```      SUBROUTINE ZGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK,
\$                   INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
INTEGER            INFO, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
INTEGER            JPVT( * )
DOUBLE PRECISION   RWORK( * )
COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  ZGEQP3 computes a QR factorization with column pivoting of a
*  matrix A:  A*P = Q*R  using Level 3 BLAS.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
*          On entry, the M-by-N matrix A.
*          On exit, the upper triangle of the array contains the
*          min(M,N)-by-N upper trapezoidal matrix R; the elements below
*          the diagonal, together with the array TAU, represent the
*          unitary matrix Q as a product of min(M,N) elementary
*          reflectors.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,M).
*
*  JPVT    (input/output) INTEGER array, dimension (N)
*          On entry, if JPVT(J).ne.0, the J-th column of A is permuted
*          to the front of A*P (a leading column); if JPVT(J)=0,
*          the J-th column of A is a free column.
*          On exit, if JPVT(J)=K, then the J-th column of A*P was the
*          the K-th column of A.
*
*  TAU     (output) COMPLEX*16 array, dimension (min(M,N))
*          The scalar factors of the elementary reflectors.
*
*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
*          On exit, if INFO=0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= N+1.
*          For optimal performance LWORK >= ( N+1 )*NB, where NB
*          is the optimal blocksize.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
*
*  INFO    (output) INTEGER
*          = 0: successful exit.
*          < 0: if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  The matrix Q is represented as a product of elementary reflectors
*
*     Q = H(1) H(2) . . . H(k), where k = min(m,n).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a real/complex scalar, and v is a real/complex vector
*  with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
*  A(i+1:m,i), and tau in TAU(i).
*
*  Based on contributions by
*    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
*    X. Sun, Computer Science Dept., Duke University, USA
*
*  =====================================================================
*
*     .. Parameters ..
INTEGER            INB, INBMIN, IXOVER
PARAMETER          ( INB = 1, INBMIN = 2, IXOVER = 3 )
*     ..
*     .. Local Scalars ..
LOGICAL            LQUERY
INTEGER            FJB, IWS, J, JB, LWKOPT, MINMN, MINWS, NA, NB,
\$                   NBMIN, NFXD, NX, SM, SMINMN, SN, TOPBMN
*     ..
*     .. External Subroutines ..
EXTERNAL           XERBLA, ZGEQRF, ZLAQP2, ZLAQPS, ZSWAP, ZUNMQR
*     ..
*     .. External Functions ..
INTEGER            ILAENV
DOUBLE PRECISION   DZNRM2
EXTERNAL           ILAENV, DZNRM2
*     ..
*     .. Intrinsic Functions ..
INTRINSIC          INT, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test input arguments
*     ====================
*
INFO = 0
LQUERY = ( LWORK.EQ.-1 )
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
END IF
*
IF( INFO.EQ.0 ) THEN
MINMN = MIN( M, N )
IF( MINMN.EQ.0 ) THEN
IWS = 1
LWKOPT = 1
ELSE
IWS = N + 1
NB = ILAENV( INB, 'ZGEQRF', ' ', M, N, -1, -1 )
LWKOPT = ( N + 1 )*NB
END IF
WORK( 1 ) = LWKOPT
*
IF( ( LWORK.LT.IWS ) .AND. .NOT.LQUERY ) THEN
INFO = -8
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGEQP3', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
*     Quick return if possible.
*
IF( MINMN.EQ.0 ) THEN
RETURN
END IF
*
*     Move initial columns up front.
*
NFXD = 1
DO 10 J = 1, N
IF( JPVT( J ).NE.0 ) THEN
IF( J.NE.NFXD ) THEN
CALL ZSWAP( M, A( 1, J ), 1, A( 1, NFXD ), 1 )
JPVT( J ) = JPVT( NFXD )
JPVT( NFXD ) = J
ELSE
JPVT( J ) = J
END IF
NFXD = NFXD + 1
ELSE
JPVT( J ) = J
END IF
10 CONTINUE
NFXD = NFXD - 1
*
*     Factorize fixed columns
*     =======================
*
*     Compute the QR factorization of fixed columns and update
*     remaining columns.
