SUBROUTINE DLATM4( ITYPE, N, NZ1, NZ2, ISIGN, AMAGN, RCOND,
$ TRIANG, IDIST, ISEED, A, LDA )
*
* -- LAPACK auxiliary test routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER IDIST, ISIGN, ITYPE, LDA, N, NZ1, NZ2
DOUBLE PRECISION AMAGN, RCOND, TRIANG
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
DOUBLE PRECISION A( LDA, * )
* ..
*
* Purpose
* =======
*
* DLATM4 generates basic square matrices, which may later be
* multiplied by others in order to produce test matrices. It is
* intended mainly to be used to test the generalized eigenvalue
* routines.
*
* It first generates the diagonal and (possibly) subdiagonal,
* according to the value of ITYPE, NZ1, NZ2, ISIGN, AMAGN, and RCOND.
* It then fills in the upper triangle with random numbers, if TRIANG is
* non-zero.
*
* Arguments
* =========
*
* ITYPE (input) INTEGER
* The "type" of matrix on the diagonal and sub-diagonal.
* If ITYPE < 0, then type abs(ITYPE) is generated and then
* swapped end for end (A(I,J) := A'(N-J,N-I).) See also
* the description of AMAGN and ISIGN.
*
* Special types:
* = 0: the zero matrix.
* = 1: the identity.
* = 2: a transposed Jordan block.
* = 3: If N is odd, then a k+1 x k+1 transposed Jordan block
* followed by a k x k identity block, where k=(N-1)/2.
* If N is even, then k=(N-2)/2, and a zero diagonal entry
* is tacked onto the end.
*
* Diagonal types. The diagonal consists of NZ1 zeros, then
* k=N-NZ1-NZ2 nonzeros. The subdiagonal is zero. ITYPE
* specifies the nonzero diagonal entries as follows:
* = 4: 1, ..., k
* = 5: 1, RCOND, ..., RCOND
* = 6: 1, ..., 1, RCOND
* = 7: 1, a, a^2, ..., a^(k-1)=RCOND
* = 8: 1, 1-d, 1-2*d, ..., 1-(k-1)*d=RCOND
* = 9: random numbers chosen from (RCOND,1)
* = 10: random numbers with distribution IDIST (see DLARND.)
*
* N (input) INTEGER
* The order of the matrix.
*
* NZ1 (input) INTEGER
* If abs(ITYPE) > 3, then the first NZ1 diagonal entries will
* be zero.
*
* NZ2 (input) INTEGER
* If abs(ITYPE) > 3, then the last NZ2 diagonal entries will
* be zero.
*
* ISIGN (input) INTEGER
* = 0: The sign of the diagonal and subdiagonal entries will
* be left unchanged.
* = 1: The diagonal and subdiagonal entries will have their
* sign changed at random.
* = 2: If ITYPE is 2 or 3, then the same as ISIGN=1.
* Otherwise, with probability 0.5, odd-even pairs of
* diagonal entries A(2*j-1,2*j-1), A(2*j,2*j) will be
* converted to a 2x2 block by pre- and post-multiplying
* by distinct random orthogonal rotations. The remaining
* diagonal entries will have their sign changed at random.
*
* AMAGN (input) DOUBLE PRECISION
* The diagonal and subdiagonal entries will be multiplied by
* AMAGN.
*
* RCOND (input) DOUBLE PRECISION
* If abs(ITYPE) > 4, then the smallest diagonal entry will be
* entry will be RCOND. RCOND must be between 0 and 1.
*
* TRIANG (input) DOUBLE PRECISION
* The entries above the diagonal will be random numbers with
* magnitude bounded by TRIANG (i.e., random numbers multiplied
* by TRIANG.)
*
* IDIST (input) INTEGER
* Specifies the type of distribution to be used to generate a
* random matrix.
* = 1: UNIFORM( 0, 1 )
* = 2: UNIFORM( -1, 1 )
* = 3: NORMAL ( 0, 1 )
*
* ISEED (input/output) INTEGER array, dimension (4)
* On entry ISEED specifies the seed of the random number
* generator. The values of ISEED are changed on exit, and can
* be used in the next call to DLATM4 to continue the same
* random number sequence.
* Note: ISEED(4) should be odd, for the random number generator
* used at present.
*
* A (output) DOUBLE PRECISION array, dimension (LDA, N)
* Array to be computed.
