
- 15 -

LAPACK Working Notes

LAPACK Working Note #1

James Demmel, Jack J. Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, and Danny

Sorensen, ‘‘Prospectus for the Development of a Linear Algebra Library for High-Performance Comput-

ers,’’ Argonne National Laboratory, Mathematics and Computer Science Division, Technical Memoran-

dum No. 97, September, 1987.

LAPACK Working Note #2

Jack J. Dongarra, Sven J. Hammarling, and Danny C. Sorensen ‘‘Block Reduction of Matrices to Con-

densed Forms for Eigenvalue Computations,’’ Argonne National Laboratory, Mathematics and Computer

Science Division, Technical Memorandum No. 99, September,



- 14 -

8. Experimental Results

The following results were generated on an Alliant FX/8 computer using eight processors. The Alli-

ant FX/8 is a parallel processor where each of the processors has vector registers and can perform vector

operations.

Table 1

Ratio of execution times (speedups) between the

EISPACK routine and the blocked version

on the Alliant FX/8

Ratio Ratio

Order TRED1/TREDB ORTHES/ORTHSB

100 1.94 2.59

200 2.39 3.01

300 2.40 3.23

400 2.39 3.35

500 2.36 3.46

The following results were generated on the CRAY X-MP using one processor.

Table 2

Ratio of execution times (speedups) between the

EISPACK routine and the blocked version

on the Cray X-MP

Ratio Ratio

Order TRED1/TREDB ORTHES/ORTHSB

100 1.03 1.29

200 1.10 1.52

300 1.21 1.65

400 1.23 1.79

500 1.28 1.92

9. References



- 13 -

multiplied from left to right in the order they are applied

Q =
i =1
Π

n −2
I − 2ui ui

T (6.2)

and we observe that when accumulated this way, successive applications of I − ui ui
T effect only the last

n −i +1 columns of Q . Thus, application of the Givens transformations associated with E 1 may be

applied as soon as the products of the Householder transformations associated with H 1 have been multi-

plied out. These transformations may be applied independently of the computation of Hk for k > 1

because these matrices effect columns that are independent of the columns effected by Ei .

When we do not wish to find eigenvectors there is no reason to store the product Q of these House-

holder transformations. Nor is it necessary to accumulate the product of the successive eigenvector

transformations resulting from the updating problem. That is, we do not need to overwrite Q with

Q ← Q 0
Q 1

Q 2

0
Q̂

where Q 1 and Q 2 are the matrices appearing in equations (6.1) , Q̂ is the matrix of eigenvectors for the

interior matrix in (6.1) and Q is the matrix appearing in (6.2) above. Instead, we may simply discard Q .

Then the vector q 1 may be formed as T̂ 1 is transformed to D 1 in (2.2) by accumulating the products of

the transformations constructed in TQL2 that make up Q 1 against the vector ek . If there is more than

one division then Q 1 will have been calculated with the updating scheme. In this case we do not calcu-

late all of Q 1 but instead use the component-wise formula for the eigenvectors to pick off the appropriate

components needed to form q 1 (for details see [ 0, 0]. )

7. Operations Counts and Storage

An analysis of the number of floating-point operations (counting additions and multications) for the

reduction to tridiagonal form of the standard algorithm reveals an operation count of

3
4 n 3 + 2

7 n 2 + 6
1 n − 25 f lops.

In aggregating the transformations to perform the block reduction additional work is required in the for-

mulation of yj in Algorithm 1. The additional work for a block size p amounts to:

(2p − 2
3 )n 2 + ( 3

−2 p 2 − 2p + 6
13 )n + ( 3

−4 p 2 − 4p )

floating point additions and multiplications being performed.

The algorithm can be organized so that the vectors ui overwrite the lower part of the matrix (as we

do in the standard version of the software), but additional workspace of size n ×p is required to store the

current block of V .



