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Abstract

When computing eigenvalues of symmetric matrices and singular values of general matrices in
finite precision arithmetic we in genera only expect to compute them with an error bound pro-
portional to the product of machine precision and the norm of the matrix. In particular, we do
not expect to compute tiny eigenvalues and singular values to high relative accuracy. There are
some important classes of matrices where we can do much better, including bidiagonal
matrices, scaled diagonaly dominant matrices, and scaled diagonaly dominant definite pencils.
These classes include many graded matrices, and all symmetric positive definite matrices which
can be consistently ordered (and thus all symmetric positive definite tridiagonal matrices). In
particular, the singular values and eigenvalues are determined to high relative precision
independent of their magnitudes, and there are algorithms to compute them this accurately.
The eigenvectors are aso determined more accurately than for genera matrices, and may be
computed more accurately as well. This work extends results of Kahan and Demmel for bidiag-
onal and tridiagonal matrices.
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1. Introduction

When computing the eigenvalues of symmetric matrices and singular vaues of genera
matrices in finite precision arithmetic one generally only expects to compute them with an error
bound f (n)ellAll, where f (n) is a modestly growing function of the matrix dimension n, ¢ is
the machine precision, and IIAll is the 2-norm of the matrix A. This follows as a result of stan-
dard theorems which state:

(1.1) A perturbation dA in the matrix A cannot change its eigenvalues (singular values) by
more than II3A 1l [12].

(1.2) The standard agorithm for computing eigenvalues (singular values) of A computes the
exact eigenvalues (singular values) of A+3A, II8All < f (n)ellAll, where f (n) is a mod-
estly growing function of n and € is the machine precision [12].

These error bounds imply that tiny eigenvalues and singular values (tiny compared to
IA1) cannot generally be computed to high relative accuracy, since the error bound f (n)ellAll
may be much larger than the desired quantity. In fact, if each matrix entry is uncertain in its
least significant digits, the tiny eigenvaues and singular values may not even be determined
accurately by the data

Sometimes, however, the eigenvaues and singular values are determined much more
accurately than error bounds like f (n)ellAll would indicate. This was shown for singular values
of bidiagona matrices in [9], where it was proven that small relative perturbations in the bidiag-
onal entries only cause small relative perturbations in the singular values, independent of their
magnitudes. It was also shown how to compute al the singular values to high relative accuracy.
In this paper we extend these results to eigenvalues of symmetric scaled diagonally dominant
matrices and scaled diagonaly dominant definite pencils. (Henceforth we will abbreviate
"scaled diagonally dominant" by s.d.d.) A symmetric s.d.d. matrix is any matrix of the form
AAA, where A is symmetric and diagonally dominant in the usua sense, and A is an arbitrary
nonsingular diagona matrix. A pencil H-AM is s.d.d. definite if H and M are symmetric s.d.d.
and M is positive definite. Examples of s.d.d. matrices are the "graded" matrices

10 10 1 10
10 10? 10? 10 -10° 10
Ao = 10?2 10° 10° and A, = 10* 10® 10*
10 10* 10* 10* -10° 1
10* 10° 10 1

Note that Ay is graded in the usua sense, but not diagonaly dominant in the usual sense. A, is
neither diagonaly dominant in the usua sense, nor graded in the usua sense, since the diago-
nal entries are positive and negative, and not sorted. Thus we see that the usual diagona domi-
nance implies being s.d.d., but not the converse. In fact, the set of s.d.d. matrices includes all
symmetric positive definite matrices which can be consistently ordered, a class which includes
all symmetric positive definite tridiagonal matrices. Dense matrices may be s.d.d. as well.

Another example arises from modeling a series of masses my, ..., m, on a line con-
nected by simple, linear springs with spring constants kg, . .., k, (the ends of the extreme
springs are fixed). The natura frequencies of vibration of this system are the square roots of
the eigenvalues of the s.d.d. definite pencil H-AM, where M is the diagonal mass matrix
diag(mq, . .. ,m,) and H is the tridiagonal stiffness matrix with diagona kg+k,, ki+k, ,...,
k,-1+k, and offdiagonal —k; ,..., —k,_;. Note that the matrix M ~Y2HM ~%2, which has the
same eigenvaues as H —AM, is symmetric s.d.d.

In particular, we will show that small relative perturbations in the entries of an s.d.d.
matrix only cause small relative perturbations in the eigenvalues and singular values, indepen-
dent of their magnitudes. This is a much tighter perturbation bound than the classical one pro-
vided by (1.1) above. Our proof of this result generalizes and unifies results in [9] for bidiago-
nal matrices done and in [14] for symmetric tridiagonal s.d.d. matrices alone.



Given that the matrix entries determine al eigenvalues or singular values to high relative
accuracy, one would naturaly like to compute them that accurately as well. We present algo-
rithms based on bisection which attain this accuracy; in the case of bidiagonal or symmetric
positive definite tridiagonal matrices QR iteration (suitably modified) can be shown to attain
high accuracy as well. It is not yet known whether algorithms based on divide and conquer [5,
11, 13] can be made to work in some of these situations too.

One may aso ask if the singular vectors and eigenvectors of s.d.d. matrices and pencils
are determined any more accurately than for general matrices. To state the standard perturba-
tion bound for eigenvectors of symmetric matrices and singular vectors of genera matrices, we
need to define the gap: if A; is an eigenvalue (singular value) of A then gap(A;) = rrLin INi= Al

e

In other words, it is the absolute distance between A; and the remainder of the spectrum.

(1.3) Let y be a unit eigenvector of A+3A, a = y'Ay the Rayleigh quotient, A; the eigenvaue
of A closest to a, and z its unit eigenvector. Let 8(z,y) be the acute angle between y and
z. Then sin 6(y,z) < 4lI3All/gap(A;) [17, p. 222].

In other words, the error as measured by the angle is proportional to the reciproca of the gap;
if the gap is small (A; is in a cluster of eigenvaues), the corresponding eigenvector is poorly
determined. As before, the standard algorithms guarantee ISAll < f (n)ellAll, so eigenvectors
of eigenvalues poorly separated with respect to IIAll (i.e. lIAll/gap(A;) is large) will generaly
not be computed accurately. Anaogous results hold for singular vectors of general matrices.

For eigenvectors of s.d.d. matrices, a stronger perturbation theorem is true. Briefly, we
can replace the gap in (1.3) with the relative gap, min IA;=A;I/I\;A;1¥2. Thus, as long as A; is
j#i

relatively well separated from its neighbors, its corresponding eigenvector is determined to high
relative accuracy. This is a much stronger result than (1.3), as the following example shows.
Suppose the eigenvalues are 1, 2:10°%° and 107°. Then the gap for the smallest eigenvalue is
gap(1071%)=1071°, but the relative gap is .707. Thus (1.3) predicts a loss of 10 decimal digits,
whereas the finer analysis predicts nearly full accuracy.

We aso show that a suitable variation of inverse iteration can be used to compute the
eigenvectors to this accuracy. We conjecture that other methods based on divide and conquer
can attain this accuracy as well, but this has not been proven.

Similar results can be proven for singular vectors of bidiagona matrices and eigenvectors
of s.d.d. definite pencils; the result for singular vectors partially settles an open question in [9].

The rest of this paper is organized as follows. Section 2 contains definitions. Section 3
discusses some simple generalizations of Gershgorin’s theorem applicable to s.d.d. matrices.
Section 4 uses the minimax characterization of eigenvalues to present simple perturbation lem-
mas. In section 5 this lemma is applied to singular values and in section 6 to eigenvalues. Sec-
tion 7 discusses perturbation theory for eigenvectors and singular vectors. Section 8 shows that
the condition numbers for the eigenvectors provide good estimates for the reciprocal of the dis-
tance to the nearest matrix with multiple eigenvalues. Section 9 discusses algorithms for the
bidiagona singular value decomposition, section 10 discusses algorithms for the symmetric tri-
diagona eigenproblem, and section 11 discusses algorithms for the dense symmetric eigenprob-
lem (both matrices and pencils). The new algorithm for the symmetric positive definite tridiag-
onal eigenproblem will be included in the LAPACK linear agebra library [8]. Section 12
applies our results to a matrix arising from a differential operator. Section 13 summarizes the
available algorithms and the current state of research, and discusses future work.

2. Definitions and Basic Lemmas

In this paper we will deal exclusively with real (usually symmetric) matrices. Extensions
to complex (usualy Hermitian) matrices will be obvious. -1l will denote the 2-norm.

Decompose the matrix A as A=D+N where D is diagonal and N has a zero diagona. We
will call a matrix A y-diagonally dominant with respect to a norm llI-ll if NIl < y min ID;l,
I



where 0< y< 1. Suppose that A is y-diagonaly dominant with respect to either the 1-norm or
infinity-norm. Then the well known Gershgorin’s Theorem says that the eigenvalues of A liein
the union of the Gershgorin disks B;, where B; is centered at D;; and has radius at most y ID;;!.
In particular, if some B; is disjoint from the other disks, it contains exactly one eigenvaue and
D;; is an approximation to this eigenvalue with relative error at most y.

Now let A=D+N and |ID;jl=1i.e. A has + 1’s on the diagonal. Let A; and A, be arbitrary
nonsingular diagona matrices. Then we cal H = A;AA, y-scaled diagonally dominant (y-s.d.d.)
with respect to a norm ll-[ll if A isy-diagonally dominant with respect to lll-lll. If H is symmetric,
we insist that A be symmetric as well in which case A;=A, can be chosen in only one way:
A= H;; 12, Note that a matrix may only be diagonally dominant in the scaled sense, as the
following example shows:

1 .1
A1

1 10

A= 10 10000

, A1:A2 =

10 )
0 100 @ M= 1Al =

Here, A is y-diagonaly dominant with y=.1 (with respect to the 1-norm, 2-norm or infinity-
norm), H isy-s.d.d. with the same y, but H is not diagonally dominant in the nonscaled sense
for any y< 1.

