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Abstract

n
fi
When computing eigenvalues of sym metric matrices and singular values of general matrices i

nite precision arithmetic we in general only expect to compute them with an error bound pro-

n
portional to the product of machine precision and the norm of the matrix. In particular, we do

ot expect to compute tiny eigenvalues and singular values to high relative accuracy. There are
l

m
some important classes of matrices where we can do much better, including bidiagona

atrices, scaled diagonally dominant matrices, and scaled diagonally dominant definite pencils.

c
These classes include many graded matrices, and all sym metric positive definite matrices which
an be consistently ordered (and thus all sym metric positive definite tridiagonal matrices) . In

n
i
particular, the singular values and eigenvalues are determined to high relative precisio
ndependent of their magnitudes, and there are algorithms to compute them this accurately.

c
The eigenvectors are also determined more accurately than for general matrices, and may be
omputed more accurately as well. This work extends resu lts of Kahan and Demmel for bidiag-

K

onal and tridiagonal matrices.
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1. Introduction

When computing the eigenvalues of sym metric matrices and singular values of general

b
matrices in finite precision arithmetic one generally only expects to compute them with an error

ound f (n )ε e e A e e , where f (n ) is a modestly growing function of the matrix dimension n, ε is
-

d
the machine precision, and e e A e e is the 2-norm of the matrix A . This follows as a resu lt of stan

ard theorems which state:

(1.1) A perturbation δA in the matrix A cannot change its eigenvalues ( singular values) by

(

more than e e δA e e [12].

1.2) The standard algorithm for computing eigenvalues ( singular values) of A computes the
-

e
exact eigenvalues ( singular values) of A + δA , e e δA e e ≤ f (n )ε e e A e e , where f (n ) is a mod
stly growing function of n and ε is the machine precision [12].

o
e

These error bounds imply that tiny eigenvalues and singular values ( tiny compared t
e A e e ) cannot generally be computed to high relative accuracy, since the error bound f (n )ε e e A e e

l
may be much larger than the desired quantity. In fact, if each matrix entry is uncertain in its
east significant digits, the tiny eigenvalues and singular values may not even be determined

accurately by the data.

Sometimes, however, the eigenvalues and singular values are determined much more
s

o
accurately than error bounds like f (n )ε e e A e e would indicate. This was shown for singular value

f bidiagonal matrices in [9], where it was proven that sm all relative perturbations in the bidiag-

m
onal entries only cause sm all relative perturbations in the singular values, independent of their

agnitudes. It was also shown how to compute all the singular values to high relative accuracy.

m
In this paper we extend these resu lts to eigenvalues of sym metric scaled diagonally dominant

atrices and scaled diagonally dominant definite pencils. (Henceforth we will abbreviate

∆
"scaled diagonally dominant" by s.d.d.) A sym metric s.d.d. matrix is any matrix of the form

A ∆ , where A is sym metric and diagonally dominant in the usual sense, and ∆ is an arbitrary
.

a
nonsingular diagonal matrix. A pencil H − λM is s.d.d. definite if H and M are sym metric s.d.d
nd M is positive definite. Exam ples of s.d.d. matrices are the "graded" matrices

.
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1N 0ote that A is graded in the usual sense, but not diagonally dominant in the usual sense. A is
-

n
neither diagonally dominant in the usual sense, nor graded in the usual sense, since the diago

al entries are positive and negative, and not sorted. Thus we see that the usual diagonal domi-
l

s
nance implies being s.d.d., but not the converse. In fact, the set of s.d.d. matrices includes al
ymmetric positive definite matrices which can be consistently ordered, a class which includes

all sym metric positive definite tridiagonal matrices. Dense matrices may be s.d.d. as well.

Another exam ple arises from modeling a series of masses m , . . . , m on a line con-
0 n

1 n
e

s
nected by simple, linear springs with spring constants k , . . . , k ( the ends of the extrem
prings are fixed) . The natural frequencies of vibration of this system are the square roots of

d
the eigenvalues of the s.d.d. definite pencil H − λM , where M is the diagonal mass matrix

iag( m , . . . , m ) and H is the tridiagonal stiffness matrix with diagonal k + k , k + k , ...,
n

1 n 0 1 1 2

− 1 n 1 n − 1
− 1 /2 − 1 /2 e

s
k + k and offdiagonal − k , ..., − k . Note that the matrix M HM , which has th
am e eigenvalues as H − λM , is sym metric s.d.d.

In particular, we will show that sm all relative perturbations in the entries of an s.d.d.

d
matrix only cause sm all relative perturbations in the eigenvalues and singular values, indepen-

ent of their magnitudes. This is a much tighter perturbation bound than the classical one pro-
-

n
vided by (1.1) above. Our proof of this resu lt generalizes and unifies resu lts in [9] for bidiago

al matrices alone and in [14] for sym metric tridiagonal s.d.d. matrices alone.
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Given that the matrix entries determine all eigenvalues or singular values to high relative
-

r
accuracy, one would naturally like to compute them that accurately as well. We present algo
ithms based on bisection which attain this accuracy; in the case of bidiagonal or sym metric

h
positive definite tridiagonal matrices QR iteration (su itably modified) can be shown to attain

igh accuracy as well. It is not yet known whether algorithms based on divide and conquer [5,
11, 13] can be made to work in some of these situations too.

One may also ask if the singular vectors and eigenvectors of s.d.d. matrices and pencils
-

t
are determined any more accurately than for general matrices. To state the standard perturba
ion bound for eigenvectors of sym metric matrices and singular vectors of general matrices, we

.need to define the gap: if λ is an eigenvalue ( singular value) of A then gap(λ ) ≡ min e λ − λ ei i
j≠ i

i j

i .

(

In other words, it is the absolute distance between λ and the remainder of the spectrum

1.3) Let y be a unit eigenvector of A + δA , α = y Ay the Rayleigh quotient, λ the eigenvalue
i

T
i

i d
z
of A closest to α, and z its unit eigenvector. Let θ( z , y) be the acute angle between y an

. Then sin θ( y, z ) ≤ 4 e e δA e e /gap(λ ) [17, p. 222].

I
i i i

n other words, the error as measured by the angle is proportional to the reciprocal of the gap;
if the gap is sm all (λ is in a cluster of eigenvalues) , the corresponding eigenvector is poorlyi
determined. As before, the standard algorithms guarantee e e δA e e ≤ f (n )ε e e A e e , so eigenvectors
of eigenvalues poorly separated with respect to e e A e e ( i.e. e e A e e /gap(λ ) is large) will generallyi

.not be computed accurately. Analogous resu lts hold for singular vectors of general matrices

For eigenvectors of s.d.d. matrices, a stronger perturbation theorem is true. Briefly, we
scan replace the gap in (1.3) with the relative gap, min e λ − λ e / e λ λ e . Thus, as long as λ i

j≠ i
i j j i

1 /2
i

h
r
relatively well separated from its neighbors, its corresponding eigenvector is determined to hig
elative accuracy. This is a much stronger resu lt than (1.3) , as the following exam ple shows.

Suppose the eigenvalues are 1, 2.10 and 10 . Then the gap for the sm allest eigenvalue is− 10 − 10

g − 10 − 10ap(10 )= 10 , but the relative gap is .707. Thus (1.3) predicts a loss of 10 decimal digits,
whereas the finer analysis predicts nearly full accuracy.

We also show that a su itable variation of inverse iteration can be used to compute the
r

c
eigenvectors to this accuracy. We conjecture that other methods based on divide and conque
an attain this accuracy as well, but this has not been proven.

s
o

Similar resu lts can be proven for singular vectors of bidiagonal matrices and eigenvector
f s.d.d. definite pencils; the resu lt for singular vectors partially settles an open question in [9].

3
d

The rest of this paper is organized as follows. Section 2 contains definitions. Section
iscusses some simple generalizations of Gershgorin’s theorem applicable to s.d.d. matrices.

m
Section 4 uses the minimax characterization of eigenvalues to present simple perturbation lem-

as. In section 5 this lemma is applied to singular values and in section 6 to eigenvalues. Sec-
t

t
tion 7 discusses perturbation theory for eigenvectors and singular vectors. Section 8 shows tha
he condition numbers for the eigenvectors provide good estimates for the reciprocal of the dis-

b
tance to the nearest matrix with multiple eigenvalues. Section 9 discusses algorithms for the

idiagonal singular value decomposition, section 10 discusses algorithms for the sym metric tri-
-

l
diagonal eigenproblem, and section 11 discusses algorithms for the dense sym metric eigenprob
em (both matrices and pencils) . The new algorithm for the sym metric positive definite tridiag-

a
onal eigenproblem will be included in the LAPACK linear algebra library [8]. Section 12
pplies our resu lts to a matrix arising from a differential operator. Section 13 summarizes the

2

available algorithms and the current state of research, and discusses future work.

. Definitions and Basic Lemmas

In this paper we will deal exclusively with real (usually sym metric) matrices. Extensions
to complex (usually Hermitian) matrices will be obvious. e e . e e will denote the 2-norm.

Decompose the matrix A as A = D + N where D is diagonal and N has a zero diagonal. We
,will call a matrix A γ -diagonally dominant with respect to a norm e e e . e e e if e e e N e e e ≤ γ min e D e

i
ii

3
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where 0≤ γ < 1. Suppose that A is γ -diagonally dominant with respect to either the 1-norm or

t
infinity-norm. Then the well known Gershgorin’s Theorem says that the eigenvalues of A lie in
he union of the Gershgorin disks B , where B is centered at D and has radius at most γ e D e .

I i

i i ii ii
n particular, if some B is disjoin t from the other disks, it contains exactly one eigenvalue and

D is an approximation to this eigenvalue with relative error at most γ .ii

ii 1 2 y
n

Now let A = D + N and e D e = 1 i.e. A has ± 1’s on the diagonal. Let ∆ and ∆ be arbitrar
onsingular diagonal matrices. Then we call H ≡ ∆ A ∆ γ -scaled diagonally dominant (γ -s.d.d.)1 2

,
w
with respect to a norm e e e . e e e if A is γ -diagonally dominant with respect to e e e . e e e . If H is sym metric

e insist that A be sym metric as well in which case ∆ = ∆ can be chosen in only one way:
∆ 1ii ii

1 /2
1 2

= e H e . Note that a matrix may only be diagonally dominant in the scaled sense, as the
following exam ple shows:
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ere, A is γ -diagonally dominant with γ = .1 (with respect to the 1-norm, 2-norm or infinity-

f
norm) , H is γ -s.d.d. with the same γ , but H is not diagonally dominant in the nonscaled sense
or any γ < 1.

Our definition of scaling implies nothing about the monotonicity of the diagonal entries of
H; for exam ple H is γ -s.d.d. if
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f H is sym metric with positive diagonal entries, being γ -s.d.d. with respect to the 2-norm
g

i
is closely related to another well known property: consistent ordering [18]. Consistent orderin
s defined as follows: Let A = I + N = I + L + U, where L is strictly lower triangular and U is strictly

tupper triangular. Then A is consistently ordered if the eigenvalues of αL + α U are independen− 1

T ∆
i
of α≠ 0. Now suppose there is a permutation matrix P such that A in P HP= ∆A ∆= ∆ ( I + N )
s consistently ordered. Then we claim H is positive definite if and only if it is s.d.d. To prove

p
this, note that by choosing α= 1 and α= − 1, we see the eigenvalues of N = L + U occur in ±

airs, including ± e e N e e = ± γ . Now note that H is positive definite if and only if I + N is posi-
.

T
tive definite (by Sylvester’s theorem) , and that the sm allest eigenvalue of I + N is 1− e e N e e = 1− γ

herefore, the theorems in this paper apply to many matrices arising from discretized
differential equations [18]; see section 12 for an exam ple.

We will call a sym metric pencil H − λM γ -scaled diagonal dominant definite (γ -s.d.d.

M
definite) with respect to a norm e e e . e e e if H and M are γ -s.d.d. sym metric with respect to e e e . e e e and

is positive definite. If H is positive definite as well, we call H − λM γ -s.d.d. positive definite.

eIf T is any sym metric matrix, e e T e e = max e λ (T ) e ≤ e e e T e e e for any operator norm or th
i

i

l
d
Frobenius norm e e e . e e e . Therefore, all the theorems in this paper which are proven for diagona

ominance with respect to the 2-norm automatically hold for diagonal dominance with respect
to any operator norm or the Frobenius norm.

The minimax characterization of the eigenvalues λ ≤ . . . ≤ λ of a definite pencil
H T T

1 n
− λM (H = H , M = M , M positive definite) is [17]

(2.1)
hhhhhh .

xx H

x
λ = min max

x M
i

S
e e x e e = 1
x ∈S T

T

i

i i

n i x
c
where S varies over all i-dimensional subspaces of R and x varies over all unit vectors in S (
ould vary over all nonzero vectors, but we will find it convenient to restrict to unit vectors) .

There is an obvious simplification if M is the identity matrix ( the standard eigenproblem) .