- 12 -

Once processes E 1 and E 2 have completed, then the eigensystem of

0
T 1

T 2

0
= 0

Q 1

Q 2

0
0

D 1

D 2

0
+ β q 2

q 1
(q 1

T , q 2
T ) 0

Q 1
T

Q 2
T

0
(6.1)

may be computed using the rank one updating scheme. Similarly, once processes E 3 and E 4 have com-

pleted, the eigensystem of diag (T 3,T 4) may be computed. Finally the entire eigensystem may be

obtained through rank one updating of these two eigensystems. Let us denote these processes as U 1 , U 2

and U 0 respectively.

With the proper storage arrangements these processes obey the following large grain control flow

graph:

U0

U1
U
2

E1 E2 E3 E4

H1 H2 H3 H4

M11 M12 M13

Figure 2 Large Grain Control Flow Graph

In this control flow graph a node denotes a process. That is, for example, a subroutine name together with

the pointers to the data which the subroutine is to operate upon. A process P becomes schedulable or

ready to execute when there are no incoming arcs to the node representing process P . This signifies that

all of the data dependencies for process P have been satisfied through the completion of the processes

that it was dependent upon. This graph indicates that processes M 1j can execute immediately. Once

they have completed then H 1 may report to H 2 and this process may execute and spawn processes M 2j .

At the same time H 1 reports to process E 1 and it may begin execution. When E 1 and E 2 have both com-

pleted than process U 1 may start and so on.

To accumulate a matrix of eigenvectors, the successive Householder transformations must be



- 11 -

6. Pipelining Reduction to Condensed Form with Determination of Eigenvalues

Recently, algorithms have been developed based upon divide and conquer strategies for the determi-

nation of eigenvalues and singular values for a matrix in condensed form[ 0, 0]. These methods are also

rich in matrix-matrix operations and mesh very well with the block reductions presented here. This is

accomplished through pipelining the initial reduction phase with the computation of eigenvalues and

back-transformation of eigenvectors. These considerations are of little consequence on serial computers

but have significant performance advantages on parallel-vector processors.

We use the block reduction algorithm as described above to introduce zeros in a block of the matrix,

say we are at the k -th stage and have just introduced zeros into the k -th block. As we start the next block

reduction, on the k +1-st block, we can start in parallel the eigenvalue computation on that part of the tri-

diagonal matrix generated from the k -th block reduction of the matrix. When we have completed eigen-

value computations from two tridiagonal segments, we can use the technique applied in the divide and

conquer algorithm as described by Dongarra and Sorensen[0] to determine the eigenvalues and eigenvec-

tors of a pair of tridiagonal matrices. Then the eigenvalues of successive pairs of blocks can be found,

then pairs of pairs, etc., until the full set is determined. When the reduction to condensed form and the

divide and conquer strategy are used in this pipelined fashion a highly efficient parallel algorithm can be

constructed.

This discussion is made more explicit in the following example. We consider a symmetric matrix

that is to be partitioned into four block columns as shown in the figure below.

Figure 1 Partitioned Matrix

Let us associate Hk with the process of reducing the k −th block Ak of the partitioned matrix to tri-

diagonal form using Householder transformations. Thus Hk executes a block step of Algorithm 1 (see the

k-loop) on the block Ak In this algorithm we have the possibility of spawning parallel processes.

Processes may cooperate in applying the resulting transformation shown in

A (s +p :n ,s +p :n ) = A (s +p :n ,s +p :n ) − Uk Vk
T − Vk Uk

T

in parallel. Let us denote these parallel processes by Mkj so that process Mkj is responsible for a portion

of the work in the matrix multiply in the performance of Algorithm 1 by process Hk .

On completion of process Hk the tridiagonal matrix Tk is exposed and the algorithm TQL 2 may be

applied to compute the eigensystem of Tk after the rank one tearing has been computed. Let us denote

this process by Ek .