Our definition of scaling implies nothing about the monotonicity of the diagonal entries of
H; for example H isy-s.d.d. if

1 .1 .1 1 0 0 1 10  .001
A=1[1-1.1,A,=A,=1]0100 0| , H= A;AA, = | 10 -10000 .1
1.1 1 0 0 .01 001 .1 .0001

If H is symmetric with positive diagona entries, being y-s.d.d. with respect to the 2-norm
is closely related to another well known property: consistent ordering [18]. Consistent ordering
is defined as follows: Let A=1+N=1+L +U, where L is strictly lower triangular and U is strictly
upper triangular. Then A is consistently ordered if the eigenvalues of oL +a~*U are independent
of a# 0. Now suppose there is a permutation matrix P such that A in PTHP=AAA=A(l +N)A
is consistently ordered. Then we claim H is positive definite if and only if it is s.d.d. To prove
this, note that by choosing a=1 and a=-1, we see the eigenvalues of N=L +U occur in *
pairs, including = IINIl = = y. Now note that H is positive definite if and only if | +N is posi-
tive definite (by Sylvester’'s theorem), and that the smallest eigenvalue of I +N is 1-IINII=1-y.
Therefore, the theorems in this paper apply to many matrices arising from discretized
differential equations [18]; see section 12 for an example.

We will call a symmetric pencil H-AM y-scaled diagonal dominant definite (y-s.d.d.
definite) with respect to a norm llI-lll if H and M are y-s.d.d. symmetric with respect to lll-Ill and
M is positive definite. If H is positive definite as well, we call H-AM y-s.d.d. positive definite.

If T is any symmetric matrix, IITll = max IN(T)I < lITIl for any operator norm or the
I

Frobenius norm lI-ll. Therefore, all the theorems in this paper which are proven for diagonal
dominance with respect to the 2-norm automatically hold for diagona dominance with respect
to any operator norm or the Frobenius norm.

The minimax characterization of the eigenvalues A< ---< A, of a definite pencil
H-AM (H=HT, M=MT, M positive definite) is [17]
x THx

Ai = min max —
s' H><DHS' X' Mx
xl=1

(2.1)

where S' varies over al i-dimensiona subspaces of R" and x varies over al unit vectorsin S' (x
could vary over al nonzero vectors, but we will find it convenient to restrict to unit vectors).
There is an obvious simplification if M is the identity matrix (the standard eigenproblem).



3. Generalizations of Gershgorin’s Theorem

It turns out the eigenvalues of the s.d.d. matrix H=A;AA, lie in Gershgorin circles whose
centers and radii are both scaled by A;A:

Proposition 1: Let H=A;AA, (A;j=% 1) be a (possibly nonsymmetric) y-s.d.d. matrix with respect
to the infinity-norm or 1-norm, with y< 1. Then the eigenvalues of H lie in disks B;, where B; is cen-
tered at H;; and has radius at most yIH;;l. If B; is digoint from the other disks, it contains exactly
one eigenvalue and H;; is an approximation to that eigenvalue with relative error at most y .

Proof: Suppose without loss of generality that H is y-s.d.d. with respect to the infinity-norm;
otherwise consider HT. The scalar A is an eigenvalue of H if and only if H-Al is singular,
which is in turn true if and only if A-AA7A3Y is singular. Let x be a right null vector of
A-AAT'AZY, and suppose X; has absolute value at least as large as any other component of x.
Then we may rearrange the equation

% Aijk - )\XJAI,]]-JAE,%] =0

to obtain
Xk
A= BaiBag (A + 2 A )
k# i
n X
Since AjjAy A, 5 = Hj; and \kz' Ak k'f\ < vy, A must lie in a ball of radius yIH;! centered at
E| ]
H;. The usual Gershgorin argument shows that if this disk is isolated, it contains exactly one
eigenvalue. O

This theorem implies that at least if a Gershgorin disk is isolated so that small relative
changes in the matrix entries do not effect its isolation, then the eigenvalue it contains cannot
change by a factor of more than (1+y)/(1-vy). If we assume H is symmetric, we need not
assume the disks are isolated to obtain this result:

Proposition 2: Let H be a y-s.d.d. symmetric matrix with respect to the 2-norm. Let h; be its diago-

nal entries in increasing order h,< - - - < hy, and A; its eigenvalues, also in increasing order. Then
Ai
l-y < — < 1+y .
h

Proof: Assume without loss of generdity that H;;=h;, by reordering the rows and columns of H
if necessary. Then by (2.1)
A = min max x"Hx < max x'Hx = max XTHOX
s xOs xOS lIXl=1
lIxll=1 lIxll=1

where S} is the space spanned by the first i standard basis vectors, and H (" is the leading prin-
cipal i by i submatrix of H. If hj< 0 then A< (1-y)h; by smple norm inequalities. If h;> 0 and
al h;> 0 for j< i, smple norm inequalities again imply A;< (1+y)h;. If hi> 0 and some h;< 0
for j< i, we also have A< (1+y)h; but we must argue as follows:

A, O] ([-1; O A, 0] |X

AT iy~ AT AT i . 1 1

(') = . (|) . .

X HEx= Do Xellg a0 1l "N o Az,
< =A% 12 + 185,012 + y(I1A %12 + 18,%,112)



< (1+y) 1A,%,12 < (1+y)h;

Applying the same process to —H yields the complementary inequalities A;= (1+y)h; for hi< 0
and A= (1-y)h; for hj> 0. O

Finaly, we may extend the result to s.d.d. symmetric definite pencils:

Proposition 3: Let H-AM be a symmetric y-s.d.d. definite pencil with respect to the 2-norm. Let r;
be the sorted ratios of diagonal entries H;;/M;;, wherer,< - --<r,, and A; the eigenvalues, also in
increasing order. Then

1y _ A vy

+y ~ 1-y

Proof: Assume as in the proof of Proposition 2 that r; = H;;/M;, by reordering rows and
columns if necessary. Write M =AAA where A is diagonal and A is diagonaly dominant with
ones on its diagona. Then the pencil A"'HA '-AA = R-AA has the same eigenvaues as
H-AM, but now the diagonal entries R;;=r;. Then

AT A
o xTRx xTRX _ x RMOx
Ai = min max — S maX —7— = Ma&X 1 ——
s xS x'Ax XISo X Ax  Ixli=r x AMX

xl= xll=1

where S} is the space spanned by the first i standard basis vectors, and R() and A(M are the
leading principal i by i submatrices of R and A, respectively. Note that 1-y < x ADXx < 1+y
for al unit vectors X, since A equals the identity matrix plus a matrix of norm a most y. Then
by Proposition 2, we have A; < (1+y)/(1-y)r; if ;>0 and A; < (1-y)/(1+y)r; if r<O.
Applying the same process to R +AA yields the other inequalities. [



4. Perturbation Lemmas Based on the Minimax Theorem

Let Aq(H,M)< ---< A,(H,M) denote the eigenvaues of the definite pencil H-AM.
Given the minimax characterization in (2.1), the following lemma is simple to prove:

Lemma 1: Suppose dH has the property that for all nonzero x
xT(H+8H)x _

xTHx ~
where 0< g< g,. Then
Ai(H+0H,M)
9 —V 7oy = Q
Ai(H,M)
for all i. In other words, if the Rayleigh quotients x T (H + 8H)x and x "Hx differ by at most a certain

factor for all x, then the eigenvalues of H +dH-AM and H —AM differ by at most that same factor.

Proof: Let A; = Aj(H,M) and Let A'; = Aj(H+3H,M). We consider only A;> 0O; the case A< 0
is analogous. Let the spaces Si and S satisfy

Ni=max x"THx/x"Mx and Aj=max x"(H+8H)x/x"Mx .
x08g x08q

Then

xT(H+8H)x _ ax xT(H+38H)x xTHx

A’ = min max < m < A
' s xOs xTMx xOSg x THx xTMx Buhi
and similarly
T T T
As = min max X' HXx < X' Hx X' (H+d3dH)x < gin

s xos xTMx %?i xT(H+8H)x xTMx
completing the proof. O
Lemma 1 can also be generalized to infinite dimensional operators [15, Thm VI1.3.9].
There is an obvious analogous result if if both H and M are perturbed simultaneousdly:
Lemma 2: Suppose dH and &M have the property that for all nonzero x
T T
where 0< gn< gy and 0< gy< gyw - Then
9H _ Ai(H +3H,M +3M) T
Oum Ai(H,M) "~ Om

On =

for all i.

Lemma 3: Let H be symmetric y-s.d.d. with respect to the 2-norm. Write H=AAA where A is diag-
onal and A has+ 1's on its diagonal. Let A be an eigenvalue of H, y the corresponding unit eigenvec-
tor, and x=Ay/lIAy|l the corresponding unit eigenvector of A—AA~2. Then

1-y < IxTAxI < 1+y .

Proof: Write A=E+N, where E is diagonal with £ 1's on the diagonal, N has zero diagonal, and
INll< y< 1. The upper bound on IxTAx| follows immediately from taking norms:
IxTAx| < IIEII+IINIl < 1+y. If E=I, then IxTAx| = [1+x"Nx| = 1-y. Assume then without
loss of generality that

lj O

0 —IJ

where |, denotes an |-by-l identity matrix. We will prove the theorem only for A< 0; for the
positive A consider —H. Partition

E =




X1 A, O NT
X = X5 ) A= 0 Az and N = N}'

conformally with E. Then Ax=AA"2x may be rewritten
X1+ NIx = AAT%x,
-x, + NIx = AA32x,
Solving the first equation above for x, yields
X1 = (MAT2 - 1)"INTx .
Note that AA72 - | is diagonal with diagonal entries less than —1. Now
xTAx = xTEx + x"Nx = xIx; = X3x, + x'Nx = 2x]x; — 1 + x"Nx
since x1x; + xJx, = 1. Combining the last two displayed equations, and using the fact that
-x"N;(AA7%2 = 1)"INIx = x"N;(AA72 - 1)"?Nix= 0
yields

NTxX
xTAX = 2x TN (AAT2 = 1)7?NIx + (x] , x{){N;)J -1

= 2x"N(AAT2 = 1)72NTx + xINIx + xTN;(AA72 - )"INIx - 1
< xINIx + x"TN;(AA72 - 1)"2Nix - 1

= xsNIx + xJ](AAT2 - 1)"INTx - 1

= (xI(AAT2 - D)7 xD)Nx - 1

(AAT? = 1)7ixg
| I-IINx I = 1

X1
< |
X2

<y-1 .

