SUBROUTINE CCHKTZ( DOTYPE, NM, MVAL, NN, NVAL, THRESH, TSTERR, A, $ COPYA, S, COPYS, TAU, WORK, RWORK, NOUT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. LOGICAL TSTERR INTEGER NM, NN, NOUT REAL THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER MVAL( * ), NVAL( * ) REAL COPYS( * ), RWORK( * ), S( * ) COMPLEX A( * ), COPYA( * ), TAU( * ), WORK( * ) * .. * * Purpose * ======= * * CCHKTZ tests CTZRQF and CTZRZF. * * Arguments * ========= * * DOTYPE (input) LOGICAL array, dimension (NTYPES) * The matrix types to be used for testing. Matrices of type j * (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = * .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. * * NM (input) INTEGER * The number of values of M contained in the vector MVAL. * * MVAL (input) INTEGER array, dimension (NM) * The values of the matrix row dimension M. * * NN (input) INTEGER * The number of values of N contained in the vector NVAL. * * NVAL (input) INTEGER array, dimension (NN) * The values of the matrix column dimension N. * * THRESH (input) REAL * The threshold value for the test ratios. A result is * included in the output file if RESULT >= THRESH. To have * every test ratio printed, use THRESH = 0. * * TSTERR (input) LOGICAL * Flag that indicates whether error exits are to be tested. * * A (workspace) COMPLEX array, dimension (MMAX*NMAX) * where MMAX is the maximum value of M in MVAL and NMAX is the * maximum value of N in NVAL. * * COPYA (workspace) COMPLEX array, dimension (MMAX*NMAX) * * S (workspace) REAL array, dimension * (min(MMAX,NMAX)) * * COPYS (workspace) REAL array, dimension * (min(MMAX,NMAX)) * * TAU (workspace) COMPLEX array, dimension (MMAX) * * WORK (workspace) COMPLEX array, dimension * (MMAX*NMAX + 4*NMAX + MMAX) * * RWORK (workspace) REAL array, dimension (2*NMAX) * * NOUT (input) INTEGER * The unit number for output. * * ===================================================================== * * .. Parameters .. INTEGER NTYPES PARAMETER ( NTYPES = 3 ) INTEGER NTESTS PARAMETER ( NTESTS = 6 ) REAL ONE, ZERO PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0 ) * .. * .. Local Scalars .. CHARACTER*3 PATH INTEGER I, IM, IMODE, IN, INFO, K, LDA, LWORK, M, $ MNMIN, MODE, N, NERRS, NFAIL, NRUN REAL EPS * .. * .. Local Arrays .. INTEGER ISEED( 4 ), ISEEDY( 4 ) REAL RESULT( NTESTS ) * .. * .. External Functions .. REAL CQRT12, CRZT01, CRZT02, CTZT01, CTZT02, SLAMCH EXTERNAL CQRT12, CRZT01, CRZT02, CTZT01, CTZT02, SLAMCH * .. * .. External Subroutines .. EXTERNAL ALAHD, ALASUM, CERRTZ, CGEQR2, CLACPY, CLASET, $ CLATMS, CTZRQF, CTZRZF, SLAORD * .. * .. Intrinsic Functions .. INTRINSIC CMPLX, MAX, MIN * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, IOUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, IOUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * PATH( 1: 1 ) = 'Complex precision' PATH( 2: 3 ) = 'TZ' NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE EPS = SLAMCH( 'Epsilon' ) * * Test the error exits * IF( TSTERR ) $ CALL CERRTZ( PATH, NOUT ) INFOT = 0 * DO 70 IM = 