.TH DGEQLF 1 "November 2006" " LAPACK routine (version 3.1) " " LAPACK routine (version 3.1) " .SH NAME DGEQLF - a QL factorization of a real M-by-N matrix A .SH SYNOPSIS .TP 19 SUBROUTINE DGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) .TP 19 .ti +4 INTEGER INFO, LDA, LWORK, M, N .TP 19 .ti +4 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) .SH PURPOSE DGEQLF computes a QL factorization of a real M-by-N matrix A: A = Q * L. .br .SH ARGUMENTS .TP 8 M (input) INTEGER The number of rows of the matrix A. M >= 0. .TP 8 N (input) INTEGER The number of columns of the matrix A. N >= 0. .TP 8 A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, if m >= n, the lower triangle of the subarray A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L; if m <= n, the elements on and below the (n-m)-th superdiagonal contain the M-by-N lower trapezoidal matrix L; the remaining elements, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details). LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). .TP 8 TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). .TP 8 WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. .TP 8 LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,N). For optimum performance LWORK >= N*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. .TP 8 INFO (output) INTEGER = 0: successful exit .br < 0: if INFO = -i, the i-th argument had an illegal value .SH FURTHER DETAILS The matrix Q is represented as a product of elementary reflectors Q = H(k) . . . H(2) H(1), where k = min(m,n). .br Each H(i) has the form .br H(i) = I - tau * v * v\(aq .br where tau is a real scalar, and v is a real vector with .br v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i). .br