- 10 -

of the matrix A . For the Alternate Algorithm the vector vj is updated using the submatrix As and the

Bischof and Van Loan Algorithm uses information from uj and Yk
(s :j −1). Thus the Bischof and Van Loan

Algorithm will have fewer accesses to the data. In the update of the matrix A for the Bischof and Van

Loan factorization, the update is of the form

A (s +p :n ,s +p :n ) = A (s +p :n ,s +p :n ) − UY T A (s +p :n ,s +p :n ) ;

and for the alternative factorization, the update is of the form

A (s +p :n ,s +p :n ) = A (s +p :n ,s +p :n ) − UV T .

The alternative algorithm incorporates the information about the matrix A in the matrix V .

We can describe the reduction to tridiagonal form for the symmetric eigenvalue problem using the

Bischof and Van Loan approach as

Ap +1 = (I − USU T )A 1(I − USU T ).

If we multiply out and combine terms, we can reduce the expression to

Ap +1 = A 1 − ZU T − UZ T

where

W = A 1US T and Z = W − 1⁄2USU T W

which is of the form described in Section 2. An implementation for the reductions along these lines is

described by W. Harrod at the University of Illinois [0].

With the WY representation it is simple to apply the set of transformations to another matrix, as is

required in back substitution for the eigenvector computation; one simply applies (I − WY T ) to the

matrix. To apply the transformation using the formulation in Section 2, one can use the Householder vec-

tors to construct the matrix S such that I − USU T can be used to apply the transformations to the eigen-

vectors of the symmetric tridiagonal matrix, back transforming them to the eigenvectors of the original

problem. The matrix S is a p by p upper triangular matrix whose k -th column is formed as follows:

(I − USU T )(I − uu T ) = I − uu T − USU T + USU T uu T

= I − [U , u ] u T
SU T − SU T uu T

= I − [U , u ] 0
S

1
−SU T u

u T
U T

So the new column of S is

1
−SU T u

.



- 9 -

5. Relationship to the WY Factorization

The algorithm presented here for aggregating Householder transformations is closely related to the

WY representation for the product of Householder matrices presented by Bischof and Van Loan[0]. The

relationship is most clearly seen in the contexts of the QR factorization of a general rectangular matrix.

The WY representation has the following form:

QR Factorization (Bischof and Van Loan)

n is the number of columns in the matrix

p is the blocking

N = n /p

for k = 1, N

s = (k −1)p + 1

for j = s , s +p −1

aj = aj −
i =s
Σ
j −1

zi
(j )ui where zi = Ai ui

compute Householder vector uj

Yk
(s :j ) = (Yk

(s :j −1) − uj uj
TYk

(s :j −1), −2uj )

end

perf orm rank 2p update on sub −matrix

A (s +p :n ,s +p :n ) = A (s +p :n ,s +p :n ) − UY T A (s +p :n ,s +p :n )

end

If one implements the reduction along the lines of the algorithm described in Section 2, the factorization

can be described as follows:

QR Factorization (Alternative Algorithm)

n is the order of the matrix

p is the blocking

N = n /p

for k = 1, N

s = (k −1)p + 1

for j = s , s +p −1

aj = aj −
i =s
Σ
j −1

vi
(j +1)ui

compute Householder vector uj

vj = (As
T − Vk

(s :j −1)Uk
(s :j −1) T)uj

end

perf orm rank 2p update on submatrix

A (s +p :n ,s +p :n ) = A − UV T
(s +p :n ,s +p :n )

end

The two differences between the block algorithms are in the formation of vj and Yj and also in the update



- 8 -

dependencies now become even more complicated because it would appear that the transformation

corresponding to vj must be applied from the right before uj +1 can be computed and so on. However, we

note that the above algorithm will be valid if there is an independent formula for computing the vj since

the uj may be computed as in the previous algorithms by knowing the j −th column of the reduced

matrix. Indeed, there is an independent formula for computing the vj which may be found by noting that

V T A T AV = B T B = T

where V = Q 1Q 2
. . . Qn −2 is precisely the sequence of transformations that would be computed in

Algorithm 1 to reduce the matrix A T A to tridiagonal form T = B T B . This leads to the following pro-

cedure for computing the vj

Procedure compute vj

zj = As
Taj

(s :s +p −1) −
i =s
Σ
j −1

(vi xi
(j +1) + xi vi

(j +1))

ζ j = −sign (zj
(j +1)) | | zj

(j +1:n ) | | 2

vj
(j +1) = sqrt (1 − zj

(j +1)/ζ j )

vj
(j +2:n ) = −zj

(j +2:n )/ζ j

t j = (As
TAs − Vj −1Xj −1

T − Xj −1Vj −1
T )vj , As = A (s :m ,s :n )

xj = t j − 1⁄2(t j
Tvj )vj .