*
IF( NFXD.GT.0 ) THEN
NA = MIN( M, NFXD )
*CC      CALL ZGEQR2( M, NA, A, LDA, TAU, WORK, INFO )
CALL ZGEQRF( M, NA, A, LDA, TAU, WORK, LWORK, INFO )
IWS = MAX( IWS, INT( WORK( 1 ) ) )
IF( NA.LT.N ) THEN
*CC         CALL ZUNM2R( 'Left', 'Conjugate Transpose', M, N-NA,
*CC  \$                   NA, A, LDA, TAU, A( 1, NA+1 ), LDA, WORK,
*CC  \$                   INFO )
CALL ZUNMQR( 'Left', 'Conjugate Transpose', M, N-NA, NA, A,
\$                   LDA, TAU, A( 1, NA+1 ), LDA, WORK, LWORK,
\$                   INFO )
IWS = MAX( IWS, INT( WORK( 1 ) ) )
END IF
END IF
*
*     Factorize free columns
*     ======================
*
IF( NFXD.LT.MINMN ) THEN
*
SM = M - NFXD
SN = N - NFXD
SMINMN = MINMN - NFXD
*
*        Determine the block size.
*
NB = ILAENV( INB, 'ZGEQRF', ' ', SM, SN, -1, -1 )
NBMIN = 2
NX = 0
*
IF( ( NB.GT.1 ) .AND. ( NB.LT.SMINMN ) ) THEN
*
*           Determine when to cross over from blocked to unblocked code.
*
NX = MAX( 0, ILAENV( IXOVER, 'ZGEQRF', ' ', SM, SN, -1,
\$           -1 ) )
*
*
IF( NX.LT.SMINMN ) THEN
*
*              Determine if workspace is large enough for blocked code.
*
MINWS = ( SN+1 )*NB
IWS = MAX( IWS, MINWS )
IF( LWORK.LT.MINWS ) THEN
*
*                 Not enough workspace to use optimal NB: Reduce NB and
*                 determine the minimum value of NB.
*
NB = LWORK / ( SN+1 )
NBMIN = MAX( 2, ILAENV( INBMIN, 'ZGEQRF', ' ', SM, SN,
\$                    -1, -1 ) )
*
*
END IF
END IF
END IF
*
*        Initialize partial column norms. The first N elements of work
*        store the exact column norms.
*
DO 20 J = NFXD + 1, N
RWORK( J ) = DZNRM2( SM, A( NFXD+1, J ), 1 )
RWORK( N+J ) = RWORK( J )
20    CONTINUE
*
IF( ( NB.GE.NBMIN ) .AND. ( NB.LT.SMINMN ) .AND.
\$       ( NX.LT.SMINMN ) ) THEN
*
*           Use blocked code initially.
*
J = NFXD + 1
*
*           Compute factorization: while loop.
*
*
TOPBMN = MINMN - NX
30       CONTINUE
IF( J.LE.TOPBMN ) THEN
JB = MIN( NB, TOPBMN-J+1 )
*
*              Factorize JB columns among columns J:N.
*
CALL ZLAQPS( M, N-J+1, J-1, JB, FJB, A( 1, J ), LDA,
\$                      JPVT( J ), TAU( J ), RWORK( J ),
\$                      RWORK( N+J ), WORK( 1 ), WORK( JB+1 ),
\$                      N-J+1 )
*
J = J + FJB
GO TO 30
END IF
ELSE
J = NFXD + 1
END IF
*
*        Use unblocked code to factor the last or only block.
*
*
IF( J.LE.MINMN )
\$      CALL ZLAQP2( M, N-J+1, J-1, A( 1, J ), LDA, JPVT( J ),
\$                   TAU( J ), RWORK( J ), RWORK( N+J ), WORK( 1 ) )
*
END IF
*
WORK( 1 ) = IWS
RETURN
*
*     End of ZGEQP3
*
END

```