ayres Hall, Knoxville, TN 37996-1301

and Mathematical Sciences Section, Oak Ridge National Laboratory, P.O.Box 2008, Bldg. 6012; Oak Ridge,

TN 37831-6367, Email: dongarra@cs.utk.edu
yNumerical Algorithms Group Ltd, Wilkinson House, Jordan Hill Road, Oxford OX2 8DR, UK, Email:

jeremy@nag.co.uk or sven@nag.co.uk respectively
zUNI�C, Bldg. 304, Technical University of Denmark, DK-2800 Lyngby, Denmark, Email:

jerzy.wasniewski@uni-c.dk
xInstitute of Mathematics, Polish Academy of Sciences, �Sniadeckich 8, 00-950 Warsaw, Poland, Email:

adamz@impan.gov.pl

1

intrinsic functions, as listed in Section 6.1 of [1]; these facilities are provided as extensions to

the standard language by many Fortran 77 and Fortran 90 compilers. Equivalent facilities

are provided in standard Fortran 90, using the parameterized form of the COMPLEX data

type (see below).

To link LAPACK 77 to a Fortran 90 program (which must of course be compiled by a

Fortran 90 compiler), one of the following approaches will be necessary, depending on the

compilers available.

1. Link the Fortran 90 program to an existing LAPACK 77 library, compiled by a For-

tran 77 compiler. This approach can only work if the compilers have designed to allow

cross-linking.

2. If such cross-linking is not possible, recompile LAPACK 77 with the Fortran 90 com-

piler, provided that the compiler accepts COMPLEX*16 and related intrinsics as exten-

sions, and create a new library.

3. If these extensions are not accepted, convert the LAPACK 77 code to standard For-

tran 90 (see below), before recompiling it.

The conversions needed to create standard Fortran 90 code for LAPACK 77 are:

COMPLEX*16) COMPLEX(KIND=Kind(0.0D0)

DCONJG(z) for COMPLEX*16 z) CONJG(z)

DBLE(z) for COMPLEX*16 z) REAL(z)

DIMAG(z) for COMPLEX*16 z) AIMAG(z)

DCMPLX(x,y) for DOUBLE PRECISION x, y) CMPLX(x,y,KIND=Kind(0.0D0))

One further obstacle may remain: it is possible that if LAPACK 77 has been recompiled

with a Fortran 90 compiler, it may not link correctly to an optimized assembly-language

BLAS library that has been designed to interface with Fortran 77. Until this is recti�ed by

the vendor of the BLAS library, Fortran 77 code for the BLAS must be used.

2.2 Interface blocks for LAPACK 77

Fortran 90 allows one immediate extra bene�t to be provided to Fortran 90 users of LA-

PACK 77, without making any further changes to the existing code: that is a module of

explicit interfaces for the routines. If this module is accessed by a USE statement in any

program unit which makes calls to LAPACK routines, then those calls can be checked by

the compiler for errors in the numbers or types of arguments.

The module can be constructed by extracting the necessary speci�cation statements from

the Fortran 77 code, as illustrated by the following example (in �xed-form source format)

containing an interface for the single routine CBDSQR:

2

MODULE LAPACK77_INTERFACES

INTERFACE

SUBROUTINE CBDSQR(UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,

$ LDU, C, LDC, RWORK, INFO)

CHARACTER UPLO

INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU

REAL D(*), E(*), RWORK(*)

COMPLEX C(LDC, *), U(LDU, *), VT(LDVT, *)

END

END INTERFACE

END MODULE LAPACK77_INTERFACES

A single module containing interfaces for all the routines in LAPACK 77 (over 1000 of them)

may be too large for practical use; it may be desirable to split it (perhaps, one module for

single precision documented routines, one for double precision documented routines, and

similarly for auxiliary routines).

3 Proposals for the Design of LAPACK 90

In the design of a Fortran 90 interface to LAPACK, we propose to take advantage of the

features of the language listed below.

1. Assumed-shape arrays: All array arguments to LAPACK 90 routines will be

assumed-shape arrays. Arguments to specify problem-dimensions or array-dimensions

will not be required.

This implies that the actual arguments supplied to LAPACK routines must have the

exact shape required by the problem. The most convenient ways to achieve this are:

� using allocatable arrays, for example:

REAL, ALLOCATABLE :: A(:,:), B(:)

. . .

ALLOCATE(A(N,N), B(N))

. . .

CALL LA_GESV(A, B)

� passing array sections, for example:

REAL :: A(NMAX,NMAX), B(NMAX)

. . .

CALL LA_GESV(A(:N,:N), B(:N))

Zero dimensions (empty arrays) will be allowed.

There are some grounds for concern about the e�ect of assumed-size arrays on perfor-

mance, because compilers cannot assume that their storage is contiguous. The e�ect

3

on performance will of course depend on the compiler, and may diminish in time

as compilers become more e�ective in optimizing compiled code. This point needs

investigation.

2. Automatic allocation of work arrays: Workspace arguments and arguments to

specify their dimensions will not be needed. In simple cases, automatic arrays of the

required size can be declared internally. In other cases, allocatable arrays may need to

be declared and explicitly allocated. Explicit allocation is needed in particular when

the amount of workspace required depends on the block-size to be used (which is not

passed as an argument).