4
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3. Generalizations of Gershgorin’s Theorem

It turns out the eigenvalues of the s.d.d. matrix H = ∆ A ∆ lie in Gershgorin circles whose
1 2

1 2
:

P

centers and radii are both scaled by ∆ ∆
roposition 1: Let H = ∆ A ∆ (A = ± 1) be a (possibly nonsymmetric) γ -s.d.d. matrix with respect1 2 ii

i i -
t
to the infinity-norm or 1-norm, with γ < 1. Then the eigenvalues of H lie in disks B , where B is cen
ered at H and has radius at most γ e H e . If B is disjoint from the other disks, it contains exactlyii ii i

iione eigenvalue and H is an approximation to that eigenvalue with relative error at most γ .

;
o
Proof: Suppose without loss of generality that H is γ -s.d.d. with respect to the infinity-norm

therwise consider H . The scalar λ is an eigenvalue of H if and only if H − λI is singular,T

1
− 1

2
− 1 f

A
which is in turn true if and only if A − λ∆ ∆ is singular. Let x be a right null vector o

− λ∆ ∆ , and suppose x has absolute value at least as large as any other component of x.
T

1
− 1

2
− 1

j
hen we may rearrange the equation

A x − λx ∆ ∆ = 0
k
Σ jk k j 1, jj

− 1
2, jj
− 1

to obtain

λ = ∆ ∆ (A + A
x
hxhh ) .

k

j
1, jj 2, jj jj

k ≠ j
jkΣ

j Σj 1, jj 2, jj jj
k ≠ j

n

jk
j

k
ii thhh e ≤ γ , λ must lie in a ball of radius γ e H e centered a

x

x
H

Since A ∆ ∆ = H and e A

. The usual Gershgorin argument shows that if this disk is isolated, it contains exactly one
e

ii
igenvalue. `

This theorem implies that at least if a Gershgorin disk is isolated so that sm all relative
t

c
changes in the matrix entries do not effect its isolation, then the eigenvalue it contains canno
hange by a factor of more than (1+ γ ) /(1− γ ) . If we assume H is sym metric, we need not

P

assume the disks are isolated to obtain this resu lt:

roposition 2: Let H be a γ -s.d.d. symmetric matrix with respect to the 2-norm. Let h be its diago-
n 1 n i

i
al entries in increasing order h ≤ . . . ≤ h , and λ its eigenvalues, also in increasing order. Then

hhh ≤ 1+ γ .
λ
h

1− γ ≤
i

i

ii i H
i
Proof: Assume without loss of generality that H = h , by reordering the rows and columns of
f necessary. Then by (2.1)

λ = min max x Hx ≤ max x Hx = max x H xi i i
0
i

ˆS
e e x e e = 1
x ∈S

T

e e x e e = 1
x ∈S

T

e e x e e = 1

T ( i) ˆˆ

)w 0
i ( ihere S is the space spanned by the first i standard basis vectors, and H is the leading prin-

cipal i by i submatrix of H . If h < 0 then λ ≤ (1− γ )h by simple norm inequalities. If h > 0 andi i i i

ja j i i ill h > 0 for j≤ i, simple norm inequalities again imply λ ≤ (1+ γ )h . If h > 0 and some h < 0
for j < i, we also have λ ≤ (1+ γ )h but we must argue as follows:i i

T ( i)
1
T

2
T 1

2

j

k

( i)
1

2 2

1
x̂ ˆ ˆ ˆ

ˆ

ˆ
H x ≡ [x , x ]

R
J
Q 0

∆
∆
0 H

J
P
.
I
J
L

R
J
Q 0

− I

I

0 H
J
P

+ N
M
J
O
.
R
J
Q 0

∆
∆
0 H

J
P
.
R
J
J
Q
x

x H
J
J
P

≤ − e e ∆ x e e + e e ∆ x e e + γ ( e e ∆ x e e + e e ∆ x e e )1 1
2

2 2
2

1 1
2

2 2
2ˆ ˆ ˆ ˆ
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≤ (1+ γ ) e e ∆ x e e ≤ (1+ γ )h .2 2
2

iˆ

i i i 0
a
Applying the same process to − H yields the complementary inequalities λ ≥ (1+ γ )h for h <
nd λ ≥ (1− γ )h for h > 0. `

F
i i i

inally, we may extend the resu lt to s.d.d. sym metric definite pencils:

rProposition 3: Let H − λM be a symmetric γ -s.d.d. definite pencil with respect to the 2-norm. Let i
b ii ii 1 n ie the sorted ratios of diagonal entries H /M , where r ≤ . . . ≤ r , and λ the eigenvalues, also in
increasing order. Then

1+ γ
1− γhhhhh ≤

r
hλhh ≤

1− γ
1+ γhhhhh .

i

i

i ii ii d
c
Proof: Assume as in the proof of Proposition 2 that r = H /M , by reordering rows an
olumns if necessary. Write M = ∆A ∆ where ∆ is diagonal and A is diagonally dominant with

sones on its diagonal. Then the pencil ∆ H ∆ − λA ≡ R − λA has the same eigenvalues a− 1 − 1

ii i nH − λM , but now the diagonal entries R = r . The

λ = min max
x Ax

x R xhhhhhh ≤ max
x Ax

x R xhhhhhh = max
x A x

x R xhhhhhhhh
i i i

0
i

ˆS
e e x e e = 1
x ∈S T

T

e e x e e = 1
x ∈S T

T

e e x e e = 1
T ( i)

T ( i) ˆˆ

ˆˆ

)w 0
i ( i) ( ihere S is the space spanned by the first i standard basis vectors, and R and A are the

leading principal i by i submatrices of R and A , respectively. Note that 1− γ ≤ x A x ≤ 1+ γˆ ˆ
f ˆ

T ( i)

or all unit vectors x, since A equals the identity matrix plus a matrix of norm at most γ . Then
.by Proposition 2, we have λ ≤ (1+ γ ) /(1− γ ) r if r > 0 and λ ≤ (1− γ ) /(1+ γ ) r if r < 0i i i i i i

Applying the same process to R + λA yields the other inequalities. `

6
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4. Perturbation Lemmas Based on the Minimax Theorem

.Let λ (H , M )≤ . . . ≤ λ (H , M ) denote the eigenvalues of the definite pencil H − λM1 n
Given the minimax characterization in (2.1) , the following lemma is simple to prove:

Lemma 1: Suppose δH has the property that for all nonzero x

g ≤
x Hx

x (H + δH )xhhhhhhhhhhhh ≤ g ,
T

uT

w l u

l

here 0< g ≤ g . Then

g ≤
λ (H , M )

λ (H + δH , M )hhhhhhhhhhhhhh ≤ gu
i

i
l

T T n
f
for all i. In other words, if the R ayleigh quotients x (H + δH )x and x Hx differ by at most a certai
actor for all x, then the eigenvalues of H + δH − λM and H − λM differ by at most that same factor.

0Proof: Let λ ≡ λ (H , M ) and Let λ′ ≡ λ (H + δH , M ) . We consider only λ ≥ 0; the case λ <i i i i i i

0
i

1
i yis analogous. Let the spaces S and S satisf

λ = max x Hx /x Mx and λ′ = max x (H + δH )x /x Mx .i
x ∈S

T T
i

x ∈S

T T

0
i

1
i

Then

λ′ = min max
x Mx

x (H + δH )xhhhhhhhhhhhh ≤ max
x Hx

x (H + δH )xhhhhhhhhhhhh
x Mx

x Hxhhhhhh ≤ g λ i

T

T

T

uT

T

x ∈STi
S x ∈Si i

0
i

and similarly

λ = min max
x Mx

x Hxhhhhhh ≤ max
x (H + δH )x

x Hxhhhhhhhhhhhh
x Mx

x (H + δH )xhhhhhhhhhhhh ≤ g λ′i
T

l
− 1

Ti
S x ∈S T

T

x ∈S T

T

i i
1
i

completing the proof. `

Lemma 1 can also be generalized to infinite dimensional operators [15, Thm VI.3.9].

:

L

There is an obvious analogous resu lt if if both H and M are perturbed simultaneously

emma 2: Suppose δH and δM have the property that for all nonzero x

,hhhhhhhhhhhhh ≤ g
xx (M + δM )

x
hhhhhhhhhhhh ≤ g and g ≤

x M

xx (H + δH )

x
g ≤

x H
lH T

T

uH lM T

T

uM

w lH uH lM uMhere 0< g ≤ g and 0< g ≤ g . Then

g

ghhhh ≤
λ (H , M )

λ (H + δH , M + δM )hhhhhhhhhhhhhhhhhh ≤
g
hghhhuH

M

i

li

lH

M

L

for all i.

u

emma 3: Let H be symmetric γ -s.d.d. with respect to the 2-norm. W rite H = ∆A ∆ where ∆ is diag-
-

t
onal and A has ± 1’s on its diagonal. Let λ be an eigenvalue of H, y the corresponding unit eigenvec
or, and x = ∆y / e e ∆y e e the corresponding unit eigenvector of A − λ∆ . Then

1 T

− 2

− γ ≤ e x Ax e ≤ 1+ γ .

dProof: Write A = E + N , where E is diagonal with ± 1’s on the diagonal, N has zero diagonal, an
e e N e e ≤ γ < 1. The upper bound on e x Ax e follows immediately from taking norms:

T

T

T T t
l
e x Ax e ≤ e e E e e + e e N e e ≤ 1+ γ . If E = I, then e x Ax e = e 1+ x Nx e ≥ 1− γ . Assume then withou
oss of generality that

E =
R
J
Q0

I

− I

0 H
J
P

w l

j

k

here I denotes an l-by-l identity matrix. We will prove the theorem only for λ< 0; for the
positive λ consider − H . Partition

7
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x =
R
J
Qx

x H
J
P

, ∆ =
R
J
Q 0

∆
∆
0 H

J
P

and N =
R
J
QN

N H
J
P2

1 1

2 2
T

1
T

2− nconformally with E. Then Ax = λ∆ x may be rewritte

− x + N x = λ∆ x

x + N x = λ∆ x
.

1 1
T

1
− 2

1

2

1

2 2
T

2
− 2

sSolving the first equation above for x yield

x = (λ∆ − I ) N x .

N 1
− 2

1 1
− 2 − 1

1
T

ote that λ∆ − I is diagonal with diagonal entries less than − 1. Now

xx Ax = x Ex + x Nx = x x − x x + x Nx = 2x x − 1 + x NT T T
1
T

1 2
T

2
T

1
T

1
T

s 1
T

1 2
T

2ince x x + x x = 1. Combining the last two displayed equations, and using the fact that

− x N (λ∆ − I ) N x ≥ x N (λ∆ − I ) N x ≥ 0T
1 1

− 2 − 1
1
T T

1 1
− 2 − 2

1
T

yields

x Ax = 2x N (λ∆ − I ) N x + (x , x )
R
J
QN x

N xH
J
P

− 1T T
1 1

− 2 − 2
1
T

1
T

2
T

2
T

1
T

T
1 1

− 2 − 2
1
T

2
T

2
T T

1 1
− 2 − 1

1
T 1

≤

= 2x N (λ∆ − I ) N x + x N x + x N (λ∆ − I ) N x −

x N x + x N (λ∆ − I ) N x − 1

T
2

2
T

2
T T

1 1
− 2 − 2

1
T

2
T

1
T

1
− 2 − 1

1
T 1

=

= x N x + x (λ∆ − I ) N x −

(x (λ∆ − I ) , x )Nx − 11
T

1
− 2 − 1

2
T

2

−
1

2 − 1
1

1
(λ∆ − I ) x H

J
P
e e . e e Nx e e −x

≤

≤ e e
R
J
Q

e e
R
J
Qx

x H
J
P
e e . e e Nx e e − 1

≤

2

1

γ − 1 `.

r
e

In the next two sections we will use these resu lts to derive perturbation theorems fo
igenvalues and singular values.

8
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5. A Perturbation Theorem for Singular Values.

Using Lemma 2, we prove the following theorem, which is a slight strengthening of a

T

resu lt of Kahan [9]:

heorem 1: Let B be an n by n bidiagonal matrix:

B =

R
J
J
J
J
Q

a
.

b

.

.

a

b

H
J
J
J
J
P

.
n − 1

n

i

1 1

iW e assume the a and b are nonzero since otherwise B splits into independent subproblems. Let
B + δB be a perturbed bidiagonal matrix with entries α a in place of a and β b in place of b . Theni i i i i i
t 1 n 1 nhe singular values σ ≤ . . . ≤ σ of B and σ ′ ≤ . . . ≤ σ ′ satisfy

hhhh ≤ g
′σ

σ
g ≤l

i

i
u

w l uhere g and g are defined as follows. Define the finite set S of positive numbers by

.hhhhhhhhhhhh e : 1≤ j≤ k ≤ n}
αα . . .

β
hhhhhhhhhhhh e : 1≤ j≤ k ≤ n − 1} { e

β . . .
ββ . . .