*
* LDA (input) INTEGER
* Leading dimension of A. Must be at least 1 and at least N.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
DOUBLE PRECISION HALF
PARAMETER ( HALF = ONE / TWO )
* ..
* .. Local Scalars ..
INTEGER I, IOFF, ISDB, ISDE, JC, JD, JR, K, KBEG, KEND,
$ KLEN
DOUBLE PRECISION ALPHA, CL, CR, SAFMIN, SL, SR, SV1, SV2, TEMP
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLARAN, DLARND
EXTERNAL DLAMCH, DLARAN, DLARND
* ..
* .. External Subroutines ..
EXTERNAL DLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, EXP, LOG, MAX, MIN, MOD, SQRT
* ..
* .. Executable Statements ..
*
IF( N.LE.0 )
$ RETURN
CALL DLASET( 'Full', N, N, ZERO, ZERO, A, LDA )
*
* Insure a correct ISEED
*
IF( MOD( ISEED( 4 ), 2 ).NE.1 )
$ ISEED( 4 ) = ISEED( 4 ) + 1
*
* Compute diagonal and subdiagonal according to ITYPE, NZ1, NZ2,
* and RCOND
*
IF( ITYPE.NE.0 ) THEN
IF( ABS( ITYPE ).GE.4 ) THEN
KBEG = MAX( 1, MIN( N, NZ1+1 ) )
KEND = MAX( KBEG, MIN( N, N-NZ2 ) )
KLEN = KEND + 1 - KBEG
ELSE
KBEG = 1
KEND = N
KLEN = N
END IF
ISDB = 1
ISDE = 0
GO TO ( 10, 30, 50, 80, 100, 120, 140, 160,
$ 180, 200 )ABS( ITYPE )
*
* abs(ITYPE) = 1: Identity
*
10 CONTINUE
DO 20 JD = 1, N
A( JD, JD ) = ONE
20 CONTINUE
GO TO 220
*
* abs(ITYPE) = 2: Transposed Jordan block
*
30 CONTINUE
DO 40 JD = 1, N - 1
A( JD+1, JD ) = ONE
40 CONTINUE
ISDB = 1
ISDE = N - 1
GO TO 220
*
* abs(ITYPE) = 3: Transposed Jordan block, followed by the
* identity.
*
50 CONTINUE
K = ( N-1 ) / 2
DO 60 JD = 1, K
A( JD+1, JD ) = ONE
60 CONTINUE
ISDB = 1
ISDE = K
DO 70 JD = K + 2, 2*K + 1
A( JD, JD ) = ONE
70 CONTINUE
GO TO 220
*
* abs(ITYPE) = 4: 1,...,k
*
80 CONTINUE
DO 90 JD = KBEG, KEND
A( JD, JD ) = DBLE( JD-NZ1 )
90 CONTINUE
GO TO 220
*
* abs(ITYPE) = 5: One large D value:
*
100 CONTINUE
DO 110 JD = KBEG + 1, KEND
A( JD, JD ) = RCOND
110 CONTINUE
A( KBEG, KBEG ) = ONE
GO TO 220
*
* abs(ITYPE) = 6: One small D value:
*
120 CONTINUE
DO 130 JD = KBEG, KEND - 1
A( JD, JD ) = ONE
130 CONTINUE
A( KEND, KEND ) = RCOND
GO TO 220
*
* abs(ITYPE) = 7: Exponentially distributed D values:
*
140 CONTINUE
A( KBEG, KBEG ) = ONE
IF( KLEN.GT.1 ) THEN
ALPHA = RCOND**( ONE / DBLE( KLEN-1 ) )
DO 150 I = 2, KLEN
A( NZ1+I, NZ1+I ) = ALPHA**DBLE( I-1 )
150 CONTINUE
END IF
GO TO 220
*
* abs(ITYPE) = 8: Arithmetically distributed D values:
*
160 CONTINUE
A( KBEG, KBEG ) = ONE
IF( KLEN.GT.1 ) THEN
ALPHA = ( ONE-RCOND ) / DBLE( KLEN-1 )
DO 170 I = 2, KLEN
A( NZ1+I, NZ1+I ) = DBLE( KLEN-I )*ALPHA + RCOND
170 CONTINUE
END IF
GO TO 220
*