3. Optional arguments: In LAPACK 77, character arguments are frequently used to

specify some choice of options. In Fortran 90, a choice of options can sometimes be

speci�ed naturally by the presence or absence of optional arguments: for example,

options to compute the left or right eigenvectors can be specifed by the presence of

arguments VL or VR, and the character arguments JOBVL and JOBVR which are required

in the LAPACK 77 routine DGEEV, are not needed in LAPACK 90.

In other routines, a character argument to specify options may still be required, but

can itself be made optional if there is a natural default value: for example, in DGESVX

the argument TRANS can be made optional, with default value 'N'.

Optional arguments can also help to combine two or more routines into one: for

example, the functionality provided by the routine DGECON can be made acessible by

adding an optional argument RCOND to DGETRF.

4. Generic Interfaces: The systematic occurrence in LAPACK of analogous routines

for real or complex data, and for single or double precision lends itself well to the

de�nition of generic interfaces, allowing four di�erent routines to be accessed through

the same generic name.

Generic interfaces can also be used to cover routines whose arguments di�er in rank,

and thus provide a slight increase in
exibility over LAPACK 77. For example, in

LAPACK 77, routines for solving a system of linear equations (such as DGESV),

allow for multiple right hand sides, and so the arrays which hold the right hand sides

and solutions are always of rank 2. In LAPACK 90, we can provide alternative versions

of the routines (covered by a single generic interface) in which the arrays holding the

right hand sides and solutions may either be of rank 1 (for a single right hand side)

or be of rank 2 (for several right hand sides).

5. Naming: For the generic routine names, we propose:

(a) the initial letter (S, C, D or Z) is simply omitted.

(b) the letters LA are pre�xed to all names to identify them as names of LAPACK

routines.

In other respects the naming scheme remains the same as described in Section 2.1.3

of [1]: for example, LA GESV.

It would also be possible to de�ne longer, more meaningful names (which could co-

exist with the shorter names), but we have not attempted this here.

4

We have not proposed the use of any derived types in this Fortran 90 interface. They

could be considered | for example, to hold the details of an LU factorization and

equilibration factors. However, since LAPACK routines are so frequently used as

building blocks in larger algorithms or applications, we feel that there are advantages

in keeping the interface simple, and avoiding possible loss of e�ciency through the

use of array pointers (which such derived types would require).

6. Error-handling:

In LAPACK 77, all documented routines have a diagnostic output argument INFO.

Three types of exit from a routine are allowed:

successful termination: the routine returns to the calling program with INFO set

to 0.

illegal value of one or more arguments: the routine sets INFO < 0 and calls the

auxiliary routine XERBLA; the standard version of XERBLA issues an error mes-

sage identifying the �rst invalid argument, and stops execution.

failure in the course of computation: the routine sets INFO > 0 and returns to

the calling program without issuing any error message. Only some LAPACK 77

routines need to allow this type of error-exit; it is then the resposibility of a user

to test INFO on return to the calling program.

For LAPACK 90 we propose that the argument INFO becomes optional: if it is not

present and an error occurs, then the routine always issues an error message and stops

execution, even when INFO > 0 (in which case the error message reports the value of

INFO). If a user wishes to continue execution after a failure in computation, then INFO

must be supplied and tested on return.

This behaviour simpli�es calls to LAPACK 90 routines when there is no need to test

INFO on return, and makes it less likely that users will forget to test INFO when

necessary.

If an invalid argument is detected, we propose that routines issue an error message

and stop, as in LAPACK 77. Note however that in Fortran 90 there can be di�erent

reasons for an argument being invalid:

illegal value : as in LAPACK 77.

invalid shape (of an assumed-shape array): for example, a 2-dimensional array is

not square when it is required to be.

inconsistent shapes (of two or more assumed-shape arrays): for example, arrays

holding the right hand sides and solutions of a system of linear equations must

have the same shape.

The speci�cation could be extended so that the error-message could distinguish be-

tween these cases.

4 Prototype Implementation of LAPACK 90 Procedures

We have implemented Fortran 90 jacket procedures to the group of LAPACK 77 routines

concerned with the solution of systems of linear equations AX = B for a general matrix A

5

| that is, the driver routines xGESV and xGESVX, and the computational routines xGETRF,

xGETRS, xGETRI, xGECON, xGERFS and xGEEQU.

In Appendix A, we give detailed documentation of the proposed interfaces. Here we give

examples of calls to each of the proposed routines, the �rst without using any of the op-

tional arguments, the second using all the arguments. For the time being and for ease of

comparison between LAPACK 77 and LAPACK 90, we have retained the same names for

the corresponding arguments, although of course Fortran 90 o�ers the possibility of longer

names (for example, IPIV could become PIVOT INDICES).

In this prototype implementation, we have assumed that the code of LAPACK 77 is not

modi�ed.

LA GESV (simple driver):

CALL LA_GESV(A, B)

CALL LA_GESV(A, B, IPIV, INFO)

Comments:

� The array B may have rank 1 (one right hand side) or rank 2 (several right hand

sides).

LA GESVX (expert driver):

CALL LA_GESVX(A, B, X)

CALL LA_GESVX(A, B, X, AF, IPIV, FACT, TRANS, EQUED, R, C, &

FERR, BERR, RCOND, RPVGRW, INFO)

Comments:

� The arrays B and X may have rank 1 (in which case FERR and BERR are scalars)

or rank 2 (in which case FERR and BERR are rank-1 arrays).