α
S ≡ { e

α . . .
j + 1 k

j k

j k − 1

j k

N j j

∪
ote that S contains e β e , 1≤ j< n, and e α e , 1≤ j≤ n. Let min S and max S denote the minimum

and maximum entries of S, respectively. Then

g = max S and g = min S .u l

1 n d
σ
Corollary 1: Let B and B + δB be bidiagonal with singular values σ (B )≤ . . . ≤ σ (B ) an

(B + δB )≤ . . . ≤ σ (B + δB ) respectively. If for all nonzero entries B ,
−
1 n ij
1

ij ijτ ≤ e (B + δB ) /B e ≤ τ for some τ≥ 1, then

τ
1hhhhhh ≤

σ (B )

σ (B + δB )hhhhhhhhhhh ≤ τ .
i 2n − 1

i

T

2n − 1

hus, relative perturbations of at most τ in the entries of B cause relative perturbations of at most
τ in its singular values. If τ= 1+ η is close to 1, so is τ ∼∼ 1+ (2n − 1)η.2n − 1 2n − 1

jij i n
σ
Corollary 2: Let B and B + δB be bidiagonal. If e (B + δB ) e = τ e B e for all i and j, the

(B + δB ) = τσ (B ) . This simply says that if you multiply each entry of a bidiagonal matrix by ± τ ,
y

i i
ou multiply all its singular values by τ as well.

tProof of Theorem 1: For notational convenience renam e the entries of B so tha

B =

R
J
J
J
J
J
J
Q

s

s

s

.
s

.

.

s

s

H
J
J
J
J
J
J
P

2n − 2

1

i

1

3

2

4

2n −

i iand so that B + δB has entries γ s in place of s . We may assume without loss of generality that
all the s are real and positive, since this may be achieved by pre- and postmultiplying B by uni-i

i .
W
tary diagonal matrices. We may also assume the γ are real and positive for the same reason

e also use the well known fact that the eigenvalues of

B H
J
P0C =

R
J
QB
0 T

s
o
are plus and minus the singular values of B. Furthermore, by reordering the rows and column

f C in the order 1, n + 1, 2, n + 2, . . . , n, 2n, we see C is similar to

9
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E =

R
J
J
J
J
Q

s

0

.

.
s

s

.

.

0

s

H
J
J
J
J
P

.

T

1

1

2n − 1

2n − 1

hus, the singular values of B are the absolute values of the eigenvalues of the pencil

w
E − λI. We are interested in comparing these eigenvalues with the eigenvalues of E+ δE− λI,

here E + δE has entries γ s in place of s . We will chose a diagonal matrix D such thati i i
2 e

w
D (E + δE )D = E, so that these eigenvalues will be the eigenvalues of the pencil E − λD ; w

ill then apply Lemma 2 to conclude that the eigenvalues will change at most by a factor in the
range minD to maxD .

i
ii
− 2

i
ii
− 2

u l t
c

Actually, we will find two diagonal matrices D and D satisfying D (E + δE )D = E bu
orresponding to different choices of D in order to minimize max D and maximize min D ;11

i
lii

i
uii

ut lhis will in turn maximize g and minimize g where (by Lemma 2)

.hhhhhhhhh ≡ g
1

D
hhhh ≤

min

′σ
σ

hhhhhhhh ≤1

D
g ≡

max
l

i
lii
2

i

i

i
uii
2 u

iF l l 11
i

liirst consider D . We want to choose D to minimize max D . D (E + δE )D = E implies

the diagonal entries of D must satisfy the recurrence D = (γ D ) . This means thel l, i + 1, i + 1 i lii
− 1

d liagonal entries of D are either of the form

(5.1)hhhhhhhhhhhhhhγγ γ . . .

γ
D .

γ γ . . .l 11
2 4 2 j

1 3 2 j − 1

or

(5.2)hhhhhhhhhhhhhh .
γγ γ . . .

γ
hhhhhhh .

γ γ . . .
1

γDl 11 1 3 5 2 j + 1

2 4 2 j

1C l 11 l 1hoosing D to minimize the maximum of these terms is equivalent to choosing D to
sminimize max(s D , s D ) , where s is the maximum coefficient of D in (5.1) and s i1 l 11 2 l 11

− 1
1 l 11 2

− 1
1 2

1 /2
1t l 1he maximum coefficient of D in (5.2) ; this minimum is easily seen to be ( s s ) . Some

.tedious algebraic manipulation leads to the expression for g in the statement of the theoreml
C u 11

i
uiihoosing D to maximize min D is analogous. `

A similar proof yields the following analogous resu lt: Let A be an arbitrary matrix, and D 1
a 2nd D arbitrary nonsingular diagonal matrices, which we may assume are real and nonnegative.
Then the singular values σ of A and σ ′ of D AD satisfyi i 1 2

jm
i

1i
j

2 j
i

i

i
1i

j
2in D .min D ≤

σ
σ ′hhhh ≤ max D .max D .

10
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6. Perturbation Theorems for Eigenvalues

In this section we use the perturbation lemma of section 3 to prove perturbation theorems

a
for eigenvalues of sym metric γ -s.d.d. matrices and γ -s.d.d. positive definite pencils. Theorems 2
nd 3 apply only to positive definite matrices and pencils, and are stronger than Proposition 4

s
p
and Theorem 4 which apply to indefinite matrices as well. In fact, when the matrix or pencil i

ositive definite, ∆ may be an arbitrary matrix, not just diagonal. Our resu lts for definite pencils
.

i
with both positive and negative eigenvalues are rather weaker than the resu lts for s.d.d
ndefinite sym metric matrices.

Theorem 2: Let H = ∆ A ∆= ∆ ( I + N )∆ be a positive definite matrix where e e N e e = γ < 1, and ∆ is an
a

T T

rbitrary nonsingular matrix. (If ∆ is diagonal this is equivalent to H being a symmetric positive
definite γ -s.d.d. matrix with respect to the 2-norm.) Let δH be a symmetric perturbation of H with
e e ∆ δH ∆ e e ≡ η < 1− γ . Then the eigenvalues λ ≤ . . . ≤ λ of H and λ′ ≤ . . . ≤ λ′ of
H

− T − 1
1 n 1 n

+ δH satisfy

1 −
1− γ
h ηhhhh ≤

λ
λ′hhh ≤ 1 +

1− γ
h ηhhhh .

T

i

i

hus, if ∆ is diagonal, relative perturbations of at most η in the entries of H cause only relative per-

P

turbations of at most nη /(1− γ ) in the eigenvalues.

roof: We have

(6.1)hhhhhhhhhhhhhhhhhhhyy (A + ∆ δH ∆ )

y
hhhhhhhhhhhhhhhhhhhhhhh =

y A

xx ∆ (A + ∆ δH ∆ )∆
x

hhhhhhhhhhhh =
x ∆ A ∆

xx (H + δH )

xx HT

T

T T

T T − T − 1

T

T − T − 1

e
t
where y= ∆x. The values taken by the quantity in (6.1) as x varies over all nonzero vectors ar
he same as the values taken on as y varies over all unit vectors. Since 1− γ ≤ y Ay if y is a unit

vector,

T

1−
1− γ
h ηhhhh ≤

y Ay

y (A + ∆ δH ∆ )yhhhhhhhhhhhhhhhhhhh ≤ 1+
1− γ
h ηhhhh .

T − T − 1

T

T

The resu lt now follows from Lemma 1. `

heorem 3: Let H = ∆ A ∆ = ∆ ( I + N )∆ and M = ∆ A ∆ = ∆ ( I + N )∆ be positiveH
T

H H H
T

H H M
T

M M M
T

M M

H M H M r
m
definite matrices where e e N e e ≤ γ < 1, e e N e e ≤ γ < 1, and ∆ and ∆ are arbitrary nonsingula

atrices. (If ∆ and ∆ are diagonal this is equivalent to H − λM being a γ -s.d.d. positive definite
p

H M
encil with respect to the 2-norm.) Let δH and δM be symmetric perturbations of H and M such that
e e ∆ δH ∆ e e ≤ η < 1− γ and e e ∆ δM ∆ e e ≤ η < 1− γ . Then the eigenvalues λ ≤ . . . ≤ λH

− T
H
− 1

M
− T

M
− 1

1 n
o 1 nf H − λM and λ′ ≤ . . . ≤ λ′ of (H + δH )− λ(M + δM ) satisfy

hhhhhhhhη1− γ +
η

hhh ≤
1− γ −

λ
′

hhhhhhhh ≤
λ

η1− γ −
η1− γ + i

T H M

i

hus, if ∆ and ∆ are diagonal, relative perturbations of at most η in the entries of H and M cause

P

only relative perturbations of at most 2nη /(1− γ − 2nη) in the eigenvalues of H − λM.

roof: Apply the technique in the proof of Theorem 2 to both H and M and apply Lemma 2. `

11
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When H is indefinite, our resu lts are weaker. In the case of H alone, we must assume ∆ is

P

diagonal to attain a bound like that of Theorem 2:

roposition 4: Let H be an n-by-n symmetric γ -s.d.d. matrix with respect to the 2-norm. Thus

z
H = ∆A ∆ where ∆ is diagonal, A = E + N where E is diagonal with ± 1’s on the diagonal, N has a
ero diagonal and e e N e e ≤ γ < 1. Let δH be a symmetric perturbation of H with

se e ∆ δH ∆ e e ≡ η < (1− γ ) /n. Assume also that H + δH is γ -s.d.d. Then the eigenvalue− 1 − 1

1 n 1 n yλ ≤ . . . ≤ λ of H and λ′ ≤ . . . ≤ λ′ of H + δH satisf

1 −
1− γ
nηhhhhh ≤

λ
λ′hhh ≤ (1 −

1− γ
nηhhhhh ) .

T

i

i − 1

hus, relative perturbations of at most η in the entries of H can cause relative perturbations of at
most n η /(1− γ ) in the eigenvalues.2

Proof: We will prove the theorem only for the negative eigenvalues; for the positive ones con-
sider − H . We cannot apply Lemma 1 directly here because x Ax /x x is not bounded awayT T

e
r
from 0 for all x as in the proof of Proposition 4. By Lemma 3, however, it is so bounded if w
estrict x to lie in an eigenspace of A − λ∆ corresponding to only negative (or only positive)− 2

.eigenvalues; this will be sufficient for the proof

To this end, let λ ≤ . . . ≤ λ be the eigenvalues and x , . . . , x the corresponding unit1 n 1 n
− 2

1 n i o
A
right eigenvectors of A − λ∆ ; let the primed quantities λ′ ≤ . . . ≤ λ′ and x ′ correspond t

+ ∆ δH ∆ − λ∆ . By Lemma 3 x Ax ≤ γ − 1< 0 if λ < 0.− 1 − 1 − 2
i
T

i i

i 1 i i 1 i i
− 2

i i e
c

Now let X = [x , . . . , x ] and Λ = diag(λ , . . . , λ ) , so AX = ∆ X Λ . Since th
olumns of X are eigenvectors of A − λ∆ , the columns of ∆ X are eigenvectors of H and soi

− 2 − 1
i

sare orthogonal. Thu

X AX = X ∆ X Λ = diag(x ∆ x λ )

i

i
T

i i
T − 2

i i i
T − 2

i i

s diagonal with diagonal entries bounded above by γ − 1. Let z be an arbitrary unit vector; then

z X AX z = z diag(x ∆ x λ ) z ≤ γ − 1 .T
i
T

i
T

i
T − 2

i i

Now we use the characterization

λ = min max
x ∆ x

x Axhhhhhhhh
T

2i
S x ∈S T −i i

i
i

0
i nwhere the minimum is attained for S = S = span (X ) . The

λ′ = min max
x ∆ x

x (A + ∆ δH ∆ )xhhhhhhhhhhhhhhhhhhh ≤ max
x Ax

x (A + ∆ δH ∆ )xhhhhhhhhhhhhhhhhhhh .
x ∆ x

x Axhhhhhhhh
T

2

T − 1 − 1

T −T

T − 1 − 1

x ∈S2i
S x ∈S T −i i

0
i

i
T

i
T

i

T
i
T − 1 − 1

i

T
i
T − 2

i

=
e e z e e = 1 T

i
T

max (1 +
z X AX z

z X ∆ δH ∆ X zhhhhhhhhhhhhhhhhhh ) .
z X ∆ X z

z X AX zhhhhhhhhhhhh .

oNow e z X ∆ δH ∆ X z e ≤ iη and e z X AX z e ≥ 1− γ sT
i
T − 1 − 1

i
T

i
T

i

i i
i

i hhhhhηi
γ

hhh ≥ 1 −
1−

′λ
λ

hhhhh )λ or
ηi
γ

S

λ′ ≤ (1 −
1−

wapping the roles of A and A + ∆ δH ∆ we obtain− 1 − 1

i

i − 1hhhhh )
ηi
γ

hhh ≤ (1 −
1−

′λ
λ

hhhhh ≤ηi
γ

as desired. `

1 −
1−

12
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The factor n in the bound of Proposition 4 is an overestimate, and can be removed by

T

modifying the conditions of the proposition just slightly:

heorem 4: Let H = ∆A ∆ be an n-by-n symmetric γ -s.d.d. matrix with respect to the 2-norm. Here
∆ is diagonal and A has ± 1’s on the diagonal. Let δH be a symmetric perturbation with
e e ∆ δH ∆ e e ≡ η. Assume that H + ξδH is γ -s.d.d. for all 0≤ ξ≤ 1. Then letting λ ≤ . . . ≤ λn

− 1 − 1
1

1 n ebe the eigenvalues of H and λ′ ≤ . . . ≤ λ′ be the eigenvalues of H + δH, we hav