* abs(ITYPE) = 9: Randomly distributed D values on ( RCOND, 1):
*
180 CONTINUE
ALPHA = LOG( RCOND )
DO 190 JD = KBEG, KEND
A( JD, JD ) = EXP( ALPHA*DLARAN( ISEED ) )
190 CONTINUE
GO TO 220
*
* abs(ITYPE) = 10: Randomly distributed D values from DIST
*
200 CONTINUE
DO 210 JD = KBEG, KEND
A( JD, JD ) = DLARND( IDIST, ISEED )
210 CONTINUE
*
220 CONTINUE
*
* Scale by AMAGN
*
DO 230 JD = KBEG, KEND
A( JD, JD ) = AMAGN*DBLE( A( JD, JD ) )
230 CONTINUE
DO 240 JD = ISDB, ISDE
A( JD+1, JD ) = AMAGN*DBLE( A( JD+1, JD ) )
240 CONTINUE
*
* If ISIGN = 1 or 2, assign random signs to diagonal and
* subdiagonal
*
IF( ISIGN.GT.0 ) THEN
DO 250 JD = KBEG, KEND
IF( DBLE( A( JD, JD ) ).NE.ZERO ) THEN
IF( DLARAN( ISEED ).GT.HALF )
$ A( JD, JD ) = -A( JD, JD )
END IF
250 CONTINUE
DO 260 JD = ISDB, ISDE
IF( DBLE( A( JD+1, JD ) ).NE.ZERO ) THEN
IF( DLARAN( ISEED ).GT.HALF )
$ A( JD+1, JD ) = -A( JD+1, JD )
END IF
260 CONTINUE
END IF
*
* Reverse if ITYPE < 0
*
IF( ITYPE.LT.0 ) THEN
DO 270 JD = KBEG, ( KBEG+KEND-1 ) / 2
TEMP = A( JD, JD )
A( JD, JD ) = A( KBEG+KEND-JD, KBEG+KEND-JD )
A( KBEG+KEND-JD, KBEG+KEND-JD ) = TEMP
270 CONTINUE
DO 280 JD = 1, ( N-1 ) / 2
TEMP = A( JD+1, JD )
A( JD+1, JD ) = A( N+1-JD, N-JD )
A( N+1-JD, N-JD ) = TEMP
280 CONTINUE
END IF
*
* If ISIGN = 2, and no subdiagonals already, then apply
* random rotations to make 2x2 blocks.
*
IF( ISIGN.EQ.2 .AND. ITYPE.NE.2 .AND. ITYPE.NE.3 ) THEN
SAFMIN = DLAMCH( 'S' )
DO 290 JD = KBEG, KEND - 1, 2
IF( DLARAN( ISEED ).GT.HALF ) THEN
*
* Rotation on left.
*
CL = TWO*DLARAN( ISEED ) - ONE
SL = TWO*DLARAN( ISEED ) - ONE
TEMP = ONE / MAX( SAFMIN, SQRT( CL**2+SL**2 ) )
CL = CL*TEMP
SL = SL*TEMP
*
* Rotation on right.
*
CR = TWO*DLARAN( ISEED ) - ONE
SR = TWO*DLARAN( ISEED ) - ONE
TEMP = ONE / MAX( SAFMIN, SQRT( CR**2+SR**2 ) )
CR = CR*TEMP
SR = SR*TEMP
*
* Apply
*
SV1 = A( JD, JD )
SV2 = A( JD+1, JD+1 )
A( JD, JD ) = CL*CR*SV1 + SL*SR*SV2
A( JD+1, JD ) = -SL*CR*SV1 + CL*SR*SV2
A( JD, JD+1 ) = -CL*SR*SV1 + SL*CR*SV2
A( JD+1, JD+1 ) = SL*SR*SV1 + CL*CR*SV2
END IF
290 CONTINUE
END IF
*
END IF
*
* Fill in upper triangle (except for 2x2 blocks)
*
IF( TRIANG.NE.ZERO ) THEN
IF( ISIGN.NE.2 .OR. ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN
IOFF = 1
ELSE
IOFF = 2
DO 300 JR = 1, N - 1
IF( A( JR+1, JR ).EQ.ZERO )
$ A( JR, JR+1 ) = TRIANG*DLARND( IDIST, ISEED )
300 CONTINUE
END IF
*
DO 320 JC = 2, N
DO 310 JR = 1, JC - IOFF
A( JR, JC ) = TRIANG*DLARND( IDIST, ISEED )
310 CONTINUE
320 CONTINUE
END IF
*
RETURN
*
* End of DLATM4
*
END