<

I-INx Il = 1

In the next two sections we will use these results to derive perturbation theorems for
eigenvalues and singular values.



5. A Perturbation Theorem for Singular Values.

Using Lemma 2, we prove the following theorem, which is a dight strengthening of a
result of Kahan [9]:

Theorem 1: Let B be an n by n bidiagonal matrix:
a; by

' bn—l
an

We assume the a; and b; are nonzero since otherwise B splits into independent subproblems. Let
B+ 0B be a perturbed bidiagonal matrix with entries a;a; in place of a; and 3;b; in place of b;. Then
the singular valueso,< ---<o,of Bando';< - - - < o'y satidy

1

9s — < q
1

where g, and g, are defined as follows. Define the finite set S of positive numbers by
Bj...Bk ) aj...ak
———F | 1< js ks n-1 | ——
O(J-+1---O(k J } |:| {Bj”'Bk—l

Note that S contains IB;l, 1< j< n, and la;l, 1< j< n. Let min S and max S denote the minimum
and maximum entries of S, respectively. Then

S= { | 1< js ks n} .

go=max$S and g =minS .

Corollary 1: Let B and B+d&B be bidiagonal with singular values 04(B)< ---< 0,(B) and
0.(B+dB)< ---<0,(B+06B) respectively. I for all nonzero entries Bij,
1< [(B+8B);;/B;;| < T for some 1= 1, then
1 oi(B+0B) n-1
Tt o oi(B)

Thus, relative perturbations of at most T in the entries of B cause relative perturbations of at most
11 initssingular values. If T=1+n iscloseto 1, soist?""*H 1+ (2n-1)n.

Corollary 2: Let B and B+0B be bidiagonal. If [(B+08B);;| = TIB;l for all i and j, then
0i(B+0B) = 10;(B). This simply says that if you multiply each entry of a bidiagonal matrix by + T,
you multiply all its singular values by T as well.

Proof of Theorem 1: For notationa convenience rename the entries of B so that

S1 S
S3 Sy

* Son-2

Son-1

and so that B+0B has entries y;s in place of 5. We may assume without loss of generality that
al the s are rea and positive, since this may be achieved by pre- and postmultiplying B by uni-
tary diagona matrices. We may also assume the y; are rea and positive for the same reason.
We also use the well known fact that the eigenvaues of

0B
B O

are plus and minus the singular values of B. Furthermore, by reordering the rows and columns
of Cintheorder 1, n+1, 2, n+2, ..., n, 2n, we see C is similar to

C =




Son-1
Sm-1 O

Thus, the singular values of B are the absolute values of the eigenvaues of the pencil
E-Al. We are interested in comparing these eigenvaues with the eigenvalues of E+0E-Al,
where E+0E has entries y;5 in place of 5. We will chose a diagonal matrix D such that
D(E+3E)D = E, so that these eigenvaues will be the eigenvalues of the pencil E-AD?; we
will then apply Lemma 2 to conclude that the eigenvalues will change at most by a factor in the
range minDj;% to maxDj; 2.

| |
Actudly, we will find two diagona matrices D, and D, satisfying D (E+0E)D=E but
corresponding to different choices of Dy, in order to minimize max Dj; and maximize min D;;
I 1
this will in turn maximize g, and minimize g, where (by Lemma 2)
1 o' 1
= ————< —< ————= .
2 max Df; i min D w
I I
First consider D,. We want to choose D;;; to minimize max Dj;. D(E+3E)D=E implies
|
the diagona entries of D; must satisfy the recurrence Dy, i+1 = (yiDyii)"t. This means the
diagona entries of D, are either of the form

Yi¥3 " " Y2j-1
D .- B T el 5.1
" YaYa """ Yyj (51)

or

1 YaYa V¥
DinaY1 YaYs ' Yoj+1

Choosing D;1; to minimize the maximum of these terms is equivaent to choosing D;;; to
minimize max(s;Dy1; , S;Djii), where s; is the maximum coefficient of D,1; in (5.1) and s, is
the maximum coefficient of D3} in (5.2); this minimum is easily seen to be (s;s,)*2. Some
tedious algebraic manipulation leads to the expression for g in the statement of the theorem.
Choosing D, 1; to maximize min Dy; is analogous. O

I

(5.2)

A similar proof yields the following analogous result: Let A be an arbitrary matrix, and D,
and D, arbitrary nonsingular diagonal matrices, which we may assume are rea and nonnegative.
Then the singular values g; of A and ¢'; of D,AD, satisfy

a'j
min Dy'min Dy < ?' < max Dji'max Dy;
I ] i I ]

10



6. Perturbation Theorems for Eigenvalues

In this section we use the perturbation lemma of section 3 to prove perturbation theorems
for eigenvalues of symmetric y-s.d.d. matrices and y-s.d.d. positive definite pencils. Theorems 2
and 3 apply only to positive definite matrices and pencils, and are stronger than Proposition 4
and Theorem 4 which apply to indefinite matrices as well. In fact, when the matrix or pencil is
positive definite, A may be an arbitrary matrix, not just diagonal. Our results for definite pencils
with both positive and negative eigenvalues are rather weaker than the results for s.d.d.
indefinite symmetric matrices.

Theorem 2: Let H=ATAA=AT(1 +N)A be a positive definite matrix where INll=y< 1, and A isan
arbitrary nonsingular matrix. (If A is diagonal this is equivalent to H being a symmetric positive
definite y-s.d.d. matrix with respect to the 2-norm.) Let 6H be a symmetric perturbation of H with
IA"TOHA 1 = n < 1-y. Then the eigenvalues A;< - - - < A, of H and A';< - - - < A, of
H +0H satidy

- Mg,

1-y Ai 1-y
Thus, if A is diagonal, relative perturbations of at most n in the entries of H cause only relative per-
turbations of at most nn/(1-vy) in the eigenvalues.
Proof: We have
xT(H+3H)x _ x"AT(A+A"T8HA Y)Ax _ y"(A+A"T3HA™ Yy
x THx xTATAAX yTAy
where y=Ax. The vaues taken by the quantity in (6.1) as x varies over al nonzero vectors are

the same as the values taken on as y varies over al unit vectors. Since 1-y< y' Ay if y is a unit
vector,

(6.1)

T -T -1
PP y (A+AT'3HA )yS 14+ N
1-y yTAy 1-y

The result now follows from Lemma 1. [J
Theorem 3: Let H=ALA4A4=AL (1 +Ny)AL and M=AAyAu=A4 (1 +Ny)A, be positive
definite matrices where lINyll< y< 1, IINyll€ y< 1, and Ay and A,, are arbitrary nonsingular
matrices. (If Ay and Ay, are diagonal this is equivalent to H—AM being a y-s.d.d. positive definite
pencil with respect to the 2-norm.) Let dH and dM be symmetric perturbations of H and M such that
IARFTOHAR < n< 1-y and 1AM A < n < 1-y. Then the eigenvalues \;< - - - < A,
of H-AM and A\';< - - - < A\, of (H+3H)=A(M +0M) satisfy

1-y-n _ A _ 1-y+n

I-y+n A7 1-y-n
Thus, if Ay and Ay, are diagonal, relative perturbations of at most n in the entries of H and M cause
only relative perturbations of at most 2nn/(1-y-2nn) in the eigenvalues of H —AM.
Proof: Apply the technique in the proof of Theorem 2 to both H and M and apply Lemma 2. [

11



When H is indefinite, our results are weaker. In the case of H alone, we must assume A is
diagonad to attain a bound like that of Theorem 2:

Proposition 4: Let H be an n-by-n symmetric y-s.d.d. matrix with respect to the 2-norm. Thus
H=AAA where A is diagonal, A = E+N where E is diagonal with + 1's on the diagonal, N has a
zero diagonal and IINllsy<1l Let dH be a symmetric perturbation of H with
IA"18HA™ I = n < (1-y)/n. Assume also that H+8H is y-sd.d. Then the eigenvalues

A< < Apof Hand A< - - - < N of H +6H satidfy
S Mg
1-y Ai 1-y

Thus, relative perturbations of at most n in the entries of H can cause relative perturbations of at
most n?n/(1-y) in the eigenvalues.

Proof: We will prove the theorem only for the negative eigenvaues,; for the positive ones con-
sider —H. We cannot apply Lemma 1 directly here because x"Ax/x"x is not bounded away
from O for al x as in the proof of Proposition 4. By Lemma 3, however, it is so bounded if we
restrict x to lie in an eigenspace of A—-AA~? corresponding to only negative (or only positive)
eigenvaues; this will be sufficient for the proof.

To thisend, let A< - - - < A, be the eigenvalues and x4, . . ., X, the corresponding unit
right eigenvectors of A—AA~2; let the primed quantities A';.< - - - < A, and x’; correspond to
A+A"1BHA 1-AA2. By Lemma3 x{Axi< y—-1< 0 if A;< 0.

Now let X; = [Xy,...,%] and A; = diag(Ay, ...,A;), so AX; = A"2X/A;. Since the

columns of X; are eigenvectors of A—AA~2, the columns of A™1X; are eigenvectors of H and so
are orthogonal. Thus

XTAX; = XTAT2XA; = diag(x{ A™2x;\;)
is diagonal with diagona entries bounded above by y—1. Let z be an arbitrary unit vector; then
Z"XTAX;z = zZ'diag(x] A"?xA )z y-1 .
Now we use the characterization
o x TAX
A= min max o
s’ xO0s" x'A™4x
where the minimum is attained for S' = S, = span(X;). Then
xT(A+A"18HA )X xT(A+A18HA Y)x  xTAx
< max .

