.TH ZROT 1 "November 2006" " LAPACK auxiliary routine (version 3.1) " " LAPACK auxiliary routine (version 3.1) " .SH NAME ZROT - a plane rotation, where the cos (C) is real and the sin (S) is complex, and the vectors CX and CY are complex .SH SYNOPSIS .TP 17 SUBROUTINE ZROT( N, CX, INCX, CY, INCY, C, S ) .TP 17 .ti +4 INTEGER INCX, INCY, N .TP 17 .ti +4 DOUBLE PRECISION C .TP 17 .ti +4 COMPLEX*16 S .TP 17 .ti +4 COMPLEX*16 CX( * ), CY( * ) .SH PURPOSE ZROT applies a plane rotation, where the cos (C) is real and the sin (S) is complex, and the vectors CX and CY are complex. .SH ARGUMENTS .TP 8 N (input) INTEGER The number of elements in the vectors CX and CY. .TP 8 CX (input/output) COMPLEX*16 array, dimension (N) On input, the vector X. On output, CX is overwritten with C*X + S*Y. .TP 8 INCX (input) INTEGER The increment between successive values of CY. INCX <> 0. .TP 8 CY (input/output) COMPLEX*16 array, dimension (N) On input, the vector Y. On output, CY is overwritten with -CONJG(S)*X + C*Y. .TP 8 INCY (input) INTEGER The increment between successive values of CY. INCX <> 0. .TP 8 C (input) DOUBLE PRECISION S (input) COMPLEX*16 C and S define a rotation [ C S ] [ -conjg(S) C ] where C*C + S*CONJG(S) = 1.0.