� RPVGRW returns the reciprocal pivot growth factor (returned in WORK(1) in LA-

PACK 77).

� the presence or absence of EQUED is used to specify whether or not equilibration

is to be performed, instead of the option FACT = 'E'.

LA GETRF (LU factorization):

CALL LA_GETRF(A, IPIV)

CALL LA_GETRF(A, IPIV, RCOND, NORM, INFO)

Comments:

6

� instead of a separate routine LA GECON, we propose that optional arguments

RCOND and NORM are added to LA GETRF to provide the same functionality in a

more convenient manner. The argument ANORM of xGECON is not needed, because

LA GETRF can always compute the norm of A if required.

LA GETRS (solution of equations using LU factorization):

CALL LA_GETRS(A, IPIV, B)

CALL LA_GETRS(A, IPIV, B, TRANS, INFO)

Comments:

� The array B may have rank 1 or 2.

LA GETRI (matrix inversion using LU factorization):

CALL LA_GETRI(A, IPIV)

CALL LA_GETRI(A, IPIV, INFO)

LA GERFS (re�ne solution of equations and optionally compute error bounds):

CALL LA_GERFS(A, AF, IPIV, B, X)

CALL LA_GERFS(A, AF, IPIV, B, X, TRANS, FERR, BERR, INFO)

Comments:

� The arrays B and X may have rank 1 (in which case FERR and BERR are scalars)

or rank 2 (in which case FERR and BERR are rank-1 arrays).

LA GEEQU (equilibration):

CALL LA_GEEQU(A, R, C)

CALL LA_GEEQU(A, R, C, ROWCND, COLCND, AMAX, INFO)

5 Documentation

In the Appendix A, we give a �rst attempt at draft documentation for these routines. The

style is somewhat similar to that of the LAPACK Users' Guide, but with various obvious

new conventions introduced to handle the generic nature of the interfaces.

7

6 Test Software

Additional test software will be needed to test the new interfaces.

7 Timings

We have done some timings to measure the extra overhead of the Fortran 90 interface. We

timed LA GETRF on a single processor of an IBM SP-2 (in double precision) and a single

processor of a Cray YMP C90A (in single precision). All timings are given in mega
ops.

IBM 1. Speed of LAPACK 90 calling LAPACK 77 and BLAS from the ESSL library.

2. Speed of LAPACK 77, using BLAS from the ESSL library.

Array size 600 700 800 900 1000 1100 1200 1300 1400 1500

LAPACK90 187 180 182 170 172 172 176 177 181 182

LAPACK77 191 181 182 171 172 173 176 179 180 182

Cray 1. Speed of LAPACK 90 calling LAPACK 77 as provided by CRAY in LIBSCI.

2. Speed of LAPACK 77 as provided by CRAY in LIBSCI.

Array size 600 700 800 900 1000 1100 1200 1300 1400 1500

LAPACK90 723 828 646 841 822 855 789 857 846 868

LAPACK77 778 834 649 845 825 860 794 864 848 873

The above tables show the LAPACK 90 results are a little slower (1 or 2%) than the

LAPACK 77 results.

8 Acknowledgments

Jerzy Wa�sniewski's research is partly supported by the Danish Project, E�cient Parallel

Algorithms for Optimization and Simulation (EPOS).

We thank very much Dr. Christian de Polignac. He ran the test programs on an IBM

RS/6000 and using the NAG compiler on an HP workstation.

References

[1] E. Anderson, Z. Bai, C. H. Bischof, J. Demmel, J. J. Dongarra, J. Du Croz, A. Green-

baum, S. Hammarling, A. McKenney, S. Ostrouchov and D. C. Sorensen. LAPACK

Users' Guide Release 2.0. SIAM, Philadelphia, 1995.

[2] M. Metcalf and J. Reid. Fortran 90 Explained. Oxford, New York, Tokyo, Oxford

University Press, 1990.

8

A Documentation of LAPACK 90 Procedures

A.1 LA GESV

A.1.1 Purpose

LA GESV computes the solution to either a real or complex system of linear equations

AX = B, where A is a square matrix and B and X are either rectangular matrices or

vectors.

The LU decomposition with partial pivoting and row interchanges is used to factor A as

A = PLU , where P is a permutation matrix, L is unit lower triangular, and U is upper

triangular. The factored form of A is then used to solve the system of equations AX = B.

A.1.2 Speci�cation

SUBROUTINE LA GESV(A, B, IPIV, INFO)

type(wp), INTENT(INOUT) :: A(:,:), rhs

INTEGER, INTENT(OUT), OPTIONAL :: IPIV(:)

INTEGER, INTENT(OUT), OPTIONAL :: INFO

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

rhs ::= B(:,:) j B(:)

A.1.3 Arguments

A { (input/output) either REAL or COMPLEX square array, shape (:; :), size(A; 1) =

size(A; 2).

� On entry, the matrix A.

� On exit, the factors L and U from the factorization A = PLU ; the unit diagonal

elements of L are not stored.

B { (input/output) either REAL or COMPLEX rectangular array, shape either (:; :) or

(:), size(B; 1) or size(B) = size(A; 1).

� On entry, the right hand side vector(s) of matrix B for the system of equations

AX = B.