A’ = min max
! s xos xTA™?%x x0Sg xTAX xTA™2x

(1+ Z'XTATISHA Xz Z"X[AXz

max '

llzli=1 Z"XTAXz zZ"™XTA™2Xz
Now IzZ"XTA ISHA Xzl < in and IzZTX[AX;zl = 1-y so

. Al‘ .
" - My, 20 __n_
A< (2 1—y))\' or A > 1 -y

Swapping the roles of A and A+A™*8HA™! we obtain

. A,‘ -
_ N Ar _ N -1
L-gs s - )

as desired. O

12



The factor n in the bound of Proposition 4 is an overestimate, and can be removed by
modifying the conditions of the proposition just dightly:

Theorem 4: Let H=AAA be an n-by-n symmetric y-s.d.d. matrix with respect to the 2-norm. Here
A is diagonal and A has + 1's on the diagonal. Let dH be a symmetric perturbation with

IA"18HA™I = 1. Assume that H+&8H isy-s.d.d. for all 0< €< 1. Then letting A;< - - - < A,
be the eigenvalues of H and A';< - - - < A, be the eigenvalues of H + dH, we have
— A
n,. 21 _ N
exp( 1—y) SN S exp( 1—y) . (6.2)

Proof: Let E = A"1SHA Y/IIA"1SHA Il be a matrix of norm 1, H(Q) = A(A+ZE)A, and
A(Q)< - - < Ai(Q) be the eigenvalues of H ({). Suppose first that A;(0) is simple. Let x; be
the unit eigenvector corresponding to A;(0). Then from standard eigenvalue perturbation
theorem [15, 19], we know

Ai(Q) = Ai(0) + Ix[AEAX + O(L?)

Therefore
Ai(Q) x{ AEAX; yi Ey,
— =1+ {—=——+0(%) =1+ + O(Z?
Ai(0) inTAAAxi () ZyiTA ] @)
where lly;|l may be taken to be one. By Lemma 3, lyfAy;l = 1-vy, and so
_ Z 2 )\I(Z) Z 2
L= 5+ 0@ s igrs 1+ o+ 0(8) (6.3)

Assume now that A;{({) is simple for al 0<d{<n; then (6.3) implies that
Id log\i(x)/dx| < (1-y)~ 1. Integrating from O to n yields (6.2). By [11, Theorem 11.6.1], the
eigenvalues are al rea analytic, even when they are multiple. Thus, if there are only finitely
many ¢ where A;({) is multiple, we can apply the above argument in the intermediate intervals.

It remains to consider the case where A;({) is multiple for infinitely many {. Here we
argue that this can only happen for a set of pairs of matrices H and E of measure zero, that off
this set the previous argument holds, and by continuity of the eigenvalues the same bounds
must hold on the set. To see that the set of H and E such that some A;({) is multiple infinitely
often is of measure zero, consider the discriminant of the characteristic polynomial of
H —ZAEA; this is a polynomial in C and the 2n? entries of H and E. H () can have multiple
eigenvalues if and only if this discriminant vanishes. If it vanishes for infinitely many ¢, its
coefficients (viewing it as a polynomia in {) must vanish identically. These coefficient are in
turn polynomials in the entries of H and E, and so vanish only on a proper variety (a set of
measure zero). Off this set, the discriminant has at most a finite number of zeros (bounded by
its degree as a polynomia in ). O

Result (6.2) was claimed without proof in [14] just for the case of tridiagonal matrices
perturbed on their offdiagonals.

In light of Proposition 3, it is probably possible to prove an anaogous theorem for y-
s.d.d. definite pencils which have both positive and negative eigenvalues, but we have not been
able to do so. However, the following technique frequently succeeds in reducing the eigenprob-
lem for such pencils to a problem where Theorem 4 may be applied:

13



Algorithm 1: Reducing a y-s.d.d. definite pencil H—AM to an s.d.d. matrix Y:

(1) Let D;=diag(M#'?), and compute H,;=D " *HD"! and M;=D"*MD ™. Now M ; has unit
diagona and is diagonally dominant in the usua sense.

(2) Let P be a permutation matrix chosen so that H, = PH,PT has its diagona entries sorted

from smallest to largest in absolute value (smallest at the top left, largest at the bottom
right). Let M ,=PM ;PT.

(3) Let L be the lower triangular Cholesky factor of M,. Let Y=L *H,L"". Then Y and
H-AM have the same eigenvaues.

This is a variation on the usual reduction of a definite pencil to standard form. The point
is that if M is sufficiently diagonally dominant, L will also be diagonally dominant with nearly
unit diagonal, and the multiplication L *H,L ™" will not destroy the s.d.d. property of H,.
Thus, Y will be s.d.d. The following theorem formalizes this, but is weak in that it only guaran-
tees diagona dominance of Y for rather small y, much smaller than those that work in practice:

Proposition 5: Let H-AM be an n by n y-s.d.d. definite pencil, and let Y be the output of the above
reduction algorithm. Define
v'= (@0 ey T2 (am Dy Y

Then if
(n+1y+y _ 4
1-vy'
which will be true for y small enough, Y will be y-s.d.d.
The proof of Proposition 5 requires the following lemma:

y

Lemma 4: Let M be an n by n y-s.d.d. matrix with unit diagonal. Let L be its lower triangular
ChOleSky factor. Then lIL-11l < ((Zn)l/2+1)y1/2 and HL—l_I Il < ((2”)1/2+1)y1/2/(1_y)1/2.
Alo, (1+y) Y2 < lIL7 < (1-y) Y2,

Proof: Let X=L-1 and W=L"!-1 = -L"!X. Since
(1-y)"? < ARR(M) = Omin(L) < Li € Oma(L) = AREA(M) < (1+y)*?
we have IX;| = ILj-1l = 1-(1-y)Y? < y¥2. Also, we may bound the norm of the i-th subdi-
agona column of X as follows:
14y = ML, Lisvnis oy Lol 2= I[Lii s Xisris ooy X122 21—y + (X400 112

whence  IIXi,1qnill € (2y)Y2.  Thus Xl < (2ny)Y2+y¥2  as  desired.  Finaly,
Wil < IL-LMTXT < (A-y)"¥2IX1. O

Proof of Proposition 5: By applying the first two steps of the reduction, assume without loss of
generality that M has unit diagona and that I|H;| < [H;,; ..l for al i. Let L.; denote the i-th
column of L and similarly for L; .. Also, let G denote the leading i by j submatrix of G. Let
D = diag(/H;;|*?) and L "*=1+W. Then

Yii= LiPHLIT = Hyj + Wi HLIT + LiTHW. | - Wi HW. |
Therefore
Y- Hil < W HLIT+ ILTTHW L+ W, HW ||

IN

CIWIIL =+ W IR IH D < 2w I-IL =2+ 1w %) DDy (1+y) .

Now insert the bounds of Lemma 4 to get

(O (Y=HD ™yl s (@02 1) T2+ (@0 2y ey =y
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Finaly, letting Dy = diag(|Y;1%?)

loffdiag(D3LYDY) Il < %

follows from simple norm inequalities. (1

In order to apply Proposition 4 or Theorem 4, however, we must argue that small relative
perturbations in H and M (of the type permitted in Proposition 4 and Theorem 4) cause small
perturbations of the same typein Y:
Theorem 5: Let H-AM = DyAyDy—-ADy Ay Dy be a y-s.d.d. definite pencil, where Ay and Ay
have = 1s on their diagonals. Let Y = DyAyDy be the output of Algorithm 1 applied to H—-AM.
Assume that Y is y-s.d.d. (y may be smaller than the expression in Proposition 5). Now define
H({) = Dy(Ay+{E)Dy, and similarly M(Q) = Dy (Au+ZEw)Dy, where IIEyll = IEyll = 1.
Let Y({) be the output of the reduction algorithm applied to H (). Then for asymptotically small C
n(2n'2+1)(1+y)

-1 _ -1
IDYYHY(Q)-Y)DF I < T 2

+0(2?)

and the eigenvalues A;(¢) of H ({)—AM ({) satisfy
.n1/2 A .n1/2
_n(2n_+1)(1+2y) + 0(7) < @ _ o, _n(2n_+1)(1+2y)
(1-9)(1-y) Ai(0) (1-9)(1-y)
For the proof of Theorem 5 we require the following lemma

Lemma 5: Let M be a y-s.d.d. symmetric matrix with unit diagonal. Let L be its lower triangular
Cholesky factor. Let L +3L be the lower triangular Cholesky factor of the perturbed matrix M +dM.
Then

+0(2%) .

n

1/2
8L Il < { J AsM Il + o(llsm 112) .

Proof: It suffices to consider M diagonal, since the Cholesky factors of M and QM Q" (Q orthog-
onad) have the same norm. Equating first order terms on both sides of
M+8M = (L+38L)(L+8L)T yields 8L = M;*28M;; (i>j) and 8L; = .5-M;Y28M; (i=j).
Taking norms yields the result. O

Proof of Theorem 5: By applying the first two steps of Algorithm 1, we may assume without loss
of generality that M;=1 and IH;jl < IH;,1;.1]. Let L({) be the Cholesky factor of M (). Then
the eigenvalues of H(Q)-AM (Q) are the eigenvalues of Y(2) = L HQH(QL (). Letting
M (=M +3M, L({)=L +0dL, and H({)=H +0H, we get that to first order

Y(Q) = (L7-L78LL ) (H+SH)(L™T-LTaLTL™T)

=L MHL T - LBl HL T+ L7SHL T = L7 HL "L LT

Therefore to first order in ¢

I(Y(Q)-Y)ijl £ DaiiDajj(2:(1+y)-IIL "21B-nY2.(1-y) Y2+ IL~1I12)Z
2 1/2 1) (1
< DA,iiDA,jj( : (1+_y))(2+y) ¢

as desired. Applying Theorem 4 yields the final result. (J

We may apply Theorem 4 to anayze the convergence criterion for the QR agorithm for
eigenvalues of symmetric tridiagonal matrices [17]. In the course of running the QR agorithm
on a symmetric tridiagonal matrix one must examine the matrix
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g b

bj Qj+1

and decide whether b; can be set to zero ("convergence"”) without making unacceptably large
perturbations in the eigenvalues. Theorem 4 tells us that if T is y-s.d.d., then setting b; to zero
makes relative errors no larger than

‘aj'aj+l‘l/2 1_y

exp( )-1 (6.4)
in any eigenvalue. This result is attractive because it is inexpensive and purely local; it only
depends on b; and its neighbors a; and a;,; on the diagonal of T. It does differ from the stan-
dard criterion which essentialy asks if

;|
layl+ laj, 4|
is small; this criterion is weaker than (6.4) and does not guarantee high relative accuracy.

