*> \brief ZGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZGEGS + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA, * VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK, * INFO ) * * .. Scalar Arguments .. * CHARACTER JOBVSL, JOBVSR * INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N * .. * .. Array Arguments .. * DOUBLE PRECISION RWORK( * ) * COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ), * $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ), * $ WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> This routine is deprecated and has been replaced by routine ZGGES. *> *> ZGEGS computes the eigenvalues, Schur form, and, optionally, the *> left and or/right Schur vectors of a complex matrix pair (A,B). *> Given two square matrices A and B, the generalized Schur *> factorization has the form *> *> A = Q*S*Z**H, B = Q*T*Z**H *> *> where Q and Z are unitary matrices and S and T are upper triangular. *> The columns of Q are the left Schur vectors *> and the columns of Z are the right Schur vectors. *> *> If only the eigenvalues of (A,B) are needed, the driver routine *> ZGEGV should be used instead. See ZGEGV for a description of the *> eigenvalues of the generalized nonsymmetric eigenvalue problem *> (GNEP). *> \endverbatim * * Arguments: * ========== * *> \param[in] JOBVSL *> \verbatim *> JOBVSL is CHARACTER*1 *> = 'N': do not compute the left Schur vectors; *> = 'V': compute the left Schur vectors (returned in VSL). *> \endverbatim *> *> \param[in] JOBVSR *> \verbatim *> JOBVSR is CHARACTER*1 *> = 'N': do not compute the right Schur vectors; *> = 'V': compute the right Schur vectors (returned in VSR). *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrices A, B, VSL, and VSR. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA, N) *> On entry, the matrix A. *> On exit, the upper triangular matrix S from the generalized *> Schur factorization. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of A. LDA >= max(1,N). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX*16 array, dimension (LDB, N) *> On entry, the matrix B. *> On exit, the upper triangular matrix T from the generalized *> Schur factorization. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of B. LDB >= max(1,N). *> \endverbatim *> *> \param[out] ALPHA *> \verbatim *> ALPHA is COMPLEX*16 array, dimension (N) *> The complex scalars alpha that define the eigenvalues of *> GNEP. ALPHA(j) = S(j,j), the diagonal element of the Schur *> form of A. *> \endverbatim *> *> \param[out] BETA *> \verbatim *> BETA is COMPLEX*16 array, dimension (N) *> The non-negative real scalars beta that define the *> eigenvalues of GNEP. BETA(j) = T(j,j), the diagonal element *> of the triangular factor T. *> *> Together, the quantities alpha = ALPHA(j) and beta = BETA(j) *> represent the j-th eigenvalue of the matrix pair (A,B), in *> one of the forms lambda = alpha/beta or mu = beta/alpha. *> Since either lambda or mu may overflow, they should not, *> in general, be computed. *> \endverbatim *> *> \param[out] VSL *> \verbatim *> VSL is COMPLEX*16 array, dimension (LDVSL,N) *> If JOBVSL = 'V', the matrix of left Schur vectors Q. *> Not referenced if JOBVSL = 'N'. *> \endverbatim *> *> \param[in] LDVSL *> \verbatim *> LDVSL is INTEGER *> The leading dimension of the matrix VSL. LDVSL >= 1, and *> if JOBVSL = 'V', LDVSL >= N. *> \endverbatim *> *> \param[out] VSR *> \verbatim *> VSR is COMPLEX*16 array, dimension (LDVSR,N) *> If JOBVSR = 'V', the matrix of right Schur vectors Z. *> Not referenced if JOBVSR = 'N'. *> \endverbatim *> *> \param[in] LDVSR *> \verbatim *> LDVSR is INTEGER *> The leading dimension of the matrix VSR. LDVSR >= 1, and *> if JOBVSR = 'V', LDVSR >= N. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= max(1,2*N). *> For good performance, LWORK must generally be larger. *> To compute the optimal value of LWORK, call ILAENV to get *> blocksizes (for ZGEQRF, ZUNMQR, and CUNGQR.) Then compute: *> NB -- MAX of the blocksizes for ZGEQRF, ZUNMQR, and CUNGQR; *> the optimal LWORK is N*(NB+1). *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (3*N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value. *> =1,...,N: *> The QZ iteration failed. (A,B) are not in Schur *> form, but ALPHA(j) and BETA(j) should be correct for *> j=INFO+1,...,N. *> > N: errors that usually indicate LAPACK problems: *> =N+1: error return from ZGGBAL *> =N+2: error return from ZGEQRF *> =N+3: error return from ZUNMQR *> =N+4: error return from ZUNGQR *> =N+5: error return from ZGGHRD *> =N+6: error return from ZHGEQZ (other than failed *> iteration) *> =N+7: error return from ZGGBAK (computing VSL) *> =N+8: error return from ZGGBAK (computing VSR) *> =N+9: error return from ZLASCL (various places) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex16GEeigen * * ===================================================================== SUBROUTINE ZGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA, $ VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK, $ INFO ) * * -- LAPACK driver routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER JOBVSL, JOBVSR INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N * .. * .. Array Arguments .. DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ), $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ), $ WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ), $ CONE = ( 1.0D0, 0.0D0 ) ) * .. * .. Local Scalars .. LOGICAL ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY INTEGER ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO, $ IRIGHT, IROWS, IRWORK, ITAU, IWORK, LOPT, $ LWKMIN, LWKOPT, NB, NB1, NB2, NB3 DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, $ SAFMIN, SMLNUM * .. * .. External Subroutines .. EXTERNAL XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD, ZHGEQZ, $ ZLACPY, ZLASCL, ZLASET, ZUNGQR, ZUNMQR * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV DOUBLE PRECISION DLAMCH, ZLANGE EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE * .. * .. Intrinsic Functions .. INTRINSIC INT, MAX * .. * .. Executable Statements .. * * Decode the input arguments * IF( LSAME( JOBVSL, 'N' ) ) THEN IJOBVL = 1 ILVSL = .FALSE. ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN IJOBVL = 2 ILVSL = .TRUE. ELSE IJOBVL = -1 ILVSL = .FALSE. END IF * IF( LSAME( JOBVSR, 'N' ) ) THEN IJOBVR = 1 ILVSR = .FALSE. ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN IJOBVR = 2 ILVSR = .TRUE. ELSE IJOBVR = -1 ILVSR = .FALSE. END IF * * Test the input arguments * LWKMIN = MAX( 2*N, 1 ) LWKOPT = LWKMIN WORK( 1 ) = LWKOPT LQUERY = ( LWORK.EQ.-1 ) INFO = 0 IF( IJOBVL.LE.0 ) THEN INFO = -1 ELSE IF( IJOBVR.LE.0 ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -7 ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN INFO = -11 ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN INFO = -13 ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -15 END IF * IF( INFO.EQ.0 ) THEN NB1 = ILAENV( 1, 'ZGEQRF', ' ', N, N, -1, -1 ) NB2 = ILAENV( 1, 'ZUNMQR', ' ', N, N, N, -1 ) NB3 = ILAENV( 1, 'ZUNGQR', ' ', N, N, N, -1 ) NB = MAX( NB1, NB2, NB3 ) LOPT = N*( NB+1 ) WORK( 1 ) = LOPT END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGEGS ', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Get machine constants * EPS = DLAMCH( 'E' )*DLAMCH( 'B' ) SAFMIN = DLAMCH( 'S' ) SMLNUM = N*SAFMIN / EPS BIGNUM = ONE / SMLNUM * * Scale A if max element outside range [SMLNUM,BIGNUM] * ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK ) ILASCL = .FALSE. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN ANRMTO = SMLNUM ILASCL = .TRUE. ELSE IF( ANRM.GT.BIGNUM ) THEN ANRMTO = BIGNUM ILASCL = .TRUE. END IF * IF( ILASCL ) THEN CALL ZLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 9 RETURN END IF END IF * * Scale B if max element outside range [SMLNUM,BIGNUM] * BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK ) ILBSCL = .FALSE. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN BNRMTO = SMLNUM ILBSCL = .TRUE. ELSE IF( BNRM.GT.BIGNUM ) THEN BNRMTO = BIGNUM ILBSCL = .TRUE. END IF * IF( ILBSCL ) THEN CALL ZLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 9 RETURN END IF END IF * * Permute the matrix to make it more nearly triangular * ILEFT = 1 IRIGHT = N + 1 IRWORK = IRIGHT + N IWORK = 1 CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ), $ RWORK( IRIGHT ), RWORK( IRWORK ), IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 1 GO TO 10 END IF * * Reduce B to triangular form, and initialize VSL and/or VSR * IROWS = IHI + 1 - ILO ICOLS = N + 1 - ILO ITAU = IWORK IWORK = ITAU + IROWS CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ), $ WORK( IWORK ), LWORK+1-IWORK, IINFO ) IF( IINFO.GE.0 ) $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 ) IF( IINFO.NE.0 ) THEN INFO = N + 2 GO TO 10 END IF * CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB, $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ), $ LWORK+1-IWORK, IINFO ) IF( IINFO.GE.0 ) $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 ) IF( IINFO.NE.0 ) THEN INFO = N + 3 GO TO 10 END IF * IF( ILVSL ) THEN CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL ) CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB, $ VSL( ILO+1, ILO ), LDVSL ) CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL, $ WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK, $ IINFO ) IF( IINFO.GE.0 ) $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 ) IF( IINFO.NE.0 ) THEN INFO = N + 4 GO TO 10 END IF END IF * IF( ILVSR ) $ CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR ) * * Reduce to generalized Hessenberg form * CALL ZGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL, $ LDVSL, VSR, LDVSR, IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 5 GO TO 10 END IF * * Perform QZ algorithm, computing Schur vectors if desired * IWORK = ITAU CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, $ ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWORK ), $ LWORK+1-IWORK, RWORK( IRWORK ), IINFO ) IF( IINFO.GE.0 ) $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 ) IF( IINFO.NE.0 ) THEN IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN INFO = IINFO ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN INFO = IINFO - N ELSE INFO = N + 6 END IF GO TO 10 END IF * * Apply permutation to VSL and VSR * IF( ILVSL ) THEN CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ), $ RWORK( IRIGHT ), N, VSL, LDVSL, IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 7 GO TO 10 END IF END IF IF( ILVSR ) THEN CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ), $ RWORK( IRIGHT ), N, VSR, LDVSR, IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 8 GO TO 10 END IF END IF * * Undo scaling * IF( ILASCL ) THEN CALL ZLASCL( 'U', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 9 RETURN END IF CALL ZLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHA, N, IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 9 RETURN END IF END IF * IF( ILBSCL ) THEN CALL ZLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 9 RETURN END IF CALL ZLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 9 RETURN END IF END IF * 10 CONTINUE WORK( 1 ) = LWKOPT * RETURN * * End of ZGEGS * END