� On exit, if there is no error, the matrix of solution vector(s) X .

IPIV { Optional (output) INTEGER array, shape (:), size(IPIV) = size(A; 1). If IPIV

is present, it contains indices that de�ne the permutation matrix P ; row i of the matrix

was interchanged with row IPIV (i).

INFO { Optional (output) INTEGER.

� If INFO is present

9

= 0 : successful exit

< 0 : if INFO = �i, the i-th argument had an illegal value

� 0 : if INFO = k, U(k; k) is exactly zero. The factorization has been com-

pleted, but the factor U is exactly singular, so the solution could not be

computed.

� If INFO is not present and an error occurs, then the program is terminated with

an error message.

A.2 LA GESVX

A.2.1 Purpose

LA GESVX computes the solution to a either real or complex system of linear equations

AX = B, where A is a square matrix and B and X are either rectangular matrices or

vectors.

LA GESVX is an expert driver routine, which can also optionally perform the following

functions:

� solve ATX = B or AHX = B,

� estimate the condition number of A

� return the pivot growth factor

� re�ne the solution and compute forward and backward error bounds

� equilibrate the system if A is poorly scaled.

10

A.2.2 Speci�cation

SUBROUTINE LA GESVX (A, B, X, AF, IPIV, FACT, TRANS, &

EQUED, R, C, FERR, BERR, RCOND, RPVGRW, INFO)

type(wp), INTENT(INOUT) :: A(:,:), rhs

type(wp), INTENT(OUT) :: sol

type(wp), INTENT(INOUT), OPTIONAL :: AF(:,:)

INTEGER, INTENT(INOUT), OPTIONAL :: IPIV(:)

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: FACT, &

TRANS

CHARACTER(LEN=1), INTENT(INOUT), OPTIONAL :: &

EQUED

REAL(wp), INTENT(INOUT), OPTIONAL :: R(:), C(:)

REAL(wp), INTENT(OUT), OPTIONAL :: err, RCOND, &

RPVGRW

INTEGER, INTENT(OUT), OPTIONAL :: INFO

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

rhs ::= B(:,:) j B(:)

sol ::= X(:,:) j X(:)

err ::= FERR(:), BERR(:) j FERR, BERR

A.2.3 Description

The following steps are performed:

1. If FACT is not present or FACT = 0N 0, and EQUED is present, real scaling factors

are computed to equilibrate the system:

TRANS = 'N' : diag(R)A diag(C) (diag(C))�1 X = diag(R)B

TRANS = 'T' : (diag(R)A diag(C))T (diag(R))�1 X = diag(C)B

TRANS = 'C' : (diag(R)A diag(C))H (diag(R))�1 X = diag(C) B

Whether or not the system will be equilibrated depends on the scaling of the matrix

A, but if equilibration is used, A is overwritten by diag(R) A diag(C) and B by

diag(R)B (if TRANS = 0N 0) or diag(C) B (if TRANS = 0T 0 or 0C0).

2. If FACT = 0N 0, the LU decomposition is used to factor the matrix A (after equili-

bration if EQUED is present) as A = PLU , where P is a permutation matrix, L is

a unit lower triangular matrix, and U is upper triangular.

3. The factored form of A is used to estimate the condition number of the matrix A. If

the reciprocal of the condition number is less than machine precision, steps 4 { 6 are

skipped.

4. The system of equations is solved for X using the factored form of A.

11

5. Iterative re�nement is applied to improve the computed solution matrix and calculate

error bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(C) (if TRANS =
0N 0) or diag(R) (if TRANS = 0T 0 or 0C0) so that it solves the original system before

equilibration.

A.2.4 Arguments

A { (input/output) either REAL or COMPLEX square array, shape (:; :), size(A; 1) =

size(A; 2).

If FACT is not present or FACT = 0N 0,

� On entry, the matrix A.

� On exit, if EQUED is present, the matrix A may have been overwritten by

the equilibrated matrix (see EQUED).

If FACT is present and FACT = 0F 0,

� On entry, the matrixA, possibly equilibrated in a previous call toLA GESVX

(see EQUED).

� On exit, A is unchanged.

B { (input/output) either REAL or COMPLEX rectangular array, shape either (:; :) or

(:), size(B; 1) or size(B) = size(A; 1).

� On entry, the right hand side vector(s) of matrix B for the system of equations

AX = B.

� On exit, if EQUED is present, B may have been scaled in accordance with the

equilibration of A (see EQUED); otherwise, B is unchanged.

X { (output) either REAL or COMPLEX rectangular array, shape either (:; :) or (:),

size(X; 1) or size(X) = size(A; 1). If INFO = 0, the solution matrix (vector) X

to the original system of equations. Note that X always returns the solution to the

original system of equations; if equilibration has been performed (EQUED is present

and EQUED 6= 0N 0), this does not correspond to the scaled A and B.

AF { Optional (input/output) either REAL or COMPLEX square array, shape (:; :),

size(AF; 1) = size(AF; 2) = size(A; 1).

If FACT is not present or FACT = 0N 0, then AF is an output argument and returns

the factors L and U from the factorization A = PLU of the original matrix A,

possibly equilibrated if EQUED is present.

If FACT is present and FACT = 0F 0, then AF is an input argument (and must be

present); on entry, it must contain the factors L and U of A (possibly equilibrated

if EQUED is present), returned by a previous call to LA GESVX.