(6.2)hhhhh ) .
η

γ
hhh ≤ exp(

1−
′λ

λ
hhhhh ) ≤η−

γ
exp(

1− i

i

− 1 − 1 − 1 − 1Proof: Let E = ∆ δH ∆ / e e ∆ δH ∆ e e be a matrix of norm 1, H (ζ) = ∆ (A + ζE )∆ , and
eλ (ζ)≤ . . . ≤ λ (ζ) be the eigenvalues of H (ζ) . Suppose first that λ (0) is simple. Let x b1 i i i

t ihe unit eigenvector corresponding to λ (0) . Then from standard eigenvalue perturbation
theorem [15, 19], we know

λ (ζ) = λ (0) + ζx ∆E∆x + O (ζ )

Therefore

i i i
T

i
2

λ (0)

λ (ζ)hhhhhh = 1 + ζ
x ∆A ∆x

x ∆E∆xhhhhhhhhh + O (ζ ) = 1 + ζ
y Ay

y Eyhhhhhh + O (ζ )
i
T

i 2

i

i
T

i 2

i
T

i

i

i

i

i
T

i
T

i owhere e e y e e may be taken to be one. By Lemma 3, e y Ay e ≥ 1− γ , and s

(6.3)hhhhh + O (ζ ) .
ζ

γ
hhhhhh ≤ 1 +

1−
)λ (ζ
)

hhhhh + O (ζ ) ≤
λ (0

ζ
γ

1 −
1−

2

i

i 2

A issume now that λ (ζ) is simple for all 0≤ ζ≤ η; then (6.3) implies that
e d logλ (x ) /dx e ≤ (1− γ ) . Integrating from 0 to η yields (6.2) . By [11, Theorem II.6.1], thei

− 1

eigenvalues are all real analytic, even when they are multiple. Thus, if there are only finitely
many ζ where λ (ζ) is multiple, we can apply the above argument in the intermediate intervals.i

iIt remains to consider the case where λ (ζ) is multiple for infinitely many ζ. Here we

t
argue that this can only happen for a set of pairs of matrices H and E of measure zero, that off
his set the previous argument holds, and by continuity of the eigenvalues the same bounds

must hold on the set. To see that the set of H and E such that some λ (ζ) is multiple infinitelyi
f

H
often is of measure zero, consider the discriminant of the characteristic polynomial o

− ζ∆E∆ ; this is a polynomial in ζ and the 2n entries of H and E. H (ζ) can have multiple2

s
c
eigenvalues if and only if this discriminant vanishes. If it vanishes for infinitely many ζ, it
oefficients (viewing it as a polynomial in ζ) must vanish identically. These coefficient are in

f
m
turn polynomials in the entries of H and E, and so vanish only on a proper variety (a set o

easure zero) . Off this set, the discriminant has at most a finite number of zeros (bounded by
its degree as a polynomial in ζ) . `

Result (6.2) was claimed without proof in [14] just for the case of tridiagonal matrices
perturbed on their offdiagonals.

In light of Proposition 3, it is probably possible to prove an analogous theorem for γ -

a
s.d.d. definite pencils which have both positive and negative eigenvalues, but we have not been
ble to do so. However, the following technique frequently succeeds in reducing the eigenprob-

lem for such pencils to a problem where Theorem 4 may be applied:

13
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Algorithm 1: R educing a γ -s.d.d. definite pencil H − λM to an s.d.d. matrix Y:

t(1) Let D = diag( M ) , and compute H = D HD and M = D MD . Now M has uni1 ii
1 /2

1
− 1 − 1

1
− 1 − 1

1

(

diagonal and is diagonally dominant in the usual sense.

2) Let P be a permutation matrix chosen so that H = PH P has its diagonal entries sorted2 1
T

m
r
from sm allest to largest in absolute value ( sm allest at the top left, largest at the botto
ight) . Let M = PM P .2 1

T

2
− 1

2
− T d(3) Let L be the lower triangular Cholesky factor of M . Let Y = L H L . Then Y an

H − λM have the same eigenvalues.

This is a variation on the usual reduction of a definite pencil to standard form. The point

u
is that if M is sufficiently diagonally dominant, L will also be diagonally dominant with nearly

nit diagonal, and the multiplication L H L will not destroy the s.d.d. property of H .
T

− 1
2

− T
2

hus, Y will be s.d.d. The following theorem formalizes this, but is weak in that it only guaran-

P

tees diagonal dominance of Y for rather sm all γ , much sm aller than those that work in practice:

roposition 5: Let H − λM be an n by n γ -s.d.d. definite pencil, and let Y be the output of the above
reduction algorithm. Define

γ ′ ≡ ( (2n ) + 1) .
1− γ
1+ γhhhhh .[2 + ( (2n ) + 1)γ ].γ .

Then if

1 /2 1 /2 1 /2 1 /2

γhh ≡
1− γ ′

(n + 1)γ ′+ γhhhhhhhhhhh < 1 ,

which will be true for γ small enough, Y will be γhh-s.d.d.

The proof of Proposition 5 requires the following lemma:

r
C
Lemma 4: Let M be an n by n γ -s.d.d. matrix with unit diagonal. Let L be its lower triangula

holesky factor. Then e e L − I e e ≤ ( (2n ) + 1)γ and e e L − I e e ≤ ( (2n ) + 1)γ /(1− γ ) .
A − 1 /2 − 1 − 1 /2

1 /2 1 /2 − 1 1 /2 1 /2 1 /2

lso, (1+ γ ) ≤ e e L e e ≤ (1− γ ) .

eProof: Let X = L − I and W = L − I = − L X. Sinc− 1 − 1

1 /2
min
1 /2

min ii max max
1 /2 1 /2

w

(1− γ ) ≤ λ (M ) = σ (L ) ≤ L ≤ σ (L ) = λ (M ) ≤ (1+ γ )

e have e X e = e L − 1 e ≤ 1− (1− γ ) ≤ γ . Also, we may bound the norm of the i-th subdi-
a

ii ii
1 /2 1 /2

gonal column of X as follows:

1+ γ ≥ e e [L , L , . . . , L ] e e = e e [L , X , . . . , X ] e e ≥ 1− γ + e e X e e 2

i

i, i i + 1, i n, i
2

i, i i + 1, i n, i
2

i + 1:n, i

+ 1:n, i
1 /2 1 /2 1 /2 ,whence e e X e e ≤ (2γ ) . Thus e e X e e ≤ (2nγ ) + γ as desired. Finally

e e W e e ≤ e e L e e . e e X e e ≤ (1− γ ) e e X e e . `

P

− 1 − 1 /2

roof of Proposition 5: By applying the first two steps of the reduction, assume without loss of
generality that M has unit diagonal and that e H e ≤ e H e for all i. Let L denote the i-thii i + 1, i + 1 ., i
c j, .

( i, j)olumn of L and similarly for L . Also, let G denote the leading i by j submatrix of G. Let
D = diag( e H e ) and L = I + W . Thenii

1 /2 − 1

ij i, .
− 1

., j
− T

ij i, . ., j
− T

i, .
− 1

., j i, . ., j .

Therefore

Y = L HL = H + W HL + L HW − W HW

e Y − H e ≤ e W HL e + e L HW e + e W HW e− 1
., j i, . ., j.

− T
i,jij ij i, . .,

− 1 2 ( i, j) − 1 2
ii jj .

N

≤ (2 e e W e e . e e L e e + e e W e e ) e e H e e ≤ (2 e e W e e . e e L e e + e e W e e )D D (1+ γ )

ow insert the bounds of Lemma 4 to get

e (D (Y − H )D ) e ≤ ( (2n ) + 1) .
1− γ
1+ γhhhhh .[2 + ( (2n ) + 1)γ ].γ = γ ′ .− 1 − 1

ij
1 /2 1 /2 1 /2 1 /2

14
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Finally, letting D = diag( e Y e )Y ii
1 /2

Y
− 1

Y
− 1e e offdiag( D YD ) e e ≤

1− γ ′
(n + 1)γ ′+ γhhhhhhhhhhh

follows from simple norm inequalities. `

In order to apply Proposition 4 or Theorem 4, however, we must argue that sm all relative
l

p
perturbations in H and M (of the type permitted in Proposition 4 and Theorem 4) cause sm al

erturbations of the same type in Y :

Theorem 5: Let H − λM = D A D − λD A D be a γ -s.d.d. definite pencil, where A and AMH H H M M M H

Y Y Yhave ± 1s on their diagonals. Let Y = D A D be the output of Algorithm 1 applied to H − λM.

H
Assume that Y is γhh-s.d.d. (γhh may be smaller than the expression in Proposition 5). Now define

(ζ) = D (A + ζE )D , and similarly M (ζ) = D (A + ζE )D , where e e E e e = e e E e e = 1.
L

H H H H M M M M H M
et Y (ζ) be the output of the reduction algorithm applied to H (ζ) . Then for asymptotically small ζ

hhhhhhhhhhhhhhhhhh + O (ζ )
)n (2.n + 1) (1+ γ

)
e e D (Y (ζ)− Y )D e e ≤ ζ.

(1− γY
− 1

Y
− 1

2

1 /2
2

a ind the eigenvalues λ (ζ) of H (ζ)− λM (ζ) satisfy

1 − ζ.
(1− γhh) (1− γ )

n (2.n + 1) (1+ γ )hhhhhhhhhhhhhhhhhh + O (ζ ) ≤
λ (0)

λ (ζ)hhhhhh ≤ 1 + ζ.
(1− γhh) (1− γ )

n (2.n + 1) (1+ γ )hhhhhhhhhhhhhhhhhh+ O (ζ ) .
1 /2

2
2

1 /2
2

i

i

2

For the proof of Theorem 5 we require the following lemma:

r
C
Lemma 5: Let M be a γ -s.d.d. symmetric matrix with unit diagonal. Let L be its lower triangula

holesky factor. Let L + δL be the lower triangular Cholesky factor of the perturbed matrix M + δM.
Then

e e δL e e ≤
I
J
L 1− γ
h nhhhh

M
J
O

. e e δM e e + O ( e e δM e e ) .
1 /2

2

T -
o
Proof: It suffices to consider M diagonal, since the Cholesky factors of M and QM Q (Q orthog

nal) have the same norm. Equating first order terms on both sides of
.M + δM = (L + δL ) (L + δL ) yields δL = M δM ( i > j) and δL = .5.M δM ( i = j)T

ij jj
− 1 /2

ij ii ii
− 1 /2

ii

P

Taking norms yields the resu lt. `

roof of Theorem 5: By applying the first two steps of Algorithm 1, we may assume without loss
of generality that M = 1 and e H e ≤ e H e . Let L (ζ) be the Cholesky factor of M (ζ) . Thenii ii i + 1, i + 1

− 1 − T g
M
the eigenvalues of H (ζ)− λM (ζ) are the eigenvalues of Y (ζ) = L (ζ)H (ζ)L (ζ) . Lettin

(ζ)= M + δM , L (ζ)= L + δL , and H (ζ)= H + δH , we get that to first order

Y (ζ) = (L − L δLL ) (H + δH ) (L − L δL L )− 1 − 1 − 1 − T − T T − T

T= − 1 − T − 1 − 1 − T − 1 − T − 1 − T T −L HL − L δLL HL + L δHL − L HL δL L .

Therefore to first order in ζ

e (Y (ζ)− Y ) e ≤ D D (2.(1+ γ ) . e e L e e .n .(1− γ ) + e e L e e )ζij A , ii A , jj
− 1 3 1 /2 − 1 /2 − 1 2

A , ii A , jj 2

1 /2

ζhhhhhhhhhhhhhhhh .)(2n + 1) (1+ γ
)

a

≤ D D
(1− γ

s desired. Applying Theorem 4 yields the final resu lt. `

r
e

We may apply Theorem 4 to analyze the convergence criterion for the QR algorithm fo
igenvalues of sym metric tridiagonal matrices [17]. In the course of running the QR algorithm

on a sym metric tridiagonal matrix one must exam ine the matrix
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T =

R
J
J
J
J
Q

.

.

b

a

.

.
a

b

.

.

H
J
J
J
J
P

j

1

a j

j

j

j +

nd decide whether b can be set to zero ("convergence") without making unacceptably large
perturbations in the eigenvalues. Theorem 4 tells us that if T is γ -s.d.d., then setting b to zeroj
makes relative errors no larger than

(6.4)hhhhh ) − 1
1

γ
hhhhhhhhhhh .

1−
ee b

e
exp(

e a .aj j + 1
1 /2

i

j

n any eigenvalue. This resu lt is attractive because it is inexpensive and purely local; it only
-depends on b and its neighbors a and a on the diagonal of T . It does differ from the stanj j j + 1

dard criterion which essentially asks if

e a e + e a e

e b ehhhhhhhhhhhj

1j j +

.is sm all; this criterion is weaker than (6.4) and does not guarantee high relative accuracy

Unfortunately, even using (6.4) as a convergence criterion does not guarantee that QR
y

s
will compute eigenvalues with high relative accuracy; there are exam ples which are even fairl
trongly s.d.d. of QR computing eigenvalues with incorrect signs, i.e. no relative accuracy at all.

7

We discuss this further in Section 10.

