.TH DORGLQ 1 "November 2006" " LAPACK routine (version 3.1) " " LAPACK routine (version 3.1) " .SH NAME DORGLQ - an M-by-N real matrix Q with orthonormal rows, .SH SYNOPSIS .TP 19 SUBROUTINE DORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO ) .TP 19 .ti +4 INTEGER INFO, K, LDA, LWORK, M, N .TP 19 .ti +4 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) .SH PURPOSE DORGLQ generates an M-by-N real matrix Q with orthonormal rows, which is defined as the first M rows of a product of K elementary reflectors of order N .br Q = H(k) . . . H(2) H(1) .br as returned by DGELQF. .br .SH ARGUMENTS .TP 8 M (input) INTEGER The number of rows of the matrix Q. M >= 0. .TP 8 N (input) INTEGER The number of columns of the matrix Q. N >= M. .TP 8 K (input) INTEGER The number of elementary reflectors whose product defines the matrix Q. M >= K >= 0. .TP 8 A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DGELQF in the first k rows of its array argument A. On exit, the M-by-N matrix Q. .TP 8 LDA (input) INTEGER The first dimension of the array A. LDA >= max(1,M). .TP 8 TAU (input) DOUBLE PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGELQF. .TP 8 WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. .TP 8 LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,M). For optimum performance LWORK >= M*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. .TP 8 INFO (output) INTEGER = 0: successful exit .br < 0: if INFO = -i, the i-th argument has an illegal value