IPIV { Optional (input/output) INTEGER array, shape (:), size(IPIV) = size(A; 1).

If FACT is not present or FACT = 0N 0, then IPIV is an output argument and

returns the pivot indices from the factorization A = PLU of the original matrix

A, possibly equilibrated if EQUED is present.

12

If FACT is present and FACT = 0F 0, then IPIV is an input argument (and must

be present); on entry, it must contain the pivot indices from the factorization of

A (possibly equilibrated if EQUED is present), returned by a previous call to

LA GESVX.

TRANS { Optional (input) CHARACTER*1.

� If TRANS is present, it speci�es the form of the system of equations:

= 0N 0 : AX = B (No transpose)

= 0T 0 : ATX = B (Transpose)

= 0C0 : AHX = B (Conjugate transpose)

� otherwise TRANS = 0N 0 is assumed.

FACT { Optional (input) CHARACTER*1. Speci�es whether or not the factored form

of the matrix A is supplied on entry.

� If FACT is present then:

= 0N 0 : the matrix A will be equilibrated if EQUED is present, then copied to

AF and factored.

= 0F 0 : on entry, AF and IPIV must contain the factored form of A (possibly

equilibrated if EQUED is present).

� otherwise FACT = 0N 0 is assumed.

EQUED { Optional (input/output) CHARACTER*1.

If FACT is not present or FACT = 0N 0, then EQUED is an output argument. If

it is present, then the matrix is equilibrated, and on exit EQUED speci�es the

scaling of A which has actually been performed:

= 0N 0 : No equilibration.

= 0R0 : Row equilibration, i.e., A has been premultiplied by diag(R); also B has

been premultiplied by diag(R) if TRANS = 0N 0.

= 0C0 : Column equilibration, i.e., A has been postmultiplied by diag(C); also

B has been premultiplied by diag(C) if TRANS = 0T 0 or 0C0.

= 0B0 : Both row and column equilibration: combines the e�ects of EQUED =
0R0 and EQUED = 0C0.

If FACT is present and FACT = 0F 0, then EQUED is an input argument; if it is

present, it speci�es the equilibration of A which was performed in a previous call

to LA GESVX with FACT not present or FACT = 0N 0.

R { Optional (input/output) REAL array, shape (:), size(R) = size(A; 1). R must be

present if EQUED is present and EQUED = 0R0 or 0B0; R is not referenced if

EQUED = 0N 0 or 0C0.

If FACT is not present or FACT = 0N 0, then R is an output argument. If EQUED

= 0R0 or 0B0, R returns the row scale factors for equilibrating A.

If FACT is present and FACT = 0F 0, then R is an input argument. If EQUED =
0R0 or 0B0, R must contain the row scale factors for equilibrating A, returned by

a previous call to LA GESVX; each element of R must be positive.

13

C { Optional (input/output) REAL array, shape (:), size(C) = size(A; 1). C must be

present if EQUED is present and EQUED = 0C0 or 0B0; C is not referenced if

EQUED = 0N 0 or 0R0.

If FACT is not present or FACT = 0N 0, then C is an output argument. If EQUED

= 0C0 or 0B0, C returns the column scale factors for equilibrating A.

If FACT is present and FACT = 0F 0, then C is an input argument. If EQUED =
0C0 or 0B0, C must contain the column scale factors for equilibrating A, returned

by a previous call to LA GESVX; each element of C must be positive.

FERR { Optional (output) either REAL array of shape (:) or REAL scalar. If it is

an array, size(FERR) = size(X; 2). The estimated forward error bound for each

solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the

true solution corresponding to X(j), FERR(j) is an estimated upper bound for the

magnitude of the largest element in (X(j)� XTRUE) divided by the magnitude of

the largest element in X(j). The estimate is as reliable as the estimate for RCOND,

and is almost always a slight overestimate of the true error.

BERR { Optional (output) either REAL array of shape (:) or REAL scalar. If it is an

array, size(BERR) = size(X; 2). The componentwise relative backward error of each

solution vector X(j) (i.e., the smallest relative change in any element of A or B that

makes X(j) an exact solution).

RCOND { Optional (output) REAL. The estimate of the reciprocal condition number

of the matrix A after equilibration (if done). If RCOND is less than the machine

precision (in particular, if RCOND = 0), the matrix is singular to working precision.

This condition is indicated by a return code of INFO > 0, and the solution and error

bounds are not computed.

RPVGRW { Optional (output) REAL. The reciprocal pivot growth factor kAk
1
=kUk

1
.

If RPV GRW is much less than 1, then the stability of the LU factorization of the

(equilibrated) matrix A could be poor. This also means that the solution X , condition

estimator RCOND, and forward error bound FERR could be unreliable. If factor-

ization fails with 0 < INFO � size(A; 1), then RPV GRW contains the reciprocal

pivot growth factor for the leading INFO columns of A.

INFO { Optional (output) INTEGER.

� If INFO is present

= 0 : successful exit

< 0 : if INFO = �i, the i-th argument had an illegal value

> 0 : if INFO = i, and i is

� N : U(i; i) is exactly zero. The factorization has been completed, but the

factor U is exactly singular, so the solution and error bounds could not

be computed.

= N + 1 : RCOND is less than machine precision. The factorization has

been completed, but the matrix is singular to working precision, and the

solution and error bounds have not been computed.