. Perturbation Theorems for Eigenvectors

In this section we discuss the sensitivity of the eigenvectors of sym metric s.d.d. matrices
-

d
under the same sm all perturbations as in section 6. As discussed in the introduction, the stan

ard perturbation bound (1.3) is proportional to the reciprocal of gap (λ ) = min e λ − λ e .

T i

i
j≠ i

i j

hus, if the absolute distance from λ to its nearest neighbor is sm all, we expect the
s

t
corresponding eigenvector to be sensitive to perturbations. Our first resu lt will be an analogou
heorem which replaces the gap with the relative gap

(7.1)hhhhhhhhh ,
ee λ − λ

e
relgap (λ ) = min

e λ λi
j≠ i i j

1 /2

i j

which may be large even when the usual gap is sm all.

Even more may be shown. Proposition 6 will show that the eigenvectors are scaled analo-
-gously to the matrix entries: if x is the eigenvector for λ , and λ differs from λ by a large faci i j i

t ior, the j-th component of x will be sm all. Theorem 7 will show that sm all relative perturba-
r

u
tions in the matrix only cause sm all perturbations in the eigenvector entries relative to thei

pper bounds of Proposition 6; thus some tiny eigenvector components may be determined to
d

s
high relative accuracy as well. Finally, we discuss eigenvector bounds for definite pencils an
ingular vector bounds for bidiagonal matrices (partially settling a conjecture from [9]) .

c
m

Perturbation theory and algorithms for conventionally diagonally dominant nonsym metri
atrices were developed in [1], under the assumption that the gap between eigenvalues greatly

c
m
exceeded the norm γ of the offdiagonal part. Thus these resu lts apply to general nonsym metri

atrices, but require much stronger diagonal dominance assumptions than we do and are
weaker than our resu lts.
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Theorem 6: Let H = ∆A ∆ be a γ -s.d.d. symmetric matrix with respect to the 2-norm. Let E be sym-
fmetric and have 2-norm one, and define H (ζ)= ∆ (A + ζE )∆ . Let λ (ζ) be the i-th eigenvalue oi

iH i(ζ) , and assume λ (0) is simple so that the corresponding unit eigenvector x (ζ) is well defined for
sufficiently small ζ. Then for asymptotically small ζ

e e x (ζ) − x (0) e e ≤
(1 − γ ) relgap(λ )

(n − 1)ζhhhhhhhhhhhhhhhhhh + O (ζ )

Proof: From [19] we have

i i
i

2

x (ζ) = x (0) + ζ
(λ − λ )

x ∆E∆xhhhhhhhhhhx + O (ζ )
k
T

i
k

2

k
i i

k ≠ i i
Σ

L k ket y = ∆x . Then

x (ζ) = x (0) + ζ
(λ − λ )

y Eyhhhhhhhhhhx + O (ζ )
k
T

i
k

2

k
i i

k ≠ i i
Σ

k k
− 2

k
T

k k k
T − 2

k m
L
The pair (λ , y ) is an eigenpair of the pencil A − λ∆ . Thus y Ay = λ y ∆ y . Fro

emma 3 we have

(1 − γ ) e e y e e ≤ e y Ay e = e λ e . e e ∆ y e e = e λ e ≤ (1 + γ ) e e y e e .

Thus

k
2

k
T

k k
− 1

k
2

k k
2

(7.2)hhhhhh )
ee λ
γ

hhhhhh ) ≤ e e y e e ≤ (
1 −

ee λ
γ

(
1 +

k 1 /2
k

k 1 /2

I k k kf we let z = y / e e y e e then

(7.3)hhhhhhhhhhhhhhhhhh + O (ζ )
zz E

e
x (ζ) = x (0) + ζ ξ

(λ − λ ) / e λ λi i
k ≠ i

ik
i k i k

1 /2

T
k i 2

w − 1
ik

− 1

Σ

here (1 + γ ) ≤ e ξ e ≤ (1 − γ ) . If we take norms then

)hhhhhhhhhhhhhhhhhh + O (ζζ(n − 1)
)

e e x (ζ) − x (0) e e ≤
(1 − γ ) relgap(λi i

i

2

C

as desired. `

orollary 3: Let H (ζ) , λ (ζ) , and x (ζ) be as in Theorem 6. Assume further that H (ζ) is γ -s.d.d.i i

dfor all 0≤ ζ≤ ζ
h
, that 1− γ − 3nζ

h
> 0, an

relgap(λ ) ≥
1− γ − 3nζ

h
3.2 .n .ζ

h
hhhhhhhhhhh .

Then

i

− 1 /2

e e x (ζ
h
)− x (0) e e ≤

2.(1− γ − 3nζ
h
) .( relgap(λ ) −

1− γ − 3nζ
h

3.2 .n .ζ
h

hhhhhhhhhh )

3(n − 1)ζ
h

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh .i i

i

− 1 /2

k e
a
Proof: The idea is that if ζ is sm all enough, the λ (ζ) can only change by a sm all relativ
mount, so the relative gap can only change by a sm all absolute am ount. From Proposition 4,

we can bound the perturbed relative gap from below as follows:

relgap(λ (ζ) ) = min
e λ (ζ)λ (ζ) e

e λ (ζ)− λ (ζ) ehhhhhhhhhhhhhh ≥ min
e λ (0)λ (0) e (1−

1− γ
nζhhhhh )

e λ (0)− λ (0) e −
1− γ
nζhhhhh ( e λ (0) e + e λ (0) e )

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
i k i k

1

i k

k ≠ i
i i

−
2i

k ≠ i i k
1 /
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= (1−
1− γ
nζhhhhh )min[( relgap(λ (0) , λ (0) ) −

1− γ
nζhhhhh

e λ (0)λ (0) e

e λ (0) e + e λ (0) ehhhhhhhhhhhhhhhhh ]
i k

2k ≠ i
i k

i k
1 /

2w i k i k i k
− 1 /here relgap(λ (0) , λ (0) ) ≡ e λ (0)− λ (0) e . e λ (0)λ (0) e .

eWe consider two cases, relgap(λ (0) , λ (0) )≥ 2 , and relgap(λ (0) , λ (0) )≤ 2 . Thi k
− 1 /2

i k
− 1 /2

fi i krst case corresponds to λ (0) and λ (0) differing by at least a factor of 2, whence

hhhhhhhhhhhhhhhhh ≤ 3.relgap(λ (0) , λ (0) )
ee λ (0) e + e λ (0)

e
min

e λ (0)λ (0)k ≠ i i k
1 /2

i k
i k

and

relgap(λ (ζ) , λ (ζ) ) ≥ (1−
1− γ
nζhhhhh ) .relgap(λ (0) , λ (0) ) .(1−

1− γ
3nζhhhhh ) .i k i k

i kThe second case corresponds to λ (0) and λ (0) differing by at most a factor of 2, whence

hhhhhhhhhhhhhhhhh ≤ 3.2
ee λ (0) e + e λ (0)

e
min

e λ (0)λ (0)k ≠ i i k
1 /2

i k − 1 /2

and

(7.4)hhhhhhhhh ) .
ζ3.2 n

γ
hhhhh ) .( relgap(λ (0) , λ (0) ) −

1−
ζn
γ

relgap(λ (ζ) , λ (ζ) ) ≥ (1−
1−i k i k

− 1 /2

Altogether, we have

relgap(λ (ζ) ) ≥ (1−
1− γ
nζhhhhh ) .(1−

1− γ
3nζhhhhh ) ( relgap(λ (0) ) −

1 − 3nζ /(1− γ )
(3.2 nζ) /(1− γ )hhhhhhhhhhhhhhhhhh ) .

N

i i

− 1 /2

ow integrate the bound of Theorem 6 from ζ= 0 to ζ= ζ
h

to get the desired resu lt. `

y
t

The next theorem shows that the components of each eigenvector are scaled analogousl
o the way the matrix is scaled:

Proposition 6: Let H = ∆A ∆ be a γ -s.d.d. symmetric matrix with respect to the 2-norm. Let
H = X ΛX be its eigenvector decomposition, where X = [x , . . . , x ] is the matrix whose columns areT

1 n

io 1 n irthonormal eigenvectors and Λ= diag( λ , . . . , λ ) . Let x ( j) be the j-th component of x . Then

hhh
e
e
e

)
λ
λ

hhh
e
e
e

,
e
e
e

λhhhhh
M
J
O

.min(
e
e
e λ

γ1+
γ

e x ( j) e ≤ x
h

( j) ≡
I
J
L 1−i i

3 /2

j

i
1 /2

i

j
1 /2

W e also have

e x ( j) e ≤
I
J
L 1− γ
1+ γhhhhh

M
J
O

.min(
∆
∆hhhh ,

∆
h∆hhh )

jj

i

ii

ij

i

i

3 /2

j

i ii jj eProof: Let y = ∆x for all i. First we consider the case ∆ ≤ ∆ . From (7.2) we hav
e e y e e ≤ ( e λ e /(1− γ ) ) . Thus, applying Proposition 2 as well,i i

1 /2

i jj
− 1

i jj
− 1

i
1 /2

j

i
1 /2

hhhhh
M
J
O

γ1+
γ

hhh
e
e
e
.

1−
λ

e x ( j) e = ∆ e y ( j) e ≤ ∆ ( e λ e /(1− γ ) ) ≤
I
J
L

e
e
e λ

eas desired. We may also writ

e x ( j) e = ∆ e y ( j) e ≤ ∆ ( e λ e /(1− γ ) ) ≤
∆
∆hhhh .

I
J
L 1− γ
1+ γhhhhh

M
J
O

2
ii

1 /

j

− 1
i

1 /2

j
j

− 1
i jji j

.to get the other inequality

Now consider the case ∆ ≥ ∆ . We will take the j-th components of both sides of the
i

ii jj

i
− 2

iequality Ay = λ ∆ y , and bound them as follows. The left hand side component is bounded

18



ddd d

above in absolute value by

(1+ γ ) e e y e e ≤ (1+ γ ) (1− γ ) e λ e .i
− 1 /2

i
1 /2

yThe right hand side component is bounded below in absolute value b

e λ e ∆ e y ( j) e ≥ (1− γ ) e λ /λ e . e y ( j) e .− 2
i i j ij

Thus

i j

e x ( j) e = ∆ e y ( j) e ≤ ∆
(1− γ ) e λ e

(1+ γ ) e λ ehhhhhhhhhhhhhhh ≤
I
J
L 1− γ
1+ γhhhhh

M
J
O

.
e
e
e λ
hλhh

e
e
e

2
j

3 /2

i

j
1 /

2
− 1

3 /2
i

1 /j
− 1

i jji j

jj ii `as desired. The bound in terms of ∆ /∆ is obtained similarly.

Thus, if a matrix is strongly scaled ( the ∆ vary greatly in magnitude) , the eigenvectorsjj
o

c
will be strongly scaled, and sm all relative perturbations in the matrix entries will not be able t
hange the sm aller eigenvector components much. In the next theorem, we prove something

even stronger: the perturbations in the eigenvector components x ( j) will be sm all compared toi

i :

T

the upper bounds x
h

( j)

heorem 7: Let H (ζ) be as in Theorem 6. Let x (ζ) ( j) denote the j-th component of the i-th unit
e i

i

igenvector of H (ζ) . Let x
h

( j) be the upper bound for the j-th component of the unperturbed unit
eigenvector x (0) ( j) . Theni

i i
i

− 1 /2

1 /2

i
2)hhhhhhhhhhhhhhhhhhhhhhhhhhhh .x

h
( j) + O (ζ)2 (n − 1

)

(

e x (ζ) ( j) − x (0) ( j) e ≤ ζ.
(1− γ ) .min( relgap(λ ) , 2

λ is the same as λ (0) ). Note that relgap(λ ) exceeds 2 only when λ differs from its nearest
n

i i i
− 1 /2

i
eighbor by a factor greater than 2 or less than 1/2.

sProof: We start from (7.3) in the proof of Theorem 6; it implie

e x (ζ) ( j)− x (0) ( j) e = e ζ
e λ − λ e / e λ λ e )

ξ z Ezhhhhhhhhhhhhhhhhh .x (0) ( j) + O (ζ ) e
ij i

T
k

k
2

2i i
k ≠ i i k i k

1 /Σ

5 /2

3 /2

i k

i k
1 /2

j

k
1 /2

k

j
1 /2

2 )hhh
e
e
e

) + O (ζ
λhhh

e
e
e

,
e
e
e λ

λ
λ

hhhhhhhhh .min(
e
e
e

ee λ λ
e

hhhhhhhhhhhhhhhh .
e λ − λ

)ζ(n − 1) (1+ γ
)

=

≤
(1− γ

(1− γ )

ζ(n − 1) (1+ γ )hhhhhhhhhhhhhhhh .min(
e
e
e λ
λhhh

e
e
e e λ − λ e

e λ ehhhhhhhh ,
e
e
e λ
hλhh

e
e
e e λ − λ e

e λ ehhhhhhhh ) + O (ζ )
i 2

k

k

i

j
1 /2

ik

i
1 /2

ij
5 /2

3 /2

5 /2

3 /2

j

i
1 /2

i

j
1 /2

i k

i k 2)hhhhhhhhhhhhhhhh + O (ζ
)max( e λ e , e λ e

e
hhh

e
e
e

)
e λ − λ

λ
λ

hhh
e
e
e

,
e
e
e

λhhhhhhhhhhhhhhhh .min(
e
e
e λ

)ζ(n − 1) (1+ γ
)

≤

≤
(1− γ

(1− γ )

ζ(n − 1) (1+ γ )hhhhhhhhhhhhhhhh .min(
e
e
e λ
λhhh

e
e
e

,
e
e
e λ
hλhh

e
e
e

)
min( relgap(λ ) , 2 )
h 2hhhhhhhhhhhhhhhhhhhhh + O (ζ )

1 /2
2

2

i
1 /2

i

j
1 /2

i
− 1 /

j

as desired. `

5 /2

3 /2

A version of Theorem 7 for nonasymptotically sm all ζ can be proven in the same way as
Corollary 3 was derived from Theorem 6.