Unfortunately, even using (6.4) as a convergence criterion does not guarantee that QR
will compute eigenvalues with high relative accuracy; there are examples which are even fairly
strongly s.d.d. of QR computing eigenvalues with incorrect signs, i.e. no relative accuracy at all.
We discuss this further in Section 10.

7. Perturbation Theorems for Eigenvectors

In this section we discuss the sensitivity of the eigenvectors of symmetric s.d.d. matrices
under the same small perturbations as in section 6. As discussed in the introduction, the stan-
dard perturbation bound (1.3) is proportiona to the reciprocal of gap(A;) = min IAj—A;l.

j# i

Thus, if the absolute distance from A; to its nearest neighbor is small, we expect the
corresponding eigenvector to be sensitive to perturbations. Our first result will be an analogous
theorem which replaces the gap with the relative gap

sgan(n) = min NN
reigal i) = M ———5
FRL) = B T, 12

which may be large even when the usua gap is small.

Even more may be shown. Proposition 6 will show that the eigenvectors are scaled analo-
gously to the matrix entries: if x; is the eigenvector for A;, and A; differs from A; by a large fac-
tor, the j-th component of x; will be small. Theorem 7 will show that small relative perturba-
tions in the matrix only cause small perturbations in the eigenvector entries relative to their
upper bounds of Proposition 6; thus some tiny eigenvector components may be determined to
high relative accuracy as well. Finaly, we discuss eigenvector bounds for definite pencils and
singular vector bounds for bidiagona matrices (partially settling a conjecture from [9]).

: (7.1)

Perturbation theory and agorithms for conventionaly diagonaly dominant nonsymmetric
matrices were developed in [1], under the assumption that the gap between eigenvalues greatly
exceeded the norm y of the offdiagona part. Thus these results apply to general nonsymmetric
matrices, but require much stronger diagonal dominance assumptions than we do and are
weaker than our results.
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Theorem 6: Let H=AAA be a y-s.d.d. symmetric matrix with respect to the 2-norm. Let E be sym-
metric and have 2-norm one, and define H ({)=A(A+{E)A. Let A({) be the i-th eigenvalue of
H (), and assume A;(0) is simple so that the corresponding unit eigenvector x;({) is well defined for
sufficiently small {. Then for asymptotically small ¢

oy (n-1)¢
I%(2) - x(0)Il < (1= y) relgen(n) + 0(8%

Proof: From [19] we have

AEAX; 5
X(Z)—X(O)szgl *()\ ) + 0(¢9)
Let y, = Ax,. Then
_ ykEY;
xi(Q) = x(0) + Zgi mxk + 0(2%)

The pair (A, Vi) is an eigenpair of the pencil A — AA™2. Thus yEAY, = AyEA™%y,. From
Lemma 3 we have

(1= )yl < IyFAyl = INIAT Yy 12 = INd < (2 4+ y) ly 2.
Thus

N Ak
1/2
T3 ) < llyldl < —

( (7.2)

If welet z, = y/llyll then

_ ZVEzZ
xi(Q) = x(0) + Zgi Eik (N = A TIAAL T2 +

0(2?) (7.3)

where (1 + y) ' < &, < (1- y) L If wetake norms then

(7Y — v (n-1)¢
I%(2) = x(0)Il < (1= y) relgen(n) + 0(2%

as desired. [

Corollary 3: Let H((), Ai({), and x;({) be asin Theorem 6. Assume further that H({) isy-s.d.d.
for all O< (< C, that 1-y-3n{> 0, and

relgap() > 221
1-y-3nC
Then
I%;(2)-x;(0) I < 3(n-1)¢ =
2.(1-y-3n2)-(relgap(A;) - —2 "¢
1-y-3nC

Proof: The idea is that if { is smal enough, the A ({) can only change by a small relative
amount, so the relative gap can only change by a small absolute amount. From Proposition 4,
we can bound the perturbed relative gap from below as follows:

AMD-A(D)| MO (0) - (\)\ (0) 1+ 1A (0) )
—_—— > 1
TN T T \)\(0))\(0)\(1 Z PRl

relgap(Ai(Q)) =
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nz N(0) 1 + 1A (0)]
1=y IA(0)A(0) P2

- 1- "y , _
= (1= ) mini(reigap(A; (0). A (0))

where relgap(A;(0),Ax(0)) = 1A;(0)=A(0) |- 1A;(0) A, (0) 722,

We consider two cases, relgap(Ai(0),A(0))= 272, and relgap(Ai(0),A\(0))< 272, The
first case corresponds to A;(0) and A, (0) differing by at least a factor of 2, whence

IA0)] + A (0)]
min
k#i IN(0)A(0) M2

< 3relgap(Ai(0),A«(0))

and

relgap(\i(0) A(D) 2 (17 )relgapmo) A(0) (1= 3n$)'

The second case corresponds to A;(0) and )\k(O) differing by at most a factor of 2, whence
min <
ki IA;(0)A(0) %2

_2—1/2

and
o-1/2
rdgap(A(0) M(D) 2 (1= 1) (relgap(A (0) h(0)) = S5 )

Altogether, we have
n¢ (3 2-12n0) I(1-y)
A > (1-—)(1- A
regap(\i(9) 2 (1= ) (1= =) (relgap(Ai(0)) = == i)
Now integrate the bound of Theorem 6 from {=0to (= to get the desired result. O

The next theorem shows that the components of each eigenvector are scaed analogously
to the way the matrix is scaled:

Proposition 6: Let H=AAA be a y-s.d.d. symmetric matrix with respect to the 2-norm. Let

(7.4)

SnZ

H=XAXT be its eigenvector decomposition, where X=[x, . . . , Xn] isthe matrix whose columns are
orthonormal eigenvectors and A=diag(Aq, . . . ,A,). Let x;(j) be the j-th component of x;. Then
Ly 3/2 I 2 |y 12
x() < %(j) = | min(l=— , =4 )
' | 1-y Al A

We also have

3/2
Ix(j) < | - i —
Xi(1) L‘VJ mm(Ajj : Aii)

Proof: Let y;=Ax; for al i. First we consider the case A;< Aj. From (7.2) we have
lyi Il < (IN1/(1-y))*2. Thus, applying Proposition 2 as well,

N
IN

. . / ‘)\I‘ 1+y 1z
()] = AGyi(G) I < AR(IN (1Y) Y2 })\k} 1=
j

as desired. We may also write

1/2
1+y

1-y

IN
IN

xi(i) = A5ty ()| < AN I(1-y))H?

i
A

to get the other inequality.

Now consider the case A= Aj;. We will take the j-th components of both sides of the
equdlity Ay, = \;A™2y;, and bound them as follows. The left hand side component is bounded
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above in absolute value by
(1+y)llyll s (1+y)(1-y) 2N 1M2
The right hand side component is bounded below in absolute value by
INIAGE () 2 (1=y) I i) |

Thus
/2 1/2
_ . (L+y) ;] 1y |7° N
() = ATty = AFt J < =L
X|(]) ii Y|(J) ii (1_y)3/2‘)\i‘1/2 1_VJ \)\i\
as desired. The bound in terms of Aj;/A;; is obtained similarly. [
Thus, if a matrix is strongly scaled (the Aj; vary greatly in magnitude), the eigenvectors
will be strongly scaled, and small relative perturbations in the matrix entries will not be able to
change the smaller eigenvector components much. In the next theorem, we prove something

even stronger: the perturbations in the eigenvector components x;(j) will be small compared to
the upper bounds X;(j):

Theorem 7: Let H({) be asin Theorem 6. Let x,({)(j) denote the j-th component of the i-th unit
eigenvector of H ({). Let X;(j) be the upper bound for the j-th component of the unperturbed unit
eigenvector x;(0)(j). Then

Ixi(Q () = x(0) () = ¢

. 21/2(n_1)
(1-y)-min(relgap(A;) , 2
(Ai is the same as A;(0)). Note that relgap(A;) exceeds 272 only when A; differs from its nearest
neighbor by a factor greater than 2 or less than 1/2.
Proof: We start from (7.3) in the proof of Theorem 6; it implies
‘Z z EIJ 1 Zk =
kzi A=A Y2

-172) Xi(j) + O(2%)

X(0)(j) + O(Z?)]

Xi(Q) (1) =xi(0)())!

_ 32 |\, |12 In, 2 1y 2
-y i~ Ak i k
‘ .‘1/2 ‘>\ ‘ ‘)\ ‘1/2 D\
_ Un-n@@+y)¥2 A K A i 2
=T (o) m'”(}xj} A=Al }Ai} SRR
1/2 1/2
Z(n_l)(1+y)3/2 m|n(}£} }L} maX(‘)\l‘ ) D\k‘) + O(ZZ)
(1-y)>'2 AL TN IN= Al
_ 312 Iy M2 Iy 12 1/2
¢(n 1)(1';\2/) min(l—- 12 : 2 —— + 0(2?)
(1-vy) A |Ai| " min(relgap(};) , 274%)

as desired. [

A version of Theorem 7 for nonasymptotically small { can be proven in the same way as
Corollary 3 was derived from Theorem 6.

If we have a cluster of eigenvalues which are relatively well separated from the others,
similar analyses to those above show that the invariant subspace they span is insensitive to per-
turbations, even if the individual eigenvectors are sensitive.