� If INFO is not present and an error occurs, then the program is terminated with

an error message.

14

A.3 LA GETRF

A.3.1 Purpose

LA GETRF computes an LU factorization of a general rectangular matrix A using partial

pivoting with row interchanges.

The factorization has the form A = PLU where P is a permutation matrix, L is lower tri-

angular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular

(upper trapezoidal if m < n), where m = size(A; 1) and n = size(A; 2).

When A is square (m = n), LA GETRF optionally estimates the reciprocal of the con-

dition number of the matrix A, in either the 1-norm or the 1-norm. An estimate is

obtained for kA�1k, and the reciprocal of the condition number is computed as RCOND =

1=(kAk kA�1k).

A.3.2 Speci�cation

SUBROUTINE LA GETRF(A, IPIV, RCOND, NORM, INFO)

type(wp), INTENT(INOUT) :: A(:,:)

INTEGER, INTENT(OUT) :: IPIV(:)

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: NORM

REAL(wp), INTENT(OUT), OPTIONAL :: RCOND

INTEGER, INTENT(OUT), OPTIONAL :: INFO

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

A.3.3 Arguments

A { (input/output) either REAL or COMPLEX array, shape (:; :).

� On entry, the matrix A.

� On exit, the factors L and U from the factorization A = PLU ; the unit diagonal

elements of L are not stored.

IPIV { (output) INTEGER array, shape (:), size(IPIV) = min(size(A; 1); size(A; 2)).

Indices that de�ne the permutation matrix P ; row i of the matrix was interchanged

with row IPIV (i).

RCOND { Optional (output) REAL. The reciprocal of the condition number of the ma-

trix A for the casem = n, computed as RCOND = 1=(kAk kA�1k). RCOND should

be present if NORM is present. If m 6= n then RCOND is returned as zero.

NORM { Optional (input) CHARACTER*1. Speci�es whether the 1-norm condition

number or the 1-norm condition number is required:

� = '1', 'O' or 'o': 1-norm;

� = 'I ', 'i': 1-norm.

15

If NORM is not present, the 1-norm is used.

INFO { Optional (output) INTEGER.

� If INFO is present

= 0 : successful exit

< 0 : if INFO = �k, the k-th argument had an illegal value

> 0 :

if INFO = k, U(k; k) is exactly zero. The factorization has been com-

pleted, but the factor U is exactly singular, so the solution could not

be computed.

� If INFO is not present and an error occurs, then the program is terminated with

an error message.

A.4 LA GETRS

A.4.1 Purpose

LA GETRS solves a system of linear equations AX = B, ATX = B or AHX = B with a

general square matrix A, using the LU factorization computed by LA GETRF.

A.4.2 Speci�cation

SUBROUTINE LA GETRS (A, IPIV, B, TRANS, INFO)

type(wp), INTENT(IN) :: A(:,:)

INTEGER, INTENT(IN) :: IPIV(:)

type(wp), INTENT(INOUT) :: rhs

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS

INTEGER, INTENT(OUT), OPTIONAL :: INFO

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

rhs ::= B(:,:) j B(:)

A.4.3 Arguments

A { (input) eitherREAL orCOMPLEX square array, shape (:; :), size(A; 1) = size(A; 2).

The factors L and U from the factorization A = PLU as computed by LA GETRF.

IPIV { (input) INTEGER array, shape (:), size(IPIV) = size(A; 1). The pivot indices

from LA GETRF; for 1 � i � size(A; 1), row i of the matrix was interchanged with

row IPIV (i).

B { (input/output) either REAL or COMPLEX rectangular array, shape either (:; :) or

(:), size(B; 1) or size(B) = size(A; 1).

16

� On entry, the right hand side vector(s) of matrix B for the system of equations

AX = B.

� On exit, if there is no error, the matrix of solution vector(s) X .

TRANS { Optional (input) CHARACTER*1.

� If TRANS is present, it speci�es the form of the system of equations:

= 0N 0 : AX = B (No transpose)

= 0T 0 : ATX = B (Transpose)

= 0C0 : AHX = B (Conjugate transpose)

� otherwise TRANS = 0N 0 is assumed.

INFO { Optional (output) INTEGER.

� If INFO is present

= 0 : successful exit

< 0 : if INFO = �k, the k-th argument had an illegal value

� If INFO is not present and an error occurs, then the program is terminated with

an error message.

A.5 LA GETRI

A.5.1 Purpose

LA GETRI computes the inverse of a matrix using the LU factorization computed by

LA GETRF.

A.5.2 Speci�cation

SUBROUTINE LA GETRI (A, IPIV, INFO)

type(wp), INTENT(INOUT) :: A(:,:)

INTEGER, INTENT(IN) :: IPIV(:)

INTEGER, INTENT(OUT), OPTIONAL :: INFO

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

A.5.3 Arguments

A { (input/output) either REAL or COMPLEX square array, shape (:; :), size(A; 1) =

size(A; 2).

� On entry contains the factors L and U from the factorization A = PLU as

computed by LA GETRF.

� On exit, if INFO = 0, the inverse of the original matrix A.

17

IPIV { (input) INTEGER array, shape (:), size(IPIV) = size(A; 1). The pivot indices

from LA GETRF; for 1 � i � size(A; 1), row i of the matrix was interchanged with

row IPIV (i).