If we have a cluster of eigenvalues which are relatively well separated from the others,

t
similar analyses to those above show that the invarian t subspace they span is insensitive to per-
urbations, even if the individual eigenvectors are sensitive.

e
c

Now consider s.d.d. definite pencils. From Proposition 5 of the last section, we know w
an often reduce such pencils to standard form without sacrificing diagonal dominance: Given

H − λM , M positive definite with lower triangular Cholesky factor L , the matrix Y = L HL− 1 − T

− T rhas the same spectrum as H − λM . Also, if y is an eigenvector of Y , x = L y is an eigenvecto
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of H − λM ; thus Theorems 6 and 7 can be used to derive perturbation bounds on x, although
we will not do so here.

Finally, we consider perturbation theory for the singular vectors of bidiagonal matrices.
Let

(7.5)
b

H
J
J
J
J
J
J
P

.

a

b

.

..B =

R
J
J
J
J
J
J
Q

a

a

b1

2

1

2

n

n − 1

i d
b
be bidiagonal, where as in Theorem 1 we may assume without loss of generality that all a an

are positive. Recall that the left singular vectors of B are the eigenvectors of BB and thei
T

T eright singular vectors of B are the eigenvectors of B B. Sinc

BB =

R
J
J
J
J
J
J
Q

b a

a + b

b a

a + b

b a

.

.
b a

b a

a + b

.

a

b a

H
J
J
J
J
J
J
P

n − 1 n

2
n

2
1

2
n −1n −

n

1 2

2 3

n − 1

2
22

2

3

1
2

1
2

2

2

and

T

1

B B =

R
J
J
J
J
J
J
Q

b a

a

b a

a + b

b a

.

.
b a

b a

a + b

.

a + b

b a

H
J
J
J
J
J
J
P

n − 1 n − 1

2
1

2

n
2

n −

2
2

n −1n −

1

1 1

2 2

n − 1 n −

2
12

2

2

1
2

2

1

T

1

i ism all relative perturbations in the a and b only cause sm all relative perturbations in the entries
of BB and B B. Therefore, we can reduce perturbation theory for the singular vectors of aT T

T T .

P

bidiagonal matrix to perturbation theory for the tridiagonal matrices BB and B B

roposition 7: Let B be as in (7.5). Since BB and B B are positive definite tridiagonal, and hence
s

T T

.d.d., small relative changes in the entries of B cause perturbations in the singular vectors as
described by Theorems 6 and 7. More specifically, let D = diag( (BB ) ) andL

T
ii

DR
T

ii= diag( (B B ) ) . Then

e e D BB D − I e e ≤ γ ≡ 2.max ( max
(a + b ) (a + b )

b ahhhhhhhhhhhhhhhhhhhhhhhh ,
(a + b )
h bhhhhhhhhhhhhhh )

n − 1

22 1 /
1

2
n −1

j j + 1

n −
22 1 /

1
2

j +1
2 1 /2

j +j
2
j

and

L
− 1 /2 T

L
− 1 /2

L
j < n − 1

e e D B BD − I e e ≤ γ ≡ 2.max (max
(a + b ) (a + b )

a bhhhhhhhhhhhhhhhhhhhhhhhh ,
(a + b )
h bhhhhhhhhhh ) .

1

2

j j

2
2

1
2 1 /22 1 /

j
2

1
2 1 /2

j +1
2

j −j
R
− 1 /2 T

R
− 1 /2

R
j > 1

L R j
1 /2

j L j
1 /2

j − 1 R .

P

Both γ and γ are bounded by 2. If a > 3 b , then γ < 1, and if a > 3 b , then γ < 1

roof: A simple computation shows that the diagonal of D BB D consists of ones andL
− 1 /2 T

L
− 1 /2

22 − 1 /
j

2
1

2 − 1 /2
j +1

2
j −jt j j + 1hat the offdiagonals are b a (a + b ) (a + b ) for j < n − 1 and

-b .(a + b ) for j = n − 1. Thus γ bounds the 1-norm of D BB D − I. A simin − 1 n − 1
2

n − 1
2 − 1 /2

L L
− 1 /2 T

L
− 1 /2

T `lar computation applies to B B.

Thus, the sensitivity of the singular vectors to relative perturbations in the entries of B is
s

c
governed by the relative gap between singular values, as conjectured in [9]. Actually, more wa
onjectured: it does not appear that the measure of diagonal dominance γ of BB or B B

20
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affects the singular vector sensitivity. A proof of this stronger conjecture will appear in [6].

n
More precisely, a version of Theorem 6 is proved in [6] without the 1− γ factor in the denomi-

ator, and extended to nonasymptotically sm all perturbations as in Corollary 3. Whether

8

Theorem 7 can be generalized without a 1 /(1− γ ) dependence is an open question.

. On Condition Numbers and the Distance to the Nearest Ill-Posed Problem

t
t

In [7] it was observed that a common feature of many numerical analysis problems is tha
heir condition numbers approximate or at least bound the reciprocal of the distance to the

e
o
nearest ill-posed problem, i.e. problem whose condition number is infinite. The classical exam pl

f this is matrix inversion, where the condition number of a matrix T is κ(T ) ≡ e e T e e . e e T e e .
− 1

− 1

t
t
By scaling T we may assume without loss of generality that e e T e e = 1, so that κ(T ) = e e T e e . Bu
he distance ( in the e e . e e norm) from T to the nearest singular matrix (nearest matrix whose

econdition number is infinite) is e e T e e = 1 /κ(T ) . Thus, the condition number is exactly th− 1

reciprocal of the distance to the nearest ill-posed problem. This phenomenon recurs throughout

b
numerical analysis, although we usually get a somewhat weaker relationsh ip, such as one sided

ounds between the condition number and reciprocal distance.

-
m

Here we investigate this phenomenon in the case of finding the eigenvectors of a sym
etric matrix. From (1.3) , we see that 1 /gap(λ ) is a condition number for the i-th eigenvectori

i .
λ
of a general sym metric matrix. This condition number is infinite precisely when gap(λ )= 0, i.e

is a multiple eigenvalue. It is reasonable to call such an eigenproblem ill-posed because the
e

i
igenvector is no longer uniquely determined: any vector in an at least two-dimensional invari-

e
ant subspace will do. It is elementary to show that the reciprocal of this condition number gives
xactly the distance to the nearest ill-posed problem:

sProposition 8: Let H be a symmetric matrix with simple eigenvalue λ ; thui
g i

k ≠ i
i kap(λ ) = min e λ − λ e > 0. Then the smallest e e δH e e such that the eigenvalue of H + δH

"corresponding to" λ is multiple isi

i
.hhhhhhhh)gap(λ

2

B

min e e δH e e =

y "the eigenvalue corresponding to λ is multiple" we mean that if the continuous function λ (ξ) is ani i

i i i i )
i
eigenvalue of H + ξδH for all 0≤ ξ≤ 1, with λ (0) = λ , then λ (ξ) is simple for 0≤ ξ< 1 and λ (1
s multiple.

Proof: Suppose e λ − λ e = gap(λ ) and that x and x are corresponding unit eigenvectors. Let
j

j i i i j

i i i
T

j j
T

i y
a
δH = .5.(λ − λ ) .(x x − x x ) to show min e e δH e e ≤ gap(λ ) /2. To get the other inequalit
pply (1.1) to see that any sm aller e e δH e e could not move either λ or λ more than half the dis-

tance towards one another. `
i j
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It turns out that a similar relationsh ip holds for γ -s.d.d. sym metric matrices, provided we
ameasure distances in the scaled way used so far in this paper, and that we use 1 /relgap(λ ) asi
-

t
condition number. This is interesting because it extends work in [7] to a case where the dis
ance metric is quite skewed from the usual norm, and shows that 1 /relgap(λ ) is the mosti

s
o
natural condition number for this problem, because it shares the same geometric properties a

ther condition numbers.

Proposition 9: Let H = ∆A ∆ be an n by n γ -s.d.d. symmetric matrix with simple eigenvalue λ ; thus
r i

k ≠ i
i k i k

− 1 /2
i

− 1 /2
i

elgap(λ ) = min e λ − λ e . e λ λ e > 0. Assume further that relgap(λ )≤ 2 (this means that

tλ and its nearest neighbor differ by a factor between .5 and 2). Then the smallest e e δA e e such thai

i sthe eigenvalue of ∆ (A + δA )∆ "corresponding to" λ is multiple satisfie

3(√ dd2 .n + relgap(λ ) )

(1− γ ) relgap(λ )hhhhhhhhhhhhhhhhhhhh ≤ min e e δA e e ≤ relgap(λ ) .2 .n .
(1− γ )

(1+ γ )hhhhhhhh .
i

i
1 /2

3

4

i

F ior relgap(λ )< < 1, the lower bound on min e e δA e e equals
srelgap(λ ) (1− γ ) /(2 .3.n ) + O ( ( relgap(λ ) ) ) . In other words, both the upper and lower boundi

1 /2
i

2

i .

P

are Θ( relgap(λ ) )

roof: By scaling H we may assume without loss of generality that ∆ = 1. Let λ satisfy
r i i j i j

1 /2
i j

ii j
elgap(λ ) = e λ − λ e . e λ λ e , and let x and x be corresponding unit eigenvectors.

t
e

First we prove the upper bound on min e e δA e e . From Proposition 6 we have tha
(x x ) e ≤ (1+ γ ) (1− γ ) ∆ ∆ . Thus e e ∆ x x ∆ e e ≤ n (1+ γ ) (1− γ ) . Leti i

T
kl

3 − 3
k l

− 1
i i

T − 1 3 − 3

j i i i
T

j ,δA = (λ − λ )x x . Clearly ∆ (A + δA )∆ has a multiple eigenvalue at λ as desired. Also

e λ − λ e = relgap(λ ) . e λ λ e ≤ 2 relgap(λ ) . e λ e ≤ 2 .(1+ γ ) .relgap(λ ) ,j i i i j
1 /2 1 /2

i i
1 /2

i

− 1
i i

T − 1 .which when combined with the bound on e e ∆ x x ∆ e e , yields the desired upper bound

Now we consider the lower bound. Abbreviate e e δA e e by η. Note that if H is γ -s.d.d., then
eH + ∆δA ∆ is (γ + 2η) (1− η) -s.d.d., if (γ + 2η) (1− η) < 1. From (7.4) in Corollary 3, we se− 1 − 1

t − 1hat if (γ + 2η) (1− η) < 1, then the perturbed relative gap will be at least

hhhhhhhhhhhhhhhhhhh .
η3.2 .n

)
relgap(λ ) −

1 − (γ + 2η) (1− ηi − 1

1 /2

,
a
In order for the perturbed relative gap to be zero, this lower bound will have to be nonpositive
nd so

η≥
3.2 .n

relgap(λ )hhhhhhhhhh .(1 − (γ + 2η) (1− η) )

S

1/2

i − 1

olving for the sm allest η satisfying this inequality yields the desired lower bound. When
trelgap(λ )< < 1 so that η is sm all enough that (γ + 2η) (1− η) ∼∼ γ , we gei

− 1

η i
1 /2∼∼ relgap(λ ) (1− γ ) /(3.2 .n ) as desired. `

The same resu lts could have been obtained using the general machinery of differential
inequalities in [7], but these proofs are more straigh tforward.
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9. Algorithms for the Bidiagonal Singular Value Decomposition

y
i

In this section we discuss algorithms capable of attain ing the high relative accurac
nherent in the data as described in Theorem 1. Most of this work has appeared elsewhere, but

since we will need the resu lts in the next section, we outline them here.

The three classes of algorithms we will discuss are QR, bisection, and divide and conquer.

v
The standard QR iteration [12] as implemented in LINPACK [3] does not compute all singular

alues to high relative precision. It may be modified, however, to ach ieve this as described in
.

I
[9]. Briefly, the idea is to use a zero sh ift in a QR sweep when a tiny singular value is present
t turns out this zero-sh ift QR can be implemented in a forward stable way that only introduces

g
sm all relative errors in each entry of the bidiagonal matrix. Corollary 1 of Theorem 1 then

uarantees the singular values are not changed significantly. The standard convergence criterion
-

r
must also be changed to guarantee high relative accuracy; see [9] for details. The resu lting algo
ithm is not only more accurate than the standard implementation but faster on the average;

t
this is because the zero-sh ift QR sweep contains significantly fewer floating point operations
han shifted QR.