1, NM * * Do for each value of M in MVAL. * M = MVAL( IM ) LDA = MAX( 1, M ) * DO 60 IN = 1, NN * * Do for each value of N in NVAL for which M .LE. N. * N = NVAL( IN ) MNMIN = MIN( M, N ) LWORK = MAX( 1, N*N+4*M+N ) * IF( M.LE.N ) THEN DO 50 IMODE = 1, NTYPES * * Do for each type of singular value distribution. * 0: zero matrix * 1: one small singular value * 2: exponential distribution * MODE = IMODE - 1 * * Test CTZRQF * * Generate test matrix of size m by n using * singular value distribution indicated by `mode'. * IF( MODE.EQ.0 ) THEN CALL CLASET( 'Full', M, N, CMPLX( ZERO ), $ CMPLX( ZERO ), A, LDA ) DO 20 I = 1, MNMIN COPYS( I ) = ZERO 20 CONTINUE ELSE CALL CLATMS( M, N, 'Uniform', ISEED, $ 'Nonsymmetric', COPYS, IMODE, $ ONE / EPS, ONE, M, N, 'No packing', A, $ LDA, WORK, INFO ) CALL CGEQR2( M, N, A, LDA, WORK, WORK( MNMIN+1 ), $ INFO ) CALL CLASET( 'Lower', M-1, N, CMPLX( ZERO ), $ CMPLX( ZERO ), A( 2 ), LDA ) CALL SLAORD( 'Decreasing', MNMIN, COPYS, 1 ) END IF * * Save A and its singular values * CALL CLACPY( 'All', M, N, A, LDA, COPYA, LDA ) * * Call CTZRQF to reduce the upper trapezoidal matrix to * upper triangular form. * SRNAMT = 'CTZRQF' CALL CTZRQF( M, N, A, LDA, TAU, INFO ) * * Compute norm(svd(a) - svd(r)) * RESULT( 1 ) = CQRT12( M, M, A, LDA, COPYS, WORK, $ LWORK, RWORK ) * * Compute norm( A - R*Q ) * RESULT( 2 ) = CTZT01( M, N, COPYA, A, LDA, TAU, WORK, $ LWORK ) * * Compute norm(Q'*Q - I). * RESULT( 3 ) = CTZT02( M, N, A, LDA, TAU, WORK, LWORK ) * * Test CTZRZF * * Generate test matrix of size m by n using * singular value distribution indicated by `mode'. * IF( MODE.EQ.0 ) THEN CALL CLASET( 'Full', M, N, CMPLX( ZERO ), $ CMPLX( ZERO ), A, LDA ) DO 30 I = 1, MNMIN COPYS( I ) = ZERO 30 CONTINUE ELSE CALL CLATMS( M, N, 'Uniform', ISEED, $ 'Nonsymmetric', COPYS, IMODE, $ ONE / EPS, ONE, M, N, 'No packing', A, $ LDA, WORK, INFO ) CALL CGEQR2( M, N, A, LDA, WORK, WORK( MNMIN+1 ), $ INFO ) CALL CLASET( 'Lower', M-1, N, CMPLX( ZERO ), $ CMPLX( ZERO ), A( 2 ), LDA ) CALL SLAORD( 'Decreasing', MNMIN, COPYS, 1 ) END IF * * Save A and its singular values * CALL CLACPY( 'All', M, N, A, LDA, COPYA, LDA ) * * Call CTZRZF to reduce the upper trapezoidal matrix to * upper triangular form. * SRNAMT = 'CTZRZF' CALL CTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * * Compute norm(svd(a) - svd(r)) * RESULT( 4 ) = CQRT12( M, M, A, LDA, COPYS, WORK, $ LWORK, RWORK ) * * Compute norm( A - R*Q ) * RESULT( 5 ) = CRZT01( M, N, COPYA, A, LDA, TAU, WORK, $ LWORK ) * * Compute norm(Q'*Q - I). * RESULT( 6 ) = CRZT02( M, N, A, LDA, TAU, WORK, LWORK ) * * Print information about the tests that did not pass * the threshold. * DO 40 K = 1, 6 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )M, N, IMODE, K, $ RESULT( K ) NFAIL = NFAIL + 1 END IF 40 CONTINUE NRUN = NRUN + 6 50 CONTINUE END IF 60 CONTINUE 70 CONTINUE * * Print a summary of the results. * CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( ' M =', I5, ', N =', I5, ', type ', I2, ', test ', I2, $ ', ratio =', G12.5 ) * * End if CCHKTZ * END