INFO { Optional (output) INTEGER.

� If INFO is present

= 0 : successful exit

< 0 : if INFO = �k, the k-th argument had an illegal value

> 0 : if INFO = k, U(K,K) is exactly zero; the matrix is singular and its inverse

could not be computed.

� If INFO is not present and an error occurs, then the program is terminated with

an error message.

A.6 LA GERFS

A.6.1 Purpose

LA GERFS improves the computed solution X of a system of linear equations AX = B

or ATX = B and provides error bounds and backward error estimates for the solution.

LA GERFS uses the LU factors computed by LA GETRF.

A.6.2 Speci�cation

SUBROUTINE LA GERFS (A, AF, IPIV, B, X, &

TRANS, FERR, BERR, INFO)

type(wp), INTENT(IN) :: A(:,:), AF(:,:), rhs

INTEGER, INTENT(IN) :: IPIV(:)

type(wp), INTENT(INOUT) :: sol

CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS

REAL(wp), INTENT(OUT), OPTIONAL :: err

INTEGER, INTENT(OUT), OPTIONAL :: INFO

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

rhs ::= B(:,:) j B(:)

sol ::= X(:,:) j X(:)

err ::= FERR(:), BERR(:) j FERR, BERR

A.6.3 Arguments

A { (input) eitherREAL orCOMPLEX square array, shape (:; :), size(A; 1) = size(A; 2).

The original matrix A.

AF { (input) either REAL or COMPLEX square array, shape (:; :), size(AF; 1) =

size(AF; 2) = size(A; 1). The factors L and U from the factorization A = PLU

as computed by LA GETRF.

18

IPIV { (input) INTEGER array, shape (:), size(IPIV) = size(A; 1). The pivot indices

from LA GETRF; for 1 � i � size(A; 1), row i of the matrix was interchanged with

row IPIV (i).

B { (input) either REAL or COMPLEX rectangular array, shape either (:; :) or (:),

size(B; 1) or size(B) = size(A; 1). The right hand side vector(s) of matrix B for the

system of equations AX = B.

X { (input/output) either REAL or COMPLEX rectangular array, shape either (:; :) or

(:), size(X; 1) or size(X) = size(A; 1).

� On entry, the solution matrix X , as computed by LA GETRS.

� On exit, the improved solution matrix X .

TRANS { Optional (input) CHARACTER*1.

� If TRANS is present, it speci�es the form of the system of equations:

= 0N 0 : AX = B (No transpose)

= 0T 0 : ATX = B (Transpose)

= 0C0 : AHX = B (Conjugate transpose)

� otherwise TRANS = 0N 0 is assumed.

FERR { Optional (output) either REAL array of shape (:) or REAL scalar. If it is

an array, size(FERR) = size(X; 2). The estimated forward error bound for each

solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the

true solution corresponding to X(j), FERR(j) is an estimated upper bound for the

magnitude of the largest element in (X(j)� XTRUE) divided by the magnitude of

the largest element in X(j). The estimate is as reliable as the estimate for RCOND,

and is almost always a slight overestimate of the true error.

BERR { Optional (output) either REAL array of shape (:) or REAL scalar. If it is an

array, size(BERR) = size(X; 2). The componentwise relative backward error of each

solution vector X(j) (i.e., the smallest relative change in any element of A or B that

makes X(j) an exact solution).

INFO { Optional (output) INTEGER.

� If INFO is present

= 0 : successful exit

< 0 : if INFO = �i, the i-th argument had an illegal value

� If INFO is not present and an error occurs, then the program is terminated with

an error message.

A.6.4 Internal Parameters

ITMAX { is the maximum number of steps of iterative re�nement. It is set to 5 in the

LAPACK 77 subroutines (see [1]).

19

A.7 LA GEEQU

A.7.1 Purpose

LA GEEQU computes row and column scalings intended to equilibrate a rectangle matrix

A and reduce its condition number. R returns the row scale factors and C the column scale

factors, chosen to try to make the largest entry in each row and column of the matrix B

with elements Bij = RiAijCj have absolute value 1.

Ri and Cj are restricted to be between SMLNUM = smallest safe number and BIGNUM

= largest safe number. Use of these scaling factors is not guaranteed to reduce the condition

number of A but works well in practice.

A.7.2 Speci�cation

SUBROUTINE LA GEEQU (A, R, C, ROWCND, COLCND, &

AMAX, INFO)

type(wp), INTENT(IN) :: A(:,:)

REAL(wp), INTENT(OUT) :: R(:), C(:)

REAL(wp), INTENT(OUT), OPTIONAL :: ROWCND, &

COLCND, AMAX

INTEGER, INTENT(OUT), OPTIONAL :: INFO

where

type ::= REAL j COMPLEX

wp ::= KIND(1.0) j KIND(1.0D0)

A.7.3 Arguments

A { (input) either REAL or COMPLEX array, shape (:; :). The matrix A, whose equi-

libration factors are to be computed.

R { (output) REAL array, shape (:), size(R) = size(A; 1). If INFO = 0 or INFO >

size(A; 1), R contains the row scale factors for A.

C { (output) REAL array, shape (:), size(C) = size(A; 2). If INFO = 0, C contains the

column scale factors for A.