It was conjectured in [9] that this modified QR algorithm computes the singular vectors as

P
accurately as the "relative gap" error bounds of section 7 permit; this conjecture is supported by

roposition 7 and will be proven completely in [6] ( see section 7 for discussion) .

f
t

Bisection is another method that guarantees high relative accuracy. An error analysis o
he Sturm sequence recurrence for counting the number of singular values of a bidiagonal

m
matrix in an interval [14] shows that it computes the exact number of singular values for a

atrix differing from the original one only by sm all relative perturbations in each entry; Corol-
lary 1 of Theorem 1 then guarantees high relative accuracy again.

Divide and conquer [13] has not yet been shown to achieve high relative accuracy, at least

a
without resorting to extended precision arithmetic in the inner loop. Achieving this accuracy is

current area of research.

10. Algorithms for the Symmetric Tridiagonal Eigenproblem

-
d

In this section we present algorithms for computing eigenvalues of γ -s.d.d. sym metric tri
iagonal matrices to high relative accuracy. We note that reducing a dense γ -s.d.d. sym metric

e
matrix to tridiagonal form will not generally preserve diagonal dominance or the accuracy of the
igenvalues; thus the algorithms in this section are su itable only when the original matrix is tri-

diagonal. If the original matrix is dense, the algorithm in the next section should be used.

Briefly, bisection can always be used to find the eigenvalues accurately. If the matrix is

b
positive definite as well, Cholesky followed by the algorithm of the last section applied to the

idiagonal Cholesky factor can be used. QR does not seem to work in general, but may if the

w
matrix is strongly diagonally dominant and monotonically graded. It is still an open question

hether divide and conquer techniques [5, 11] can achieve high relative accuracy.

-
d

As with the bidiagonal singular value problem, the standard implementation of QR for tri
iagonal matrices does not guarantee high relative accuracy in the computed eigenvalues for

i
sym metric γ -s.d.d. matrices, even if the change in convergence criterion suggested in section 6
s adopted. Even if a zero-sh ifted QR algorithm like the one used for the bidiagonal singular

s
value decomposition is used, relative accuracy is lost ( in numerical experiments on a strongly
.d.d. positive definite matrix, negative eigenvalues were computed) .

l
Q

However, recent work by Le and Parlett [16] gives some hope that zero-sh ifted tridiagona
R may sometimes be used in the same way as the bidiagonal zero-sh ifted QR to compute all

i
eigenvalues to high relative accuracy. Their work shows that the inner loop of the standard QR
teration may be modified to provide componentwise relative stability in the following sense: in

s
i
floating point this modified zero-sh ifted QR is equivalent to making sm all relative perturbation
n each entry of the tridiagonal matrix, performing QR exactly on this perturbed matrix, and

s
again making sm all relative perturbations in each entry of the resu lting matrix. This is a much
tronger kind of stability than the usual kind described in paragraph (1.2) of the introduction. If
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the original and final tridiagonals are also γ -s.d.d., Proposition 4 would imply that their eigen-
,

c
values agree to high relative accuracy. Thus, QR, combined with the stopping criterion (6.4)
ould be used to compute all eigenvalues to high relative accuracy, but only if all the matrices

s
s
produced in the course of the iteration were γ -s.d.d.. Unfortunately, numerical experiment
how this is not the case in general, and may only be true if the original matrix is very strongly

ediagonally dominant and monotonically scaled (H ≥ H ) . Thus, we do not expect to bii i + 1, i + 1
.able to generally use QR based algorithms for the γ -s.d.d. tridiagonal eigenproblem

If we limit ourselves to positive definite matrices T , the following QR based approach will

p
work. The following algorithm originally appeared in [10]. Recall that a tridiagonal matrix T is

ositive definite if and only if it has a positive diagonal and is γ -s.d.d. for some γ < 1.

1

Algorithm 2: Computing the eigenvalues of a positive definite tridiagonal matrix T:

) Compute the Cholesky factorization LL = T of T .

2

T

) Find the singular values of the bidiagonal matrix L using the bidiagonal QR algorithm of

3

section 9.

) Square the singular values of L to get the eigenvalues of T .

s
s

To show that this method is viable, one needs to show that scaled diagonal dominance i
ufficient to guarantee that the squares of the exact singular values of L are all relatively close

e
s
to the eigenvalues of A ; the algorithms of section 9 then guarantee that we can compute th
ingular values of L to high relative accuracy.

To this end we present a backward error analysis of the Cholesky decomposition of a posi-

f
tive definite sym metric tridiagonal matrix A . Our goal is to show that the computed Cholesky
actor L is a sm all componentwise relative perturbation of the exact Cholesky factor of a sm all

m
componentwise relative perturbation of A . We assume the usual model of floating point arith-

etic fl (a op b) = (a op b) .(1+ e) , where e e e ≤ ε and op ∈ {+ , − , × , /}, and that the floating
point square root function sqrt satisfies sqrt(a ) = (1+ e)a where e e e ≤ ε.1 /2

l
e
Proposition 10: Let A be an n by n positive definite symmetric tridiagonal matrix with diagona
ntries a , . . . , a and offdiagonal entries b , . . . , b . Let L be the computed Cholesky factor

f
1 n 1 n − 1

rom the following algorithm:

l = sqrt(a )11 1
1for i = 1 to n −

l = b /l i

i

i + 1, i i i

+ 1, i + 1 i + 1 i + 1, i
2 )l = sqrt(a − l

r

T

endfo

hen barring over/underflow and attempts to take square roots of negative arguments, L is the exact
Cholesky factor of A = A + δA = LL , where e δA e ≤ g (ε) e A e , andˆ T

ij ij

(10.1)hhhhhhh = 7ε+ O (ε )
)(1+ ε
)

g (ε) = 3ε+ 3ε + ε + (4ε+ 6ε + 4ε + ε ) .
(1− ε

2 3 2 3 4
4

3
2

P ˆroof: We construct A = A + δA as follows. Subscripted εs denote independent quantities
bounded in norm by ε.

l = fl ( sqrt(a ) ) = (1+ ε )a = ( (1+ ε ) a ) ≡ a
2

11 1 11 1
1 /2

11
2

1
1 /2

1
1 /ˆ

ˆ
1li, i − 1 i − 1 i − 1, i − 1 i 1 i − 1 i − 1, i − 1 i − 1 i − 1, i −= fl (b /l ) = (1+ ε )b /l ≡ b /l

l = fl ( sqrt(a − l ) )i, i i i, i − 1
2
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= (1+ ε ) .( (1+ ε ) (a − (1+ ε ) l ) ) 22 1 /
1i 2 i 3 i i 4 i, i −

i 2
2

i 3 i i 2
2

i 3 i 4 i, i − 1
2 1 /2

≡

= ( (1+ ε ) (1+ ε )a − (1+ ε ) (1+ ε ) (1+ ε ) l ) )

( (1+ g )a − (1+ g ) l ) 22 1 /
1

i

i 1 i i 2 i, i −

1
2 3 2

i 2
2 3 4 2 -

t
where e g e ≤ 3ε+ 3ε + ε = 3ε+ O (ε ) and e g e ≤ 4ε+ 6ε + 4ε + ε = 4ε+ O (ε ) . By assump
ion (1+ g )a < (1+ g ) l so2

1i 1 i i 2 i, i −

i 2 i, i − 1
2

i 2
i 2

i 1
i i 3 i

hhhhhh .a ≡ g a
g1+
g

where

e g l e ≤ e g e .
1+

e g e ≤ (4ε+ 6ε + 4ε + ε ) .
(1− ε)

(1+ ε)hhhhhhh = 4ε+ O (ε )

Thus

i 3
2 3 4

4

3
2

l = ( (1+ g − g )a − l ) 22 1 /
1i, i i 1 i 3 i i, i +

i 4 i i, i + 1
2 1 /2

≡

≡ ( (1+ g )a − l )

(a − l )ˆ i i, i + 1
2 1 /2

where

e g e ≤ 3ε+ 3ε + ε + (4ε+ 6ε + 4ε + ε )
(1− ε)

(1+ ε)hhhhhhh = 7ε+ O (ε )

T

as desired. `

i 4
2 3 2 3 4

4

3
2

heorem 8: Let A be an n by n positive definite symmetric tridiagonal matrix, L its computed Chole-

o
sky factor as in Proposition 10, and g (ε) as in (10.1). Let γ < 1 be the scaled diagonal dominance

f A. Let σ ≤ . . . ≤ σ be the singular values of L and λ ≤ . . . ≤ λ be the eigenvalues of A.
Then

1 n 1 n

(1−
1− γ
g(ε)hhhhh ) ≤

σ (L )

λ (A )hhhhhhh ≤ (1+
1− γ
g (ε)hhhhh ) .

i

2
i

.hhhhhh ]
ε7.04

γ
P

For example, when ε< .001, the upper and lower bounds are bounded by 1± [
1−

roof: Combine Corollary 1 of Theorem 1, Theorem 2 and Proposition 10. `

t
w

It is easy to find T for which Algorithm 2 computes all the eigenvalues accurately, bu
here the standard QR iteration [17] loses all accuracy on the sm allest eigenvalues.

-
r

Since the bidiagonal SVD algorithm of section 9 can compute the singular vectors as accu
ately as the "relative gap" error bound permits ( see the discussion of section 9) , Algorithm 2

will compute the eigenvectors of T as accurately as Theorem 6 permits.

Bisection is a viable algorithm for all s.d.d. tridiagonal matrices. A similar error analysis to
-

v
the one for bidiagonal Sturm sequences shows that Sturm sequences can find accurate eigen

alues of T + δT where δT causes only sm all relative perturbations in each entry of T [14]. No
e

b
pivoting is required, so Sturm sequence evaluation can be done in linear time with no storag

eyond that needed for T . Together with Theorems 2 or 4, this implies that the computed
eigenvalues all have high relative accuracy if the matrix is sym metric tridiagonal γ -s.d.d.

As in the bidiagonal case, the ability of divide and conquer algorithms [11] to achieve

1

high relative accuracy is an open problem.

1. Algorithms for the Dense Symmetric Eigenproblem
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First we present a new algorithm (or rather a new analysis of an old algorithm) for finding

b
accurate eigenvalues of (possibly dense) sym metric s.d.d. matrices. The algorithm is based on

isection, but rather than computing the LDL factorization of H − xI and using the number of
i

T

i
T

f
negative D to compute the number of eigenvalues of H less than x, we compute the LDL
actorization of A − x ∆ , where H = ∆A ∆ .

S

− 2

econd, we show that a su itable variation of inverse iteration can compute the eigenvec-

T
tors of a sym metric s.d.d. matrix to the limiting accuracy of the "relative gap" error bounds in

heorems 6 and 7.

Algorithm 3: Stably computing the inertia of a shifted γ -scaled diagonally dominant symmetric

(

matrix H − xI:

0) We assume as before that A = ± 1. We consider only x > 0; for x < 0 consider − H − xI.ii
2− s(1) Permute the rows and columns of A − x ∆ and partition it a

R
J
Q A

A − x ∆

A − x ∆

A H
J
P

12

2

11 1
− 2

22 2
−

1

−

2

2
11 1

− 2 d
x
so that if a − xd is a diagonal entry of A − x ∆ , then either a = − 1 or a = 1 an
d ≥ 2.− 2

22 2
− 2

21 11 1
− 2 − 1

12 .

(

(2) Compute X = A − x ∆ − A (A − x ∆ ) A

3) Compute inertia( X )= (n , z , p) using a stable pivoting scheme such as in [4]. Here n
e

n
is the number of negative eigenvalues, z the number of zero eigenvalues, and p th

umber of positive eigenvalues of X.

.(4) The inertia of H − xI is (n+ dim(A ) , z , p)11

Theorem 9: Let H = ∆A ∆ be a γ -scaled diagonally dominant symmetric matrix and x > 0 a real
scalar. Algorithm 3 computes the exact inertia of a matrix H + δH − xI, where δH = ∆δA ∆ ,
e e δA e e = O (ε) , ε being the machine precision. Thus, Algorithm 3 can be used in a bisection algorithm

P

to find all the eigenvalues of H to high relative accuracy.

roof: The partitioning guarantees that the diagonal entries of A − x ∆ are all less than or
11 1

− 2
11 1

− 2

e
X
equal to − 1. Therefore, all the eigenvalues of A − x ∆ are less than or equal to − 1+ γ . Sinc

is defined so that

Q
J
R

A

A − x ∆

A − x ∆

A H
J
P

=
R
J
QA (A − x ∆ )

I

I

0H
J
P
.
R
J
Q 0

A − x ∆
X

0 H
J
P
.
R
J
Q0

I

I

(A − x ∆ ) A H
J
P

,
12

21 11 1
− 2 − 1

11 1
− 2

11 1
− 2 − 1

12

2

11 1
− 2

22 2
−

12

− 2 othe inertia of A − x ∆ is equal t

inertia( A − x ∆ ) = inertia( X ) + inertia( A − x ∆ ) = inertia( X ) + (dim(A ) , 0, 0)

b

− 2
11 1

− 2
11

y Sylvester’s Theorem. The algorithm in [4] will compute the exact inertia of X + δX, where
.e e δX e e = O (ε) e e X e e . Thus if we show that e e X e e is of order 1− γ ≤ e e A e e ≤ 1+ γ , we will be done22

2
2
− 2

min 11 1
− dTo this end we note that by construction e e x ∆ e e ≤ 2, σ (A − x ∆ )≥ 1− γ , an

e e A e e = e e A e e ≤ γ . Thus12 21

2
hhhhh3

γ
hhhhh ≤

1−
γ

γ
as desired. `

e e X e e ≤ 1+ γ + 2 +
1−

In the case of pencils, there is an analogous algorithm. If H − λM = ∆ A ∆ − λ∆ A ∆MH H H M M
1T

H H
− 1

M M M H
− n

o
is a γ -s.d.d. definite pencil, we compute the LDL decomposition of A − x ∆ ∆ A ∆ ∆ i

rder to count the number of eigenvalues less than x. Henceforth we will assume without loss
of generality that H − λM = H − λ∆A ∆ with e H e = A = 1.ii ii
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Algorithm 4: Stably computing the inertia of a shifted γ -scaled diagonally dominant definite pencil

(

H − xM:

0) As stated above, we assume without loss of generality that M = ∆A ∆ with e H e = A = 1.