Xj = Xj −1, xj

Computation of the uj only depends upon the j −th column of the reduced matrix being in place before

the j −th step. Therefore, the column oriented formula given in Algorithm 1 may be adapted to give

Procedure compute uj

aj = aj −
i =s
Σ
j −1

(ui wi
(j +1) + yi vi

(j +1))

α j = −sign (aj
(j )) | | aj

(j :m ) | | 2

uj
(j ) = sqrt (1 − aj

(j )/α j )

uj
(j +1:m ) = −aj

(j +1:m )/α j

If these two procedures are substituted for "compute u" and "compute v" in Algorithm 3 then it be well

defined. In all of these we do not explicitly form the indicated matrix products. Instead, the matrix vec-

tor products are accumulated.



- 7 -

Algorithm 3

U and Y are temporary m ×p arrays, which are reused for each iteration of the k loop

V and W are temporary n ×p arrays, which are reused for each iteration of the k loop

n is the number of columns in the matrix

m is the number of rows in the matrix

p is the blocking

N = (n −2)/p

for k = 1, N

s = (k −1)p + 1

for j = s , s +p −1

compute uj

compute vj

yj = A − Uj −1Wj −1
T − Yj −1Vj −1

T vj

hj = A − Uj −1Wj −1
T − Yj −1Vj −1

T T
uj

wj = hj − (uj
Tyj )vj

Uj = Uj −1 , uj

Vj = Vj −1 , vj

Wj = Wj −1 , wj

Yj = Yj −1 , yj

end

U = Us +p −1, V = Vs +1−1

Y = Ys +p −1, W = Ws +1−1

perf orm rank 2p update on submatrix

A (s +p :n ,s +p :n ) = ( A − UW T − YV T )(s +p :n ,s +p :n )

end

Unfortunately, it is not so straightforward to compute uj and vj at will. At step j of the usual bidiagonal-

ization process, the vector uj is nonzero in the j − th entry. Hence application on the left by the

corresponding Householder transformation alters the j −th row of the reduced matrix Aj and knowledge

of this row is required to compute the vector vj which is nonzero in the j +1 − st entry. The



- 6 -

4. Reduction to Bidiagonal Form

A problem that is closely associated with the eigenvalue problem is to compute the Singular Value

Decomposition (SVD) of a real m ×n matrix A . This decomposition is directly related to the symmetric

eigenvalue problem in that the singular values of A are the square roots of the eigenvalues of the sym-

metric positive semidefinite matrix A T A . It is numerically preferable to avoid formation of A T A and the

algorithm of choice involves an initial reduction of A to upper bidiagonal form B through a sequence of

Householder transformations to obtain

A = UBV T

with U and V orthogonal and B upper bidiagonal.

This initial reduction may be treated with an algorithm similar to those already presented. In this

case

B = Pn −2
T . . . P 2

TP 1
TAQ 1Q 2

. . . Qn −2 ,

where each Pj = I − uj uj
T is an m ×m Householder transformation and each Qj = I − vj vj

T is an n ×n

Householder transformation. Again we may achieve efficient memory utilization by aggregating a

sequence of transformations, say p of them, so that the matrix will be updated by a matrix of rank 2p .

However, there are data dependencies within this reduction that require additional attention.

