.TH ZPTTS2 1 "November 2006" " LAPACK routine (version 3.1) " " LAPACK routine (version 3.1) "
.SH NAME
ZPTTS2 - a tridiagonal system of the form A * X = B using the factorization A = U\(aq*D*U or A = L*D*L\(aq computed by ZPTTRF
.SH SYNOPSIS
.TP 19
SUBROUTINE ZPTTS2(
IUPLO, N, NRHS, D, E, B, LDB )
.TP 19
.ti +4
INTEGER
IUPLO, LDB, N, NRHS
.TP 19
.ti +4
DOUBLE
PRECISION D( * )
.TP 19
.ti +4
COMPLEX*16
B( LDB, * ), E( * )
.SH PURPOSE
ZPTTS2 solves a tridiagonal system of the form
A * X = B
using the factorization A = U\(aq*D*U or A = L*D*L\(aq computed by ZPTTRF.
D is a diagonal matrix specified in the vector D, U (or L) is a unit
bidiagonal matrix whose superdiagonal (subdiagonal) is specified in
the vector E, and X and B are N by NRHS matrices.
.br
.SH ARGUMENTS
.TP 8
IUPLO (input) INTEGER
Specifies the form of the factorization and whether the
vector E is the superdiagonal of the upper bidiagonal factor
U or the subdiagonal of the lower bidiagonal factor L.
= 1: A = U\(aq*D*U, E is the superdiagonal of U
.br
= 0: A = L*D*L\(aq, E is the subdiagonal of L
.TP 8
N (input) INTEGER
The order of the tridiagonal matrix A. N >= 0.
.TP 8
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
.TP 8
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
factorization A = U\(aq*D*U or A = L*D*L\(aq.
.TP 8
E (input) COMPLEX*16 array, dimension (N-1)
If IUPLO = 1, the (n-1) superdiagonal elements of the unit
bidiagonal factor U from the factorization A = U\(aq*D*U.
If IUPLO = 0, the (n-1) subdiagonal elements of the unit
bidiagonal factor L from the factorization A = L*D*L\(aq.
.TP 8
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side vectors B for the system of
linear equations.
On exit, the solution vectors, X.
.TP 8
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).