Now consider s.d.d. definite pencils. From Proposition 5 of the last section, we know we
can often reduce such pencils to standard form without sacrificing diagonal dominance: Given
H-AM, M positive definite with lower triangular Cholesky factor L, the matrix Y=L *HL T
has the same spectrum as H—-AM. Also, if y is an eigenvector of Y, x=L " Ty is an eigenvector
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of H—-AM; thus Theorems 6 and 7 can be used to derive perturbation bounds on x, athough
we will not do so here.

Finaly, we consider perturbation theory for the singular vectors of bidiagonal matrices.
Let

kal by
a, b

B = - . (7.5)

by
an

be bidiagonal, where as in Theorem 1 we may assume without loss of generality that all a; and
b, are positive. Recall that the left singular vectors of B are the eigenvectors of BBT and the
right singular vectors of B are the eigenvectors of B'B. Since

aj+bf bja,
bia, as+b3 byas
BBT = b2a3

2 2
an—1+ bn—l bn—lan

2
bn—lan an i
and
aj bi,a;

2. 12
b,a; as+bi bra,
BTB = b2a2

2 2
an—l"'bn—2 bn—l'an—l

2 2
bn—lan—l an+bn—14

small relative perturbations in the a; and b; only cause small relative perturbations in the entries
of BBT and B"B. Therefore, we can reduce perturbation theory for the singular vectors of a
bidiagona matrix to perturbation theory for the tridiagonal matrices BBT and BTB.

Proposition 7: Let B be asin (7.5). Since BB and B"B are positive definite tridiagonal, and hence
s.d.d., small relative changes in the entries of B cause perturbations in the singular vectors as
described by Theorems 6 and 7. More specifically, let D, = diag((BB");) and
Dg = diag((B"B);;). Then

bjaj+1 bn-1
HD[l/ZBBTDEl/Z - 1ll< yL = 2-max ( max 17 , )
j<n-1 (aj2+ bjz)l/z(aj2+1+ bj2+1)1/2 (a%—l+b2—1)1/2
and
ajb; b
IDRY?BTBDRY? - Il < yg = 2'max (max 7 ;

i>1 (af+bfy)Y?(af, +b) M2 (a§+b§)1’2) '
Both y, and yg are bounded by 2. If a;> 3'2p;, theny_ < 1, and if a;> 3"2b;_,, then yg < 1.
Proof: A simple computation shows that the diagona of D{*?BBTD[ %2 consists of ones and
that the offdiagonas are bjaj.qi(a?+bf ;) Y?(a%,+b?) Y2 for j<n-1 and
b,_1(a2_;+b2_;) Y2 for j=n-1. Thusy, bounds the 1-norm of D ¥?BB"D{¥? - I. A simi-
lar computation applies to BTB. O

Thus, the sensitivity of the singular vectors to relative perturbations in the entries of B is

governed by the relative gap between singular values, as conjectured in [9]. Actually, more was
conjectured: it does not appear that the measure of diagonal dominance y of BB' or B'B
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affects the singular vector sensitivity. A proof of this stronger conjecture will appear in [6].
More precisely, a version of Theorem 6 is proved in [6] without the 1-y factor in the denomi-
nator, and extended to nonasymptotically small perturbations as in Corollary 3. Whether
Theorem 7 can be generalized without a 1/(1-y) dependence is an open question.

8. On Condition Numbers and the Distance to the Nearest |11-Posed Problem

In [7] it was observed that a common feature of many numerical analysis problems is that
their condition numbers approximate or at least bound the reciprocal of the distance to the
nearest ill-posed problem, i.e. problem whose condition number is infinite. The classical example

of this is matrix inversion, where the condition number of a matrix T is k(T) = IITI-IT LI,
By scaling T we may assume without loss of generality that ITlIl=1, so that k(T) = IITtIl. But
the distance (in the lI-Il norm) from T to the nearest singular matrix (nearest matrix whose

condition number is infinite) is T~ = 1/k(T). Thus, the condition number is exactly the
reciproca of the distance to the nearest ill-posed problem. This phenomenon recurs throughout
numerical analysis, athough we usualy get a somewhat weaker relationship, such as one sided
bounds between the condition number and reciprocal distance.

Here we investigate this phenomenon in the case of finding the eigenvectors of a sym-
metric matrix. From (1.3), we see that 1/gap(A;) is a condition number for the i-th eigenvector
of a general symmetric matrix. This condition number is infinite precisely when gap(A;)=0, i.e.
A; is a multiple eigenvaue. It is reasonable to cal such an eigenproblem ill-posed because the
eigenvector is no longer uniquely determined: any vector in an at least two-dimensiona invari-
ant subspace will do. It is elementary to show that the reciproca of this condition number gives
exactly the distance to the nearest ill-posed problem:

Proposition 8. Let H be a symmetric matrix with simple eigenvalue A;; thus
gap(A;) = rpin INi—Agl > 0. Then the smallest II3H Il such that the eigenvalue of H +dH
2

"corresponding to" A; is multiple is

)\.
min leH 1 = PR

By "the eigenvalue corresponding to A; is multiple” we mean that if the continuous function A;(§) isan
eigenvalue of H+¢&8H for all O< €< 1, with A;(0) = A;, then A;(§) issmple for 0< &< 1 and A;(1)
is multiple.

Proof: Suppose IA;—A;l = gap(A;) and that x; and x; are corresponding unit eigenvectors. Let
dH = 5:(Aj=A)(xx{ = x;x]) to show min IBH Il < gap(A;)/2. To get the other inequality
apply (1.1) to see that any smaller I5H [l could not move either A; or A; more than half the dis-
tance towards one another. [
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It turns out that a similar relationship holds for y-s.d.d. symmetric matrices, provided we
measure distances in the scaled way used so far in this paper, and that we use 1/relgap(A;) as a
condition number. This is interesting because it extends work in [7] to a case where the dis-
tance metric is quite skewed from the usua norm, and shows that 1/relgap(A;) is the most
natural condition number for this problem, because it shares the same geometric properties as
other condition numbers.

Proposition 9: Let H=AAA be an n by n y-s.d.d. symmetric matrix with simple eigenvalue A;; thus
relgap(A;) = rpin INi= Al IAA 172 > 0. Assume further that relgap(A;)< 272 (this means that
Z 1

A; and its nearest neighbor differ by a factor between .5 and 2). Then the smallest I3A Il such that
the eigenvalue of A(A+0dA)A "corresponding to" A; is multiple satisfies

(1.—y)relgap()\i) < min IBAIll < relgap()\i)-21’2-n-%(l+w4
3(¥2-n + relgap(\;)) (1-y)®

For relgap(A)<< 1, the lower bound on min 1Al equals
relgap(A;) (1-y)/(2Y2:3:n) + O((relgap(A;))?). In other words, both the upper and lower bounds
are O(relgap(A;)).

Proof: By scaling H we may assume without loss of generdity that A; = 1. Let A; satisfy
relgap(A;) = IN=A;1-IAA;1%2, and let x; and x; be corresponding unit eigenvectors.

First we prove the upper bound on minlldAll. From Proposition 6 we have that
[(xixN ! € (1+y)3(1-y) 7 3AA,. Thus IA~YxT A < n(1+y)3(1-y) 3. Let
0A = ()\j—)\i)xixiT. Clearly A(A+03A)A has a multiple eigenvalue a A; as desired. Also,

IAj=Ail = relgap(A;)- 1A 1Y% < 2Y2relgap(A)- 1A < 212(1+y) relgap(A;)
which when combined with the bound on IA™xx[ A7, yields the desired upper bound.

Now we consider the lower bound. Abbreviate lI3All by n. Note that if H isy-s.d.d., then
H+ABAA is (y+2n)(1-n) t-sd.d., if (y+2n)(1-n) !t < 1. From (7.4) in Corollary 3, we see
that if (y+2n)(1-n) 1< 1, then the perturbed relative gap will be at least

21/2 nn
1- (y+2n)(1-n)™*
In order for the perturbed relative gap to be zero, this lower bound will have to be nonpositive,
and so

relgap(A;) -

d A _
%-(1 - (y+2m) (1-m)Y)

Solving for the smallest n satisfying this inequality yields the desired lower bound. When
relgap(A\j)<<1 so that n is smal enough tha (y+2n)(1-n)"*Hy, we get
nE relgap(A;) (1-y) /(3-2Y?:n) as desired. [

The same results could have been obtained using the genera machinery of differential
inequalities in [7], but these proofs are more straightforward.
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9. Algorithms for the Bidiagonal Singular Value Decomposition

In this section we discuss agorithms capable of attaining the high relative accuracy
inherent in the data as described in Theorem 1. Most of this work has appeared elsewhere, but
since we will need the results in the next section, we outline them here.

The three classes of agorithms we will discuss are QR, bisection, and divide and conquer.
The standard QR iteration [12] as implemented in LINPACK [3] does not compute al singular
values to high relative precision. It may be modified, however, to achieve this as described in
[9]. Briefly, the idea is to use a zero shift in a QR sweep when atiny singular value is present.
It turns out this zero-shift QR can be implemented in a forward stable way that only introduces
small relative errors in each entry of the bidiagona matrix. Corollary 1 of Theorem 1 then
guarantees the singular vaues are not changed significantly. The standard convergence criterion
must also be changed to guarantee high relative accuracy; see [9] for details. The resulting algo-
rithm is not only more accurate than the standard implementation but faster on the average;
this is because the zero-shift QR sweep contains significantly fewer floating point operations
than shifted QR.

It was conjectured in [9] that this modified QR algorithm computes the singular vectors as
accurately as the "relative gap" error bounds of section 7 permit; this conjecture is supported by
Proposition 7 and will be proven completely in [6] (see section 7 for discussion).

Bisection is another method that guarantees high relative accuracy. An error analysis of
the Sturm sequence recurrence for counting the number of singular values of a bidiagona
matrix in an interval [14] shows that it computes the exact number of singular values for a
matrix differing from the original one only by small relative perturbations in each entry; Corol-
lary 1 of Theorem 1 then guarantees high relative accuracy again.

Divide and conquer [13] has not yet been shown to achieve high relative accuracy, at least
without resorting to extended precision arithmetic in the inner loop. Achieving this accuracy is
acurrent area of research.