Let us suppose for the moment that the sequences { uj } and { vj } can be computed at will. In

general,

(I − uu T )A (I − vv T ) = A − uw T − yv T ,

where

y = Av , z = A T u and w = z − (u T y )v ,

see [0] for more details. Thus, a straightforward extension of the tridiagionalization scheme presented in

Section 2 gives the following algorithm:



- 5 -

U is a lower trapezoidal matrix with the first column having its first non-zero element in position s + 1

and the p -th column having its first non-zero element in position s + p . Notice that to aggregate the

Householder transformations during the construction of the vector yj we perform a matrix-vector multi-

plication with the submatrix As in the j loop.

Algorithm 1 constructs k block transformations and applies it to the matrix. We will call this a

‘‘right-looking algorithm.’’ Notice that at each of the k stages we are updating a submatrix of size

n −s +1 × n −s +1. We can further reduce the amount of data referenced by the following algorithm.

Algorithm 2

for k = 1, N

s = (k −1)p + 1

Apply the previous k −1 block transformations to A (s :n ,s :s +p −1)

Compute Uk and Vk

end

At each stage of this algorithm we are only modifying a n −s +1 × p matrix. We will call this algo-

rithm the ‘‘left-looking algorithm.’’ This algorithm will require an access to the submatrix As in the loop,

however it avoids an update of the matrix at the end of the k loop.

3. Reduction to Hessenberg Form

Not surprisingly, the same approach can be used in the reduction to Hessenberg form. Here we have

H = Pn −2
. . . P 2P 1AP 1P 2

. . . Pn −2 ,

where H is upper Hessenberg. The idea of using a rank 2 or higher update in this context was discussed in

[0]. Here it is convenient to use slightly modified formulas to those in [0] given by

yi = Ai
Tui , zi = Ai ui

vi = yi − 1⁄2(zi
Tui )ui , wi = zi − 1⁄2(yi

Tui )ui

Ai +1 = Ai − ui vi
T − wi ui

T.

When A is symmetric, yi = zi , and vi = ui and these equations are as in the tridiagonal case. The vector

ui is computed from the same equations as for the tridiagonal case. Here A is updated as

Ap +1 = A 1 − UV T − WU T ,

where

U = (u 1,u 2, . . . ,up ) , V = (v 1,v 2, . . . ,vp ) , W = (w 1,w 2, . . . ,wp ) and

yp +1 = (A 1
T − VU T − UW T )up +1 , zp +1 = (A 1 − UV T − WU T )up +1 .

U , V , and Y are trapezoidal, but Z and W are not.



- 4 -

We could then explicitly form A 3 as a symmetric rank four update as follows:

A 3 = A 2 − u 2v 2
T − v 2u 2

T

= A 1 − u 1v 1
T − v 1u 1

T − u 2v 2
T − v 2u 2

T .

We could have continued the process and in general found for a rank 2p update:

Ap +1 = A 1 − UV T − VU T ,

where

U = (u 1, u 2, ..., up )

V = (v 1, v 2, ..., vp )

vp = yp − 1⁄2(yp
Tup )up

yp +1 = (A 1 − UV T − VU T )up +1

ap +1
(p +1:n ) = ap +1

(p +1:n ) −
i =1
Σ
p

(vi
(p +1)ui + ui

(p +1)vi ) .

Thus, Ap +1 can be formed by a rank 2p symmetric update that is rich in matrix-matrix operations.

Algorithm 1

U and V are temporary n ×p arrays, which are reused for each iteration of the k loop

n is the order of the matrix

p is the blocking

N = (n −2)/p

for k = 1, N

s = (k −1)p + 1

for j = s , s +p −1

aj = aj −
i =s
Σ
j −1

(vi
(j +1)ui + ui

(j +1)vi )

α j = −sign (aj
(j +1)) | | aj

(j +1:n ) | | 2

uj
(j +1) = sqrt (1 − aj

(j +1)/α j )

uj
(j +2:n ) = −aj

(j +2:n )/α j

yj = (As − Uj −1Vj −1
T − Vj −1Uj −1

T )uj

vj = yj − 1⁄2(yj
Tuj )uj

Uj = Uj −1, uj

Vj = Vj −1, vj

end

U = Us +p −1, V = Vs +1−1

perf orm symmetric rank 2p update on submatrix

A (s +p :n ,s +p :n ) = A − UV T − VU T
(s +p :n ,s +p :n )

end



- 3 -

Each transformation Pi is designed to introduce zeros in the i th column (and row) of the matrix below the

subdiagonal (and above the superdiagonal) so as to leave the upper part of the matrix in tridiagonal form

and the lower part full and symmetric. At the i th step of the process, the matrix is of the form

x
x

x
x
x

.