ROWCND { Optional (output)REAL. If INFO = 0 or INFO > size(A; 1),ROWCND

contains the ratio of the smallest R(i) to the largest R(i). If ROWCND � 0:1 and

AMAX is neither too large nor too small, it is not worth scaling by R.

COLCND { Optional (output) REAL. If INFO = 0, COLCND contains the ratio of

the smallest C(i) to the largest C(i). If COLCND � 0:1, it is not worth scaling by

C.

AMAX { Optional (output) REAL. Absolute value of largest matrix element. If AMAX

is very close to over
ow or very close to under
ow, the matrix should be scaled.

INFO { Optional (output) INTEGER.

20

� If INFO is present

= 0 : successful exit

< 0 : if INFO = �i, the i-th argument had an illegal value

> 0 : if INFO = i, and i is

� m : the i-th row of A is exactly zero

> m : the (i�m)-th column of A is exactly zero

where m = size(A; 1).

� If INFO is not present and an error occurs, then the program is terminated with

an error message.

21

B Code for One Version of LA GESV

We illustrate here the sort of code that is needed to implement one of the Fortran 90 jacket

procedures. The procedure shown is the real single precision version of LA GESV, with

multiple right hand sides (B is a rank-2 array).

B.1 Precision-dependencies

To handle di�erent precisions, we use a module LA PRECISION to de�ne named constants

SP and DP for the kind values of single and double precision, respectively.

MODULE LA_PRECISION

INTEGER, PARAMETER :: SP=KIND(1.0), DP=KIND(1.0D0)

END MODULE LA_PRECISION

Within the LAPACK 90 code, all real and complex constructs are expressed in terms of a

symbolic kind value WP, which is de�ned by reference to the module LA PRECISION | in

single precision:

USE LA_PRECISION :: WP => SP

and in double precision:

USE LA_PRECISION :: WP => DP

These are the only precision-dependent changes in the code, apart from changes to the

procedure-names.

B.2 Error-handling

To handle errors, as described in Section 4, we use a simple procedure ERINFO, which is

assumed to be accessed from a module LA AUX:

SUBROUTINE ERINFO(LINFO, SRNAME, INFO)

! .. Scalar Arguments ..

CHARACTER(LEN = *), INTENT(IN) :: SRNAME

INTEGER , INTENT(IN) :: LINFO

INTEGER , INTENT(INOUT), OPTIONAL :: INFO

!

! .. Executable Statements ..

!

IF(PRESENT(INFO)) INFO = LINFO

IF(LINFO < 0 .OR. LINFO>0 .AND. .NOT.PRESENT(INFO))THEN

22

WRITE (*,*) 'Program terminated in LAPACK_90 subroutine ', SRNAME

WRITE (*,*) 'Error indicator, INFO = ', LINFO

STOP

END IF

END SUBROUTINE ERINFO

A more elaborate error-handling mechanism could of course be devised.

B.3 Accessing LAPACK 77 routines

We assume that interface-blocks for all the LAPACK 77 routines are accessible from a mod-

ule LAPACK77 INTERFACES. Note that we do not use generic interfaces for the LAPACK 77

routines, since that would impose some restrictions on the way in which LAPACK 77 rou-

tines could be called.

However, we rename the routine in the USE statement, so that the precision-dependent

name-change is localized in the USE statement.

B.4 The code

SUBROUTINE SGESV_F90(A,B,IPIV,INFO)

! .. Use Statements ..

USE LA_PRECISION, ONLY: WP => SP

USE LA_AUX, ONLY: ERINFO

USE LAPACK77_INTERFACES, ONLY: GESV_F77 => SGESV

! .. Implicit Statement ..

IMPLICIT NONE

! .. Scalar Arguments ..

INTEGER, INTENT(OUT), OPTIONAL :: INFO

! .. Array Arguments ..

INTEGER, INTENT(OUT), OPTIONAL, TARGET :: IPIV(:)

REAL(WP), INTENT(INOUT) :: A(:,:), B(:,:)

! .. Parameters ..

CHARACTER(LEN=7), PARAMETER :: SRNAME = 'LA_GESV'

! .. Local Scalars ..

INTEGER :: LD, LINFO, NRHS, N

! .. Local Pointers ..

INTEGER, POINTER :: LPIV(:)

! .. Intrinsic Functions ..

INTRINSIC MAX, PRESENT, SIZE

!

! .. Executable Statements ..

!

! Test the arguments

!

LINFO = 0

23

N = SIZE(A, 1)

IF(SIZE(A, 2) /= N)THEN

LINFO = -1

ELSE IF(SIZE(B, 1) /= N)THEN

LINFO = -2

ELSE

IF(PRESENT(IPIV))THEN

IF(SIZE(IPIV) /= N) LINFO = -3

END IF

END IF

!

IF(LINFO == 0)THEN

LD = MAX(1, N)

NRHS = SIZE(B,2)

IF(PRESENT(IPIV))THEN

LPIV => IPIV

ELSE

ALLOCATE(LPIV(N))

END IF

!

! Call LAPACK77 routine

!

CALL GESV_F77(N, NRHS, A, LD, LPIV, B, LD, LINFO)

!

IF(.NOT.PRESENT(IPIV)) DEALLOCATE(LPIV)

END IF

!

CALL ERINFO(LINFO,SRNAME,INFO)

!

END SUBROUTINE SGESV_F90

24

