```      SUBROUTINE ZLARGV( N, X, INCX, Y, INCY, C, INCC )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
INTEGER            INCC, INCX, INCY, N
*     ..
*     .. Array Arguments ..
DOUBLE PRECISION   C( * )
COMPLEX*16         X( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*  ZLARGV generates a vector of complex plane rotations with real
*  cosines, determined by elements of the complex vectors x and y.
*  For i = 1,2,...,n
*
*     (        c(i)   s(i) ) ( x(i) ) = ( r(i) )
*     ( -conjg(s(i))  c(i) ) ( y(i) ) = (   0  )
*
*     where c(i)**2 + ABS(s(i))**2 = 1
*
*  The following conventions are used (these are the same as in ZLARTG,
*  but differ from the BLAS1 routine ZROTG):
*     If y(i)=0, then c(i)=1 and s(i)=0.
*     If x(i)=0, then c(i)=0 and s(i) is chosen so that r(i) is real.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The number of plane rotations to be generated.
*
*  X       (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX)
*          On entry, the vector x.
*          On exit, x(i) is overwritten by r(i), for i = 1,...,n.
*
*  INCX    (input) INTEGER
*          The increment between elements of X. INCX > 0.
*
*  Y       (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCY)
*          On entry, the vector y.
*          On exit, the sines of the plane rotations.
*
*  INCY    (input) INTEGER
*          The increment between elements of Y. INCY > 0.
*
*  C       (output) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
*          The cosines of the plane rotations.
*
*  INCC    (input) INTEGER
*          The increment between elements of C. INCC > 0.
*
*  Further Details
*  ======= =======
*
*  6-6-96 - Modified with a new algorithm by W. Kahan and J. Demmel
*
*  This version has a few statements commented out for thread safety
*  (machine parameters are computed on each entry). 10 feb 03, SJH.
*
*  =====================================================================
*
*     .. Parameters ..
DOUBLE PRECISION   TWO, ONE, ZERO
PARAMETER          ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
COMPLEX*16         CZERO
PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
*     LOGICAL            FIRST

INTEGER            COUNT, I, IC, IX, IY, J
DOUBLE PRECISION   CS, D, DI, DR, EPS, F2, F2S, G2, G2S, SAFMIN,
\$                   SAFMN2, SAFMX2, SCALE
COMPLEX*16         F, FF, FS, G, GS, R, SN
*     ..
*     .. External Functions ..
DOUBLE PRECISION   DLAMCH, DLAPY2
EXTERNAL           DLAMCH, DLAPY2
*     ..
*     .. Intrinsic Functions ..
INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, LOG,
\$                   MAX, SQRT
*     ..
*     .. Statement Functions ..
DOUBLE PRECISION   ABS1, ABSSQ
*     ..
*     .. Save statement ..
*     SAVE               FIRST, SAFMX2, SAFMIN, SAFMN2
*     ..
*     .. Data statements ..
*     DATA               FIRST / .TRUE. /
*     ..
*     .. Statement Function definitions ..
ABS1( FF ) = MAX( ABS( DBLE( FF ) ), ABS( DIMAG( FF ) ) )
ABSSQ( FF ) = DBLE( FF )**2 + DIMAG( FF )**2
*     ..
*     .. Executable Statements ..
*
*     IF( FIRST ) THEN
*        FIRST = .FALSE.
SAFMIN = DLAMCH( 'S' )
EPS = DLAMCH( 'E' )
SAFMN2 = DLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /
\$            LOG( DLAMCH( 'B' ) ) / TWO )
SAFMX2 = ONE / SAFMN2
*     END IF
IX = 1
IY = 1
IC = 1
DO 60 I = 1, N
F = X( IX )
G = Y( IY )
*
*        Use identical algorithm as in ZLARTG
*
SCALE = MAX( ABS1( F ), ABS1( G ) )
FS = F
GS = G
COUNT = 0
IF( SCALE.GE.SAFMX2 ) THEN
10       CONTINUE
COUNT = COUNT + 1
FS = FS*SAFMN2
GS = GS*SAFMN2
SCALE = SCALE*SAFMN2
IF( SCALE.GE.SAFMX2 )
\$         GO TO 10
ELSE IF( SCALE.LE.SAFMN2 ) THEN
IF( G.EQ.CZERO ) THEN
CS = ONE
SN = CZERO
R = F
GO TO 50
END IF
20       CONTINUE
COUNT = COUNT - 1
FS = FS*SAFMX2
GS = GS*SAFMX2
SCALE = SCALE*SAFMX2
IF( SCALE.LE.SAFMN2 )
\$         GO TO 20
END IF
F2 = ABSSQ( FS )
G2 = ABSSQ( GS )
IF( F2.LE.MAX( G2, ONE )*SAFMIN ) THEN
*
*           This is a rare case: F is very small.
*
IF( F.EQ.CZERO ) THEN
CS = ZERO
R = DLAPY2( DBLE( G ), DIMAG( G ) )
*              Do complex/real division explicitly with two real
*              divisions
D = DLAPY2( DBLE( GS ), DIMAG( GS ) )
SN = DCMPLX( DBLE( GS ) / D, -DIMAG( GS ) / D )
GO TO 50
END IF
F2S = DLAPY2( DBLE( FS ), DIMAG( FS ) )
*           G2 and G2S are accurate
*           G2 is at least SAFMIN, and G2S is at least SAFMN2
G2S = SQRT( G2 )
*           Error in CS from underflow in F2S is at most
*           UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS
*           If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN,
*           and so CS .lt. sqrt(SAFMIN)
*           If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN
*           and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS)
*           Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S
CS = F2S / G2S
*           Make sure abs(FF) = 1
*           Do complex/real division explicitly with 2 real divisions
IF( ABS1( F ).GT.ONE ) THEN
D = DLAPY2( DBLE( F ), DIMAG( F ) )
FF = DCMPLX( DBLE( F ) / D, DIMAG( F ) / D )
ELSE
DR = SAFMX2*DBLE( F )
DI = SAFMX2*DIMAG( F )
D = DLAPY2( DR, DI )
FF = DCMPLX( DR / D, DI / D )
END IF
SN = FF*DCMPLX( DBLE( GS ) / G2S, -DIMAG( GS ) / G2S )
R = CS*F + SN*G
ELSE
*
*           This is the most common case.
*           Neither F2 nor F2/G2 are less than SAFMIN
*           F2S cannot overflow, and it is accurate
*
F2S = SQRT( ONE+G2 / F2 )
*           Do the F2S(real)*FS(complex) multiply with two real
*           multiplies
R = DCMPLX( F2S*DBLE( FS ), F2S*DIMAG( FS ) )
CS = ONE / F2S
D = F2 + G2
*           Do complex/real division explicitly with two real divisions
SN = DCMPLX( DBLE( R ) / D, DIMAG( R ) / D )
SN = SN*DCONJG( GS )
IF( COUNT.NE.0 ) THEN
IF( COUNT.GT.0 ) THEN
DO 30 J = 1, COUNT
R = R*SAFMX2
30             CONTINUE
ELSE
DO 40 J = 1, -COUNT
R = R*SAFMN2
40             CONTINUE
END IF
END IF
END IF
50    CONTINUE
C( IC ) = CS
Y( IY ) = SN
X( IX ) = R
IC = IC + INCC
IY = IY + INCY
IX = IX + INCX
60 CONTINUE
RETURN
*
*     End of ZLARGV
*
END

```