.
x

x
.
.

x
x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x .

To describe the algorithmic details of this reduction, we use the notation A (i :n , j :n ) to denote the

(n −i +1)×(n −j +1) submatrix of A beginning at the (i ,j ) location of A ; we denote the subvector of a vec-

tor a beginning at the i −th position by a (i :n ); and the i −th component of a vector a by a (i ). The vector

ui is constructed from the i th column of the reduced matrix so that

αi = −sign (ai
(i +1)) | | ai

(i +1:n ) | | 2

ui
(i +1) = sqrt (1 − ai

(i +1)/αi )

ui
(i +2:n ) = −ai

(i +2:n )/αi

ui
(1:i ) = 0 .

In practice ui is constructed and applied to the matrix as follows:

yi = Ai ui

vi = yi − 1⁄2(yi
Tui )ui

Ai +1 = Ai − ui vi
T − vi ui

T . (2.1)

In the process A is repeatedly modified by a symmetric rank-two update. This requires updates to half the

n −i × n −i elements of the symmetric matrix at each stage of the process.

To achieve better memory utilization we can consider aggregating a sequence of transformations,

say p of them, so that the matrix will be updated by a rank 2p symmetric matrix. Such an implementation

would be as follows: instead of explicitly updating the matrix with the rank two change, we form only the

second column (row) of A 2, say a 2. We then update a 2 by applying (2.1) in the following way:

a 2 = a 2 − v 1
(2)u 1 − u 1

(2)v 1 .

From this we can compute u 2; and y 2 would be formed as, y 2 = A 2u 2. However we have not explicitly

formed A 2. We can construct y 2 as follows:

y 2 = A 2u 2

= (A 1 − u 1v 1
T − v 1u 1

T )u 2

= A 1u 2 − (v 1
Tu 2)u 1 − (u 1

Tu 2)v 1 .



- 2 -

memory, or solid-state disks)[0, 0, 0, 0, 0, 0, 0]. This redesign has led to the development of algorithms

that are based on matrix-vector and matrix-matrix techniques[0, 0].

This approach to software construction is well suited to computers with a hierarchy of memory and

true parallel-processing computers. A survey that provides a description of many advanced-computer

architectures may be found in [0]. For those architectures it is often preferable to partition the matrix or

matrices into blocks and to perform the computation by matrix-matrix operations on the blocks. By

organizing the computation in this fashion we provide for full reuse of data while the block is held in

cache or local memory. This approach avoids excessive movement of data to and from memory and gives

a surface-to-volume effect for the ratio of arithmetic operations to data movement, i.e. O (n 3) arithmetic

operations to O (n 2) data movement. In addition, on architectures that provide for parallel processing,

parallelism can be exploited in two ways: (1) operations on distinct blocks may be performed in parallel;

and (2) within the operations on each block, scalar or vector operations may be performed in parallel. For

a description of blocked implementation for Cholesky factorization, LU decomposition, and matrix multi-

ply and the specifications for a set of building blocks to aid the development of block algorithms see [0].