10. Algorithms for the Symmetric Tridiagonal Eigenproblem

In this section we present algorithms for computing eigenvaues of y-s.d.d. symmetric tri-
diagonal matrices to high relative accuracy. We note that reducing a dense y-s.d.d. symmetric
matrix to tridiagona form will not generally preserve diagona dominance or the accuracy of the
eigenvaues; thus the algorithms in this section are suitable only when the origina matrix is tri-
diagonal. If the original matrix is dense, the algorithm in the next section should be used.

Briefly, bisection can aways be used to find the eigenvalues accurately. If the matrix is
positive definite as well, Cholesky followed by the algorithm of the last section applied to the
bidiagonal Cholesky factor can be used. QR does not seem to work in general, but may if the
matrix is strongly diagonally dominant and monotonically graded. It is still an open question
whether divide and conquer techniques [5, 11] can achieve high relative accuracy.

As with the bidiagonal singular value problem, the standard implementation of QR for tri-
diagona matrices does not guarantee high relative accuracy in the computed eigenvaues for
symmetric y-s.d.d. matrices, even if the change in convergence criterion suggested in section 6
is adopted. Even if a zero-shifted QR algorithm like the one used for the bidiagona singular
value decomposition is used, relative accuracy is lost (in numerical experiments on a strongly
s.d.d. positive definite matrix, negative eigenvalues were computed).

However, recent work by Le and Parlett [16] gives some hope that zero-shifted tridiagonal
QR may sometimes be used in the same way as the bidiagonal zero-shifted QR to compute al
eigenvalues to high relative accuracy. Their work shows that the inner loop of the standard QR
iteration may be modified to provide componentwise relative stability in the following sense: in
floating point this modified zero-shifted QR is equivalent to making small relative perturbations
in each entry of the tridiagona matrix, performing QR exactly on this perturbed matrix, and
again making small relative perturbations in each entry of the resulting matrix. This is a much
stronger kind of stability than the usua kind described in paragraph (1.2) of the introduction. If
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the origina and fina tridiagonas are also y-s.d.d., Proposition 4 would imply that their eigen-
values agree to high relative accuracy. Thus, QR, combined with the stopping criterion (6.4),
could be used to compute all eigenvalues to high relative accuracy, but only if al the matrices
produced in the course of the iteration were y-s.d.d.. Unfortunately, numerical experiments
show this is not the case in general, and may only be true if the original matrix is very strongly
diagonally dominant and monotonically scaled (H;i= Hj.1i+1). Thus, we do not expect to be
able to generally use QR based algorithms for the y-s.d.d. tridiagonal eigenproblem.

If we limit ourselves to positive definite matrices T, the following QR based approach will
work. The following algorithm originally appeared in [10]. Recall that a tridiagonal matrix T is
positive definite if and only if it has a positive diagona and is y-s.d.d. for some y< 1.

Algorithm 2: Computing the eigenvalues of a positive definite tridiagonal matrix T:
1)  Compute the Cholesky factorization LL =T of T.

2)  Find the singular vaues of the bidiagonal matrix L using the bidiagonal QR agorithm of
section 9.

3) Squarethe singular values of L to get the eigenvaues of T.

To show that this method is viable, one needs to show that scaed diagonal dominance is
sufficient to guarantee that the squares of the exact singular values of L are al relatively close
to the eigenvalues of A; the agorithms of section 9 then guarantee that we can compute the
singular values of L to high relative accuracy.

To this end we present a backward error analysis of the Cholesky decomposition of a posi-
tive definite symmetric tridiagonal matrix A. Our goa is to show that the computed Cholesky
factor L is a small componentwise relative perturbation of the exact Cholesky factor of a small
componentwise relative perturbation of A. We assume the usua model of floating point arith-
metic fl (a op b) = (a op b)-(1+e), where lel< € and op O {+,—,x,/}, and that the floating
point square root function sort satisfies sgrt(a) = (1+e)a'’? where lel< €.

Proposition 10: Let A be an n by n positive definite symmetric tridiagonal matrix with diagonal
entries a4, . . ., a, and offdiagonal entries b;, ... ,b,_1. Let L be the computed Cholesky factor
from the following algorithm:

l11 = sort(ay)
fori=1ton-1
|i+1,i = b/l 5
Ii+1,i+1 = sqrt(ai+l_|i+1,i)
endfor

Then barring over/underflow and attempts to take square roots of negative arguments, L is the exact
Cholesky factor of A=A+8A=LL ", where 3A;| < g(g)IA;l, and

(1+¢)°

g(g) = 3e+3e?+e® + (de+6e’+4e+e"): (1-¢)*
-

= 7e+0(£?) (10.1)

Proof: We construct A=A+3A as follows. Subscripted €s denote independent quantities
bounded in norm by «.

= fi(sqri(ay)) = (1+en)ad? = ((1+ey)2a)¥2= 2,

=
=
|

liica = fl(bi_q/licqic1) = (M+gi)bia/lioq i1 = bioa/liogiog

fl (sart(ai—1%i-1))
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= (L+e) (L eg) (am (L4 £10)I21-1) 2

((L+€2)2(1+€3)a — (1+€2)2(1+€3) (1+g4)17-1)) 2

((1+g1)a = (1+go)l7i-1)Y?

where Ig,| € 3e+3e2+¢3 = 3e+0(€?) and Ig,l < 4e+6e?+4e3+¢* = 46+ 0(e2). By assump-
tion (1+g1)a< (1+g,)Ifi-1 0

1+g,
‘9i2|ﬁi—1‘ < ‘giz"rg:z'ai = 03§
where
3
g3l < (4£+682+483+E4)'% = 4e+0(&?)
(1-¢)
Thus
lii= (1+g1-ga)a—13.1)"?
= (+ga)a—I13.1)"?
= (-1?.1)"?
where
3
lgi4l < 3€+382+83+(4€+6£2+483+84)% = 7e+0(&?)
-t
as desired. O

Theorem 8: Let A be an n by n positive definite symmetric tridiagonal matrix, L its computed Chole-
sky factor as in Proposition 10, and g(€) asin (10.1). Let y< 1 be the scaled diagonal dominance

of A. Let 0, < g, bethe singular values of L and A;< - - - < A, be the eigenvalues of A.
Then
Ai(A
(1- 9(¢) ) < '2( ) < (1+@) _
1-y of(L) 1-y
For example, when €< .001, the upper and lower bounds are bounded by 1+ [ 719‘:/8 ].

Proof: Combine Corollary 1 of Theorem 1, Theorem 2 and Proposition 10. [

It is easy to find T for which Algorithm 2 computes al the eigenvaues accurately, but
where the standard QR iteration [17] loses all accuracy on the smallest eigenvaues.

Since the bidiagonal SVD algorithm of section 9 can compute the singular vectors as accu-
rately as the "relative gap" error bound permits (see the discussion of section 9), Algorithm 2
will compute the eigenvectors of T as accurately as Theorem 6 permits.

Bisection is a viable algorithm for al s.d.d. tridiagonal matrices. A similar error analysis to
the one for bidiagonal Sturm sequences shows that Sturm sequences can find accurate eigen-
values of T+dT where 8T causes only small relative perturbations in each entry of T [14]. No
pivoting is required, so Sturm sequence evauation can be done in linear time with no storage
beyond that needed for T. Together with Theorems 2 or 4, this implies that the computed
eigenvalues al have high relative accuracy if the matrix is symmetric tridiagonal y-s.d.d.

As in the bidiagona case, the ability of divide and conquer agorithms [11] to achieve
high relative accuracy is an open problem.

11. Algorithms for the Dense Symmetric Eigenproblem
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First we present a new algorithm (or rather a new analysis of an old agorithm) for finding
accurate eigenvalues of (possibly dense) symmetric s.d.d. matrices. The algorithm is based on
bisection, but rather than computing the LDL T factorization of H —xI and using the number of
negative D; to compute the number of eigenvalues of H less than x, we compute the LDL T
factorization of A—xA~2, where H=AAA.

Second, we show that a suitable variation of inverse iteration can compute the eigenvec-
tors of a symmetric s.d.d. matrix to the limiting accuracy of the "relative gap" error bounds in
Theorems 6 and 7.

Algorithm 3: Stably computing the inertia of a shifted y-scaled diagonally dominant symmetric
matrix H-xl:

(0) We assume as before that A;=% 1. We consider only x> 0; for x< 0 consider —H —xI.
(1) Permute the rows and columns of A—xA~2 and partition it as
A~ xA7? A
Az Ap=xA3?
so that if a-xd™? is a diagonal entry of A;;—xA7?, then either a=-1 or a=1 and
xd™ 22 2.
(2) Compute X=A,—-xA32= A, (A1-xAT2) 1A .

(3) Compute inertia(X)=(n, z, p) using a stable pivoting scheme such as in [4]. Here n
is the number of negative eigenvalues, z the number of zero eigenvaues, and p the
number of positive eigenvalues of X.

(4) Theinertiaof H-xl is(n+dim(Ay) , z, p).

Theorem 9: Let H=AAA be a y-scaled diagonally dominant symmetric matrix and x> 0 a real
scalar. Algorithm 3 computes the exact inertia of a matrix H+dH-xI, where dH=AJ0AA,
IBA =0 (¢), € being the machine precision. Thus, Algorithm 3 can be used in a bisection algorithm
to find all the eigenvalues of H to high relative accuracy.