(

We also consider only x > 0; for x < 0 consider − H − xM .
ii ii

1) Permute the rows and columns of H − x ∆A ∆ and partition it as
H − x ∆ A ∆ H

J
P∆

H − x ∆ A ∆

H − x ∆ A∆
R
J
QH − x ∆ A21 2

− 1
21 1

− 1

11 1
− 1

11 1
− 1

22 2
− 1

22 2
− 1

12 1
− 1

12 2
− 1

1s − 2
11 1

− 1
11 1

−o that if h − xd is a diagonal entry of H − x ∆ A ∆ , then
xd ≥ µ ≡ 2(1+ γ ) /(1− γ ) .− 2

e(2) Comput

X = H − x ∆ A ∆ − (H − x ∆ A ∆ ) .(H − x ∆ A ∆ ) .(H − x ∆ A ∆ )

(

22 2
− 1

22 2
− 1

21 2
− 1

21 1
− 1

11 1
− 1

11 1
− 1 − 1

12 1
− 1

12 2
− 1

3) Compute inertia( X ) = (n , z , p) using a stable pivoting scheme such as in [4].

(4) The inertia of H − xM is (n + dim(A ) , z , p) .11

H H H M M M l
s
Theorem 10: Let H − λM = ∆ A ∆ − λ∆ A ∆ be a γ -s.d.d. definite pencil and x > 0 a rea
calar. Algorithm 4 computes the exact inertia of H + δH − xM, where δH = ∆ δA ∆ ,A A

m
t
e e δA e e = O (ε) , ε being the machine precision. Thus, Algorithm 4 can be used in a bisection algorith
o find all the eigenvalues of H − λM to high relative accuracy.

.Proof: Let Y = H − x ∆ A ∆ , and define K = x ∆ H ∆ − A , so that Y = x ∆ K ∆11 1
− 1

11 1
− 1 − 1

1 11 1 11 1
− 1

1
− 1

Now if λ(K ) is any eigenvalue of K , we have

λ(K ) ≤ λ (x ∆ H ∆ ) − λ (A ) ≤ µ (1+ γ ) − (1− γ ) = −
2

1− γhhhhh

−

max
− 1

1 11 1 min 11
− 1

1and e e K e e ≤ 2 /(1− γ ) . Thus, Y is also nonsingular, with all negative eigenvalues. Since X and
Y are defined so that

R
J
QH − x ∆ A ∆

H − x ∆ A ∆

H − x ∆ A ∆

H − x ∆ A ∆ H
J
P

=
12 1

− 1
12 2

− 1

1

11 1
− 1

11 1
− 1

22 2
− 1

22 2
−1

21 2
− 1

21 1
−

21 2
− 1

21 1
− 1 − 1

− 1
12 1

− 1
12 2

− 1

,
Y (H − x ∆ A ∆ ) H

J
PI

Y

X

0 H
J
P
.
R
J
Q0

I

0

0H
J
P
.
R
J
QI

I

Y

we have

R
J
Q(H − x ∆ A ∆ )

inertia( H − xM ) = inertia( X ) + inertia( Y ) = inertia( X ) + (dim(A ) , 0, 0)11

eby Sylvester’s Theorem. The algorithm in [4] will compute the exact inertia of X + δX, wher
e e δX e e = O (ε) e e X e e . Thus if we show that e e X e e is of order 1− γ ≤ e e H e e ≤ 1+ γ , we will be
done. To this end we write

22

e e X e e ≤ e e H e e + e e x ∆ A ∆ e e + e e H Y H e e + e e x ∆ A ∆ Y H e e22 2
− 1

22 2
− 1

21
− 1

12 2
− 1

21 1
− 1 − 1

12

21
− 1

1
− 1

12 2
− 1

2
− 1

21 1
− 1 − 1

1
− 1

12 2
− 1 e

=

+ e e H Y x ∆ A ∆ e e + e e x ∆ A ∆ Y x ∆ A ∆ e

e e H e e + e e x ∆ A ∆ e e + e e H x ∆ K ∆ H e e + e e ∆ A K ∆ H e e22 2
− 1

22 2
− 1

21
− 1

1
− 1

1 12 2
− 1

21
− 1

1 12

21 1
− 1

12 2
− 1

2
− 1

21
− 1

12 2
− 1 .

U

+ e e H ∆ K A ∆ e e + e e x ∆ A K A ∆ e e

sing the facts that e e A e e ≤ γ , e e A e e ≤ γ , e e H e e ≤ γ , e e H e e ≤ γ , e e K e e ≤ 2 /(1− γ ) ,
1

12 21 12 21
− 1

2
− 1 − 1

1
2 − 1

2
− 1 2 t

e

e e ∆ e e . e e ∆ e e ≤ 1, x e e ∆ e e ≤ µ , and x e e ∆ e e ≤ µ , we ge

e X e e ≤ 1+ γ + (1+ γ )µ + γ (2 /(1− γ ) )µ + γ (2 /(1− γ ) ) + γ (2 /(1− γ ) ) + γ (2 /(1− γ ) )µ2 − 1 2 2 2
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≤ 14 /(1− γ ) 2

as desired. `

Now we present a variation on inverse iteration which can compute the eigenvectors of a
s

6
sym metric s.d.d. matrix to the limiting accuracy of the "relative gap" error bounds of Theorem

and 7. A similar algorithm applies to pencils:

Algorithm 5: Inverse iteration for computing the eigenvector x of a symmetric s.d.d. matrix H = ∆A ∆

(

corresponding to eigenvalue z:

0) We assume the eigenvalue z has been computed accurately using one of the previous algo-

(

rithms.

1) Choose a unit starting vector y ; set i = 0.
T

0
T − 2 s(2) Compute the LDL factorization of P (A − z∆ )P, where P is the same permutation a

in Algorithm 3.

(3) Repeat

i = i + 1

Solve (A − z∆ )y = y for y using the LDL factorization of step (2)− 2
i i − 1 i

T˜ ˜

˜ i e

y

r = 1 / e e y e

= r.yii ˜

)

(

until ( r = O (ε)

4) x = ∆ yi

T

− 1

heorem 11: Suppose Algorithm 5 terminates with x as the computed eigenvector of the symmetric
-s.d.d. matrix H = ∆A ∆ . Then there is a diagonal matrix D with D = 1+ O (ε) , ε = machine preciii
,

t
sion, and a matrix δA, e e δA e e = O (ε) , such that Dx is an exact eigenvector of ∆ (A + δA )∆ . Thus
he error in x is bounded by the results in Theorems 6 and 7.

fSketch of Proof: Let y be the computed solution of (A − z∆ )y = y at the last iteration o˜ ˜ 1
A

i
− 2

i i −
lgorithm 5. Applying the error analysis of the proof of Theorem 4, one can show that there is

.a diagonal matrix D, D = 1+ O (ε) , and an E, e e E e e = O (ε) , such that D (A − z∆ + E )Dy = yii
− 2

i i − 1˜
s

r
Applying the resu lt in [2], we can assume E is sym metric. Since Algorithm 5 guarantee

= 1 / e e y e e = O (ε) , another application of the resu lt in [2] guarantees the existence of a sym -˜ i
− 2

i i f
A
metric F, e e F e e = O (ε) , such that (A − z∆ + E + F)Dy = 0. Thus, Dy is an exact eigenvector o

+ E + F − λ∆ for λ= z, and Dx = D∆ y is an exact eigenvector of ∆ (A + δA )∆ ,
e

− 2 − 1
i

e δA e e = e e E + F e e = O (ε) as desired. `

s12. Application to Differential Operator

Consider the n by n second central difference matrix

P
J
J
J
J
H

− 1

2

.

.

1

− 1

−

.

.

2

1
H = h .

R
J
J
J
J
Q

−
n

− 2

2 2
i y

c

which arises from discretizing − d /dx at equally spaced grid points x = ih, 1≤ i≤ n. One easil

omputes that 1− γ for H is 1− cos
n + 1
h πhhhh , which approaches 0 as n→∞ . This is to be expected

s n

n

ince H approximates an unbounded operator, and so has a wider and wider range of eigen-
,values as n→∞ . Since the diagonal of H is constant, nothing is gained by writing H = ∆A ∆n n

Aii= 1, and our perturbation theory merely says that all the eigenvalues are at least as sensitive
as the sm allest one. Our theory becomes more interesting when considering unevenly spaced
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grid points x . For exam ple, let h = x − x , and suppose h /h ≡ β for all i; this corresponds toi i i i − 1 i + 1 i

n m
2
a uniformly graded grid. Then the corresponding H (β) has diagonal entries ranging fro

h β to 2h β . One can show γ (β) for H (β) satisfies γ (β)= 2(2+ β+ β ) γ ≤ γ , so1
− 2 − 1

1
− 2 − 2n + 1

n
− 1 − 1 /2

nthat the eigenvalues of H (β) are always at least as accurately determined as the eigenvalues of
H . In fact, if β≠ 1, 1− γ (β) is bounded away from 0 for all n.n
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13. Summary and Future Work

We have shown that there are a number of situations where tiny eigenvalues and singular

n
values can be determined much more accurately than standard perturbation theorems and

umerical algorithms can guarantee. This is true for singular values of bidiagonal matrices,
,

e
eigenvalues of sym metric s.d.d. matrices and eigenvalues of s.d.d. definite pencils. In addition
igenvectors of sym metric s.d.d. matrices corresponding to relatively isolated eigenvalues are

e
s
determined accurately by the data. Open questions remain in the perturbation theory for th
ingular vectors of bidiagonal matrices and in perturbation theory for eigenvalues of s.d.d. pen-

cils with positive and negative eigenvalues.

The following is a tabular summary of the current state of research into corresponding
r

v
high accuracy algorithms. We consider two classes of algorithms for eigenvalues and singula

alues (bisection and QR) , and two classes of algorithms for eigenvectors and singular vectors
s

p
( inverse iteration using accurate eigenvalues/ singular values, and QR) . If an algorithm wa

resented in earlier research, a reference is given; otherwise it was discussed here for the first

t
time. Conjectured algorithms are also indicated. (Divide and conquer is another technique for
hese problems. Since its ability to deliver high accuracy has not been proven in any of the

B

cases considered in this paper, it qualifies as a "conjectured" algorithm for all of them.)

isection based algorithms for computing eigenvalues and singular values to high relative accuracy:

2

1) Singular values of bidiagonal matrices [9].

) Eigenvalues of sym metric tridiagonal s.d.d. matrices (Theorem 4 and [14]) .

.

4

3) Eigenvalues of not necessarily tridiagonal sym metric s.d.d. matrices (Algorithm 3)

) Eigenvalues of s.d.d. definite pencils (Algorithm 4) .

:

1

QR based algorithms for computing eigenvalues and singular values to high relative accuracy

) Singular values of bidiagonal matrices [9].

.

3

2) Eigenvalues of sym metric positive definite tridiagonal matrices (Algorithm 2 and [10])

) Eigenvalues of sym metric indefinite tridiagonal scaled diagonally dominant matrices: no

I

QR based algorithm appears to work in general.

nverse Iteration based algorithms for computing eigenvectors and singular vectors accurately:

Q

1) Eigenvectors of sym metric s.d.d. matrices and pencils (Algorithm 5) .

R based algorithms for computing eigenvectors and singular vectors accurately:

.

2

1) Conjectured: singular vectors of bidiagonal matrices (Proposition 7 and [6])

) Eigenvectors of sym metric positive definite tridiagonal s.d.d. matrices (Algorithm 2 and

3

[6]) . (Conjectured: the finer error bounds of Theorem 7) .

) Eigenvectors of sym metric indefinite tridiagonal s.d.d. matrices: since the eigenvalues

I

apparently cannot be computed accurately, neither can the eigenvectors.

n summary, various numerical algorithms are available to compute eigenvalues and
e

s
eigenvectors, and singular values and singular vectors with high accuracy. Algorithm 2 for th
ymmetric positive definite tridiagonal eigenproblem will be incorporated in the LAPACK linear

t
algebra library [8]. Not all algorithmic questions have been settled, however, and these will be
he subject of future research.
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