Many of the most successful algorithms for computing eigenvalues or singular values of matrices

require an initial reduction to condensed form. Typically, this condensed form is well suited to the imple-

mentation of an underlying iterative process used to compute the eigenvalues or singular values. We

present block algorithms suitable for computing three different condensed forms. These are the reduction

of a symmetric matrix to tridiagonal form, and the reduction of a (real) general matrix to either upper

Hessenberg form or bidiagonal form. The reduction of a symmetric matrix to tridiagonal form dominates

the computation of eigenvalues if no eigenvectors are required and represents about half the work if both

eigenvalues and eigenvectors are sought. A similar remark is appropriate for the reduction of a general

matrix to bidiagonal form in preparation for the computation of singular values. When the full eigensys-

tem or singular value decomposition is desired then divide and conquer techniques are appropriate for

both of these computations and we shall discuss how to pipeline the reduction to condensed form with a

divide and conquer scheme.

2. The Algorithm - Reduction to Tridiagonal Form

We usually think of applying a sequence of Householder transformations to reduce the original

symmetric matrix to symmetric tridiagonal form. We apply the transformations as similarity transforma-

tions to preserve the eigenvalues of the original matrix. The process can be described as follows:

Pi = I − ui ui
T, ui

Tui = 2

T = Pn −2
. . . P 2P 1AP 1P 2

. . . Pn −2.



Block Reduction of Matrices to Condensed Forms for Eigenvalue Computations

Jack J. Dongarra**, Sven J. Hammarling, and Danny C. Sorensen*

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, Illinois 60439

and

Numerical Algorithms Group Ltd.
NAG Central Office, Mayfield House
256 Banbury Road, Oxford OX2 7DE

Abstract — In this paper we describe block algorithms for the reduction of a real symmetric matrix
to tridiagonal form and for the reduction of a general real matrix to either bidiagonal or Hessenberg
form using Householder transformations. The approach is to aggregate the transformations and to
apply them in a blocked fashion, thus achieving algorithms that are rich in matrix-matrix operations.
These reductions to condensed form typically comprise a preliminary step in the computation of
eigenvalues or singular values. With this in mind, we also demonstrate how the initial reduction to
tridiagonal or bidiagonal form may be pipelined with the divide and conquer technique for comput-
ing the eigensystem of a symmetric matrix or the singular value decomposition of a general matrix to
achieve algorithms which are load balanced and rich in matrix-matrix operations.

1. Introduction

The key to using a high-performance computer effectively is to avoid unnecessary memory refer-

ences. In most computers, data flows from memory into and out of registers and from registers into and

out of functional units, which perform the given instructions on the data. Algorithm performance can be

dominated by the amount of memory traffic rather than by the number of floating-point operations

involved. The movement of data between memory and registers can be as costly as arithmetic operations

on the data. This provides considerable motivation to restructure existing algorithms and to devise new

algorithms that minimize data movement.

Along these lines there has been much activity in the past few years involving redesign of some of

the basic routines in linear algebra[0, 0, 0]. A number of researchers have demonstrated the effectiveness

of block algorithms on a variety of modern computer architectures with vector-processing or parallel-

processing capabilities, on which potentially high performance can easily be degraded by excessive

transfer of data between different levels of memory (vector registers, cache, local memory, main

* Work supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U. S. Department of Energy, under Contract W-31-109-Eng-38.

** Work supported in part by the National Science Foundation.



.

ABSTRACT

In this paper we describe block algorithms for the reduction of a real symmetric matrix to tridiagonal form and for
the reduction of a general real matrix to either bidiagonal or Hessenberg form using Householder transformations.
The approach is to aggregate the transformations and to apply them in a blocked fashion, thus achieving algorithms
that are rich in matrix-matrix operations. These reductions to condensed form typically comprise a preliminary step
in the computation of eigenvalues or singular values. With this in mind, we also demonstrate how the initial reduc-
tion to tridiagonal or bidiagonal form may be pipelined with the divide and conquer technique for computing the
eigensystem of a symmetric matrix or the singular value decomposition of a general matrix to achieve algorithms
which are load balanced and rich in matrix-matrix operations.



.

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

LAPACK Working Note #2

Block Reduction of Matrices to Condensed Forms for Eigenvalue Computations

Jack J. Dongarra, Sven J. Hammarling, and Danny C. Sorensen

Mathematics and Computer Science Division

Technical Memorandum No. 99

September 1987