Proof: The partitioning guarantees that the diagona entries of A;;—xA72 are al less than or
equal to — 1. Therefore, all the eigenvalues of A;;—xA72 are less than or equa to —1+y. Since

X is defined so that
Ay —xA72
) 0 o
the inertia of A—xA~? is equal to

Ay -xA7? A
inertia(A—xA~2) = inertia(X) + inertia(A,;-xA7?) = inertia(X) + (dim(Ay;),0,0)

Azn Ap=x03%
by Sylvester’s Theorem. The algorithm in [4] will compute the exact inertia of X+ X, where
15X 11=0 () IIXIl. Thus if we show that [IXIl is of order 1-y < llAx Il < 1+y, we will be done.
To this end we note that by construction lIxA32l< 2, Omin(Ap—xA7%)= 1-y, and
IALII=1Ax < y. Thus

| (Ap-xA19)71A
0 | !

| 0
Ax(Ap-xA7%)71 1

2
3
IXIl< 14y + 2+ Y < 2
Y 1y - 1oy

as desired. [

In the case of pencils, there is an analogous agorithm. If H-AM = AjARAL-AAYAMANY
is ay-s.d.d. definite pencil, we compute the LDL T decomposition of Ay—-XArtAyAuAvAR! in
order to count the number of eigenvaues less than x. Henceforth we will assume without loss
of generality that H—-AM = H-AAAA with IH;l = A; = 1.
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Algorithm 4: Stably computing the inertia of a shifted y-scaled diagonally dominant definite pencil
H-xM:

(0) As stated above, we assume without loss of generdity that M =AAA with |H;;| = A; = 1.
We also consider only x> 0; for x< 0 consider —H —xM.
(1) Permute the rows and columns of H-xAAA and partition it as
Hu-XAT'ApATY Hp-XAT'ARAS
Ho= XA A5 AT Hp=XAZ A RALY
so that if h-xd? is a diagonal entry of H;;-xA7'A;ATY  then
xd 2= p= 2(1+y)/(1-y).
(2) Compute
X = Hp=XA3 A%A05" = (Hay = XA AHATY) (H = XATTA AT T (H p-XAT A pAGY)

(3) Computeinertia(X) = (n, z, p) using a stable pivoting scheme such as in [4].
(4) Theinertiaof H-xM is(n+dim(Ay) , z, p).

Theorem 10: Let H-AM = AjALAL—-AAMAWAy be a y-s.d.d. definite pencil and x> 0 a real
scalar. Algorithm 4 computes the exact inertia of H+0H-xM, where dH = Ap0AA,,
IBAl = O(g), £ being the machine precison. Thus, Algorithm 4 can be used in a bisection algorithm
to find all the eigenvalues of H—-AM to high relative accuracy.

Proof: Let Y = Hy;—-xA7'A;ATY, and define K=x"*A;H;A;-Ayy, so that Y = xAT'KATL
Now if A(K) is any eigenvaue of K, we have

_ _ 1-
MK) S ApacG MM 3y) = An(As) < W7(L4y) = (1) = = 22F

and IIK "1l < 2/(1-y). Thus, Y is dso nonsingular, with all negative eigenvalues. Since X and
Y are defined so that

Hy—xAT'ALATY Hip—XATPA AL
Ho=XA2'AxATY Hp=xAZMARARY T~

I Y (Hp=xAT A AT
0 | !

| 0
(Hu=-xA2'AxATHY ™!

Y 0
0 X

we have
inertia(H —xM) = inertia(X) + inertia(Y) = inertia(X) + (dim(A),0,0)

by Sylvester’'s Theorem. The agorithm in [4] will compute the exact inertia of X+ X, where
13Xl = O(g) IXIl. Thus if we show that [IXIl is of order 1-y < IIHxll < 1+y, we will be
done. To this end we write

IXI < THpll + IxAZTA LA + TH, Y IH ol + IxXAZTA L ATYY T TH
+ IH 1 Y IXATTA LA + IIXAZTA L ATYY " IXATIA LA
= HH22H + HXAElAzzAng + HHle_lAlK_lAlleH + HAElAQlK_lAlleH

+ IH 1A K TTA LA + [IXAZTA, K TTA LA

Using the facts that ALl < y, A< y, IHpl <y, IHyll < y, IK M < 2/(1-y),
IAL A < 1, x7HIA 2 < p™t, and xIIAZEI%2 <, we get

IXIFs 1+y + (T+y)p + y2(2/(1-y)) ™t + y2(2/(1-y)) + y?(2/(1-Yy)) + y?(2/(1-y))u
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< 14/(1-y)?
as desired. OJ

Now we present a variation on inverse iteration which can compute the eigenvectors of a
symmetric s.d.d. matrix to the limiting accuracy of the "relative gap" error bounds of Theorems
6 and 7. A similar agorithm applies to pencils:

Algorithm 5: Inverse iteration for computing the eigenvector x of a symmetric s.d.d. matrix H =AAA
corresponding to eigenvalue z

(0) We assume the eigenvalue z has been computed accurately using one of the previous algo-
rithms.
(1) Choose aunit starting vector yq; seti = 0.
(2) Compute the LDL T factorization of PT(A-zA"2?)P, where P is the same permutation as
in Algorithm 3.
(3) Repeat
i=i+1
Solve (A-zA"?)y; = y;_; for ¥, using the LDL T factorization of step (2)
r=1/lyll
Yi = 1Y
until (r = O(g))
(4) x=A24"ly

Theorem 11: Suppose Algorithm 5 terminates with x as the computed eigenvector of the symmetric
s.d.d. matrix H=AAA. Then there is a diagonal matrix D with D;; = 1+O(€), € = machine pred-
sion, and a matrix dA, II3All = O(g), such that Dx is an exact eigenvector of A(A+0dA)A. Thus,
the error in x is bounded by the results in Theorems 6 and 7.

Sketch of Proof: Let y, be the computed solution of (A-zA"2)y, = y,_; at the last iteration of
Algorithm 5. Applying the error analysis of the proof of Theorem 4, one can show that there is
a diagonal matrix D, D;=1+0(¢), and an E, IIEIl = O(¢), such that D (A-zA"2+E)Dy,; = yi_;.
Applying the result in [2], we can assume E is symmetric. Since Algorithm 5 guarantees
r = 1/l = O(e), another application of the result in [2] guarantees the existence of a sym-
metric F, IFIl = O(g), such that (A-zA ?2+E+F)Dy, = 0. Thus, Dy, is an exact eigenvector of
A+E+F-AA"2 for A=z and Dx=DA7ly, is an exact eigenvector of A(A+38A)A,
IBAll = IE+FIl = O(e) as desired. O

12. Application to Differential Operators
Consider the n by n second centra difference matrix
2 -1

-1
-1 2

which arises from discretizing —d?/dx? at equally spaced grid points x;=ih, 1< i< n. One easily
njl , Which approaches 0 as n - . This is to be expected
since H, approximates an unbounded operator, and so has a wider and wider range of eigen-
values as n - . Since the diagonal of H, is constant, nothing is gained by writing H,=AAA,
A;i=1, and our perturbation theory merely says that al the eigenvalues are at least as sensitive
as the smadlest one. Our theory becomes more interesting when considering unevenly spaced

computes that 1-y for H, is 1-cos
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grid points x;. For example, let h;=x;,—x;_;, and suppose h;,,/h;= 3 for al i; this corresponds to
a uniformly graded grid. Then the corresponding H,(B) has diagona entries ranging from
2h72B7* to 2h7?B~2"*1. One can show y(B) for H,(P) satisfies y(B)=2(2+B+B 1) Y?y<y, 0
that the eigenvalues of H, () are aways at least as accurately determined as the eigenvalues of
H,. In fact, if B# 1, 1-y(B) is bounded away from 0 for al n.
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13. Summary and Future Work

We have shown that there are a number of situations where tiny eigenvalues and singular
values can be determined much more accurately than standard perturbation theorems and
numerical algorithms can guarantee. This is true for singular values of bidiagona matrices,
eigenvalues of symmetric s.d.d. matrices and eigenvalues of s.d.d. definite pencils. In addition,
eigenvectors of symmetric s.d.d. matrices corresponding to relatively isolated eigenvalues are
determined accurately by the data. Open questions remain in the perturbation theory for the
singular vectors of bidiagona matrices and in perturbation theory for eigenvaues of s.d.d. pen-
cils with positive and negative eigenvalues.

The following is a tabular summary of the current state of research into corresponding
high accuracy algorithms. We consider two classes of algorithms for eigenvalues and singular
values (bisection and QR), and two classes of algorithms for eigenvectors and singular vectors
(inverse iteration using accurate eigenvalues/ singular values, and QR). If an agorithm was
presented in earlier research, a reference is given; otherwise it was discussed here for the first
time. Conjectured agorithms are aso indicated. (Divide and conquer is another technique for
these problems. Since its ability to deliver high accuracy has not been proven in any of the
cases considered in this paper, it qualifies as a "conjectured" algorithm for all of them.)

Bisection based algorithms for computing eigenvalues and singular values to high relative accuracy:
1)  Singular values of bidiagona matrices [9].

2)  Eigenvaues of symmetric tridiagonal s.d.d. matrices (Theorem 4 and [14]).

3) Eigenvaues of not necessarily tridiagona symmetric s.d.d. matrices (Algorithm 3).

4)  Eigenvaues of s.d.d. definite pencils (Algorithm 4).

QR based algorithms for computing eigenvalues and singular values to high relative accuracy:

1)  Singular values of bidiagona matrices [9].

2) Eigenvaues of symmetric positive definite tridiagonal matrices (Algorithm 2 and [10]).

3) Eigenvaues of symmetric indefinite tridiagona scaled diagonally dominant matrices. no
QR based agorithm appears to work in general.

Inverse Iteration based algorithms for computing eigenvectors and singular vectors accurately:
1) Eigenvectors of symmetric s.d.d. matrices and pencils (Algorithm 5).

QR based algorithms for computing eigenvectors and singular vectors accurately:

1) Conjectured: singular vectors of bidiagonal matrices (Proposition 7 and [6]).

2)  Eigenvectors of symmetric positive definite tridiagonal s.d.d. matrices (Algorithm 2 and
[6]). (Conjectured: the finer error bounds of Theorem 7).

3) Eigenvectors of symmetric indefinite tridiagona s.d.d. matrices. since the eigenvaues
apparently cannot be computed accurately, neither can the eigenvectors.

In summary, various numerical agorithms are available to compute eigenvalues and
eigenvectors, and singular values and singular vectors with high accuracy. Algorithm 2 for the
symmetric positive definite tridiagonal eigenproblem will be incorporated in the LAPACK linear
algebra library [8]. Not all algorithmic questions have been settled, however, and these will be
